NerveCenter High Availability Deployment Architecture

The purpose of this document is to discuss potential scenarios for deploying NerveCenter servers in an environment where there is a need to meet certain High Availability (HA) requirements. A range of deployment scenarios is presented to suite a variety of HA levels.

This document is written assuming you are running NerveCenter release 5.1, 5.2, 6.0, or 6.1. If you are running an earlier release of NerveCenter, please contact LogMatrix Customer Support for information on either an upgrade path or an alternative way to manage your current environment.

Basic Architectures for NerveCenter High Availability

There are three basic architectures for NerveCenter servers in a High Availability role. Each option can be also customized to meet specific needs or requirements depending on specific High Availability goals:

Cold Standby

- Manually bring up the secondary server when the primary server fails.

Warm Standby (two options)

- **One Primary** – One primary server is monitored by a secondary; if a primary failure is detected, the secondary server “turns on” node monitoring to take over for the primary.
- **Multiple Primaries** – There are two (or more) primaries, each monitoring a different set of nodes in the network. Each primary has the capacity to take over for any other primary. When one primary fails, another primary “turns on” monitoring of the nodes associated with the failed primary server.

Dual Production

- Two or more servers are configured identically; all servers are polling/monitoring the exact same networks/nodes. However, only one is primary for notification (i.e. sending alerts to a console, sending emails/text message, opening a trouble ticket). If the primary notification server fails, another server takes over the notification. (A variation on this would be full dual production including dual notification systems).

Which Option is Right for You?

Cold Standby

The cold standby option is used most often in a disaster recovery scenario. For High Availability, it can be used when availability goals are not very strict. A manual database synchronization process would be required to ensure all nodes/models are synchronized with the primary. When a primary failure does occur, a manual “start up” of the secondary is required.
Warm Standby

The warm standby option is the most common deployment scenario with NerveCenter customers. With this architecture, an automated scheme for keeping the databases synchronized is used, or alternatively a change control process (manual) can be used when changes are less frequent.

With the warm standby scenario, the secondary server would have both the operating system and the NerveCenter application running. However, the NerveCenter application on the secondary server would have network monitoring turned off – i.e. nodes unmanaged or models off. Because the secondary server is always running, the warm standby option could be used when there are more stringent HA requirements, since less time would be lost during a switch over from a “running” server as compared to the cold standby option.

Although with the warm standby option the secondary server would not normally be monitoring network nodes, there would be several NerveCenter models running on the secondary server to monitor the primary server for a failure. This monitoring can take the form of a “I am alive” trap sent from the primary to the secondary on a periodic basis. In addition, this monitoring would include the monitoring of the primary system itself and other NerveCenter functions.

The warm standby option has the greatest flexibility to automate fail-over based on various failure scenarios (or “what ifs”) specific to your particular network environment. For example, an alternative architecture would be to have two or more primary systems. The assumption here is the primaries are sharing the duties of monitoring the network, each system monitoring different sets of network nodes/systems. However, all primary servers have access to all nodes/systems being monitored. Additionally, all primaries must have the capacity to take the “load” from another primary. All nodes or monitored elements need to be in sync on all primaries, but each primary only has its set of nodes “turned on” in normal operation. Each primary monitors the others for potential failures. When a failure is detected, the detecting “primary” will “turn on” the monitoring of the nodes the failed primary would normally monitor.

Dual Production

The dual production option is used to achieve the highest level of High Availability. In this option, two or more NerveCenter servers are configured identically and are polling/monitoring the same nodes. An automated synchronization scheme needs to be in place and each NerveCenter will need to be a trap receiver of all managed nodes as well as have access/connectivity to all managed nodes. However, only one NerveCenter would be configured to send alert notifications (i.e. alerts to a console or auto trouble ticket generation). The NerveCenter servers that are not sending notifications would monitor the other NerveCenter servers for failure. If a failure is detected, the alternate NerveCenter server “turns on” notification to take over for the original notification server. Optionally, this architecture could be a full dual production environment where even upstream systems that receive notifications are duplicated.

The three HA options presented are summarized below showing the pros and cons of each option.
Table 1 HA Option Pros & Cons

<table>
<thead>
<tr>
<th>HA Option</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Standby</td>
<td>✷Ease of deployment</td>
<td>✷Will take more time to fail-over</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✷Not automated</td>
</tr>
<tr>
<td>Warm Standby</td>
<td>✷Most flexible for specific requirements</td>
<td>✷More setup required</td>
</tr>
<tr>
<td></td>
<td>✷Automated detection and fail-over</td>
<td>✷In the true warm standby version,</td>
</tr>
<tr>
<td></td>
<td>✷Cost saving in the “shared” monitor version as no backup licenses are needed.</td>
<td>will need backup licenses.</td>
</tr>
<tr>
<td>Dual Production</td>
<td>✷Highest HA option</td>
<td>✷Highest cost due to multiple production</td>
</tr>
<tr>
<td></td>
<td>✷Automated fail-over as no actual fail-over required</td>
<td>system</td>
</tr>
<tr>
<td></td>
<td>✷No “lost” polls or event detection</td>
<td>✷More setup time</td>
</tr>
<tr>
<td></td>
<td>✷If dual systems are physically different machines, can also meet Disaster Recovery needs.</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Data Synchronization

This refers to ensuring the models, nodes and compiled MIBs remain in synchronization between primary and secondary NerveCenter systems. If necessary, refer to the specific NerveCenter documentation for the exact name/path to the files containing this information.

In general these files would consist of the following:

- nervecenter.ncdb
- nervecenter.node
- nervectr.mib

And might consist of some/all of the following:

- nervecenter.xml
- ncstart-user (NC6.0.03, NC6.1.00)
- ncstart-authorized (NC6.0.03, NC6.1.00)

There are various methods for achieving “synchronization” of this configuration data.

Manual

Based on your implementation change control process, as NerveCenter nodes are updated by your current
process, perform the identical updates on the secondary NerveCenter server(s) as well. This way, models are always created/modified manually via the client. In addition, when a model is deployed to production, also deploy the model (or changed model) to the secondary server(s) as well.

Automated

Alternatively, the use of system or admin tools or a scripted file transfer (i.e. SCP) can be used to automate the process of pushing the updated configuration files to the secondary server(s) on a periodic basis. In addition, yet another option could be the use of available 3rd party HA cluster products/concepts (e.g. RedHat cluster or VMware) with a shared (or imaged) storage environment.

Assistance from LogMatrix

Realizing that each network is unique with respect to HA requirements and limitations, please contact LogMatrix for assistance and guidance in designing and implementing your specific HA architecture for NerveCenter. LogMatrix can be reached at +1(800)892-3646 or info@logmatrix.com.
LogMatrix Technical Support

LogMatrix is committed to offering the industry's best technical support to our customers and partners. You can quickly and easily obtain support for NerveCenter, our proactive IT management software.

Professional Services

LogMatrix offers professional services when customization of our software is the best solution for a customer. These services enable us, in collaboration with our partners, to focus on technology, staffing, and business processes as we address a specific need.

Educational Services

LogMatrix is committed to providing ongoing education and training in the use of our products. Through a combined set of resources, we can offer quality classroom style or tailored on-site training.

Contacting the Customer Support Center

Telephone Support
Phone: 1-800-892-3646 or 1-508-597-5300

E-mail support
E-mail: techsupport@logmatrix.com.

Electronic Support

LogMatrix has a Web-based customer call tracking system where you can enter questions, log problems, track the status of logged incidents, and check the knowledge base.

When you purchased your product and/or renewed your maintenance contract, you would have received a user name and password to access the LogMatrix Call Tracking System using SalesForce. You may need to contact your contracts or NerveCenter administrator for the username and password for your account with SalesForce.

If you have not received or have forgotten your log-in credentials, please e-mail us with a contact name and company specifics at techsupport@logmatrix.com.

We are committed to providing ongoing education and training in the use of our products. Through a combined set of resources, we offer quality training to our global customer base.

Online Access

For additional NerveCenter support information, please go the LogMatrix website www.logmatrix.com for access to the following sections of information.

- Patches and Updates – latest installation files, patches and updates including documentation for NerveCenter.
- Software Alerts – latest software alerts relative to NerveCenter.
User Community Access
You can seek as well as share advice and tips with other NerveCenter users at http://community.logmatrix.com/LogMatrix/.

Documentation
On-line documentation for all versions of NerveCenter is available at http://docs.logmatrix.com/NerveCenter/.