Log -
lervelCente

Designing and Managing Behavior Models

Version 6.2

COPYRIGHT
Portions ©1989-2017 LogMatrix, Inc. All rights reserved.

DISCLAIMERS

LogMatrix, Inc. (“LogMatrix”) makes no representations or warranties, either expressed orimplied, by or with respect to
anything in this manual, and shall not be liable for any implied warranties of merchantability or fitness for a particular purpose or
for any indirect, special or consequential damages.

These applications are available through separate, individual licenses. Not every feature or application described herein is
licensed to every customer. Please contact LogMatrix if you have licensing questions.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of LogMatrix. While every precaution has been taken in the
preparation of this book, LogMatrix assumes no responsibility for errors or omissions. This publication and the features
described herein are subject to change without notice.

The program and information contained herein are licensed only pursuant to a license agreement that contains use, reverse
engineering, disclosure and other restrictions.

TRADEMARKS

LogMatrix is registered in the U.S. Patent and Trademark Office. NerveCenter and the LogMatrix Logo are trademarks of
LogMatrix, Inc.

All other products or services mentioned in this manual may be covered by the trademarks, service marks, or product names
as designated by the companies who market those products.

LogMatrix, Inc.
230 N. Serenata Drive, Suite 711
Ponce Vedra Beach, FL 32082 USA

Toll Free +1 (800) 892-3646
Phone +1 (508) 597-5300
Fax +1 (774) 348-4953

info@logmatrix.com
http://www.logmatrix.com

Table of Contents

Introduction 1
NerveCenter Documentation i 1
LogMatrix Technical SUPPOI 4

Understanding NerveCenter 5
What is NerveCenter? . 5
How NerveCenter Manages Nodes 6

Defininga Set of Nodes ...l 6
Detecting Conditions ... il 6
Correlating Conditions 7
Responding to Conditionsl 12
Main NerveCenter Components ..l 15
The NerveCenter Server L 16
The NerveCenterDatabase 16
NerveCenter Interfaces 19
Role in Network Management Strategy o o i 22
Standalone Operation ... 23
Using Multiple NerveCenter Servers 24
Integration with Network Management Platforms 24
Behavior Models and Their Components 27
Behavior Modelso o e 27
Detecting Conditions ... il 28
Tracking Conditions ... il 28
Monitoring a Set of Nodes ... il 29
NerveCenter Objects 30
NOAES .o 30
Property Groups and Properties 36
POIIS e 37
NerveCenter 6.2 Designing and Managing Behavior ii

Models

Trap MaSKS 39
AlaINS e 41
Al S COPE o 42
NerveCenterand Perl e 45
Constructing Behavior Models il 47
How the Pieces Fit Together ... 48

An Example of a Behavior Model 50
Getting Started with the NerveCenter Client 53
Starting the NerveCenter Client 53
Connecting to a Server . 54
Connectingtoa ServerManually .. 55
Connecting to a Server Automatically 57
Sharing MIB Information from Multiple Servers 59
Selecting the Active Server 60
Deleting a Server from the Server List 60
Changing the Server Port onthe Client 61
Setting Up Alarm-Instance Filters 62
Filtering Alarms by IP Range 63
Filtering Alarms by Severity . il 70
Filtering Alarms by Property Groups 74
Associating a Filterwitha Server ... 77
Rules for Associating Filters with Alarms ... 79
Specifying Heartbeat Messaging 80
Modifying the Heartbeat Message Interval 81
Deactivating Heartbeat Messaging 82
Disconnecting from a Server ... 83
Discovering and Defining Nodes 84
Discovering NOdes 84
Using IPSweep Behavior Model 85
Defining Nodes Manually 92
IPV6 and NerveCenter 97
iii Designing and Managing Behavior NerveCenter 6.2

Models

Configuring SNMP Settings for Nodes 99
Manually Changing the SNMP Version UsedtoManageaNode 99
Changing the Security Level of an SNMPv3Node 102
Changing the Authentication Protocol foran SNMPv3Node 105
Classifying the SNMP Version ConfiguredonNodes, 107

Classifying the SNMP Version for One or More Nodes Manually 109
Classifying the SNMP Version for All Nodes Manually ... 110
Confirming the SNMP VersionforaNode i, 111
When NerveCenter Classifies Node SNMP Versions, 114
How NerveCenter Classifies aNode SNMP Versions, 115

NerveCenter Support for SNMPv3 117

Overview of NerveCenter SNMPV3 Support .. o . 117
NerveCenter Support for SNMPvV3 Security 118
NerveCenter Support for SNMPv3 Digest Keys and Passwords 119

Viewing the SNMPv3 Operations Logoooiii e 120
Signing a Log for SNMPv3 Errors Associated with YourClient _................................ 121
Signing a Log for SNMPv3 Errors Associated with a Remote Client or Administrator 122
Viewing the SNMPv3 Operations LOg ... 123

SNMP Error Status o 124

Usingthe SNMP Test Version Poll 126
Testing SNMPV1 and V2C Agents ... i 126
Testing SNMPV3 Agents L 126
How ToUsethe Test Version Poll e 127

Defining Property Groups and Properties 129
Listing Property Groups and Properties i 129

Listing Property GroUpsS L 130
Listing Propertieso e 131

Creating a Property ... 132

Creatinga New Property GroUp 133
Based on an Existing Property Group ... il 134

NerveCenter 6.2 Designing and Managing Behavior iv

Models

Basedonthe Contents of MIBS i 135
Adding Properties Manually 138
The nl-ping Property .. il 138
Filtering Properties ... L. 139
Assigning a Property GrouptoaNode 143
Using the Node Definition Window oo e 144
Using the Node List Window L 145
Using the AssignPropertyGroup() Function 147
Using the Set Attribute Alarm Action 155
Using OID to Property Group Mappings oL 158
Tips for Using Property Groups and Properties 159
Categorizing NOGeS L 160
Move from the General to the Specific 160
MIB ObJeCtS 160
Using Polls 161
Listing PoOllS ... e 162
Defining a Poll ... 164
Writinga Poll Condition ... e 166
The Basic Procedure for Creating a Poll Condition __.. 167
Functions forUse in Poll Conditions i 168
Using the Pop-Up Menu for Perl ... il 182
Examples of Poll Conditions 184
Documenting a Poll 186
How to Create Notes fora Poll i 187
What to Include in Notes fora Poll 190
Enabling a Poll 191
Using Trap Masks 193
AboUt Trap Masks . 193
How NerveCenter Decodes SNMPV2C/V3 Traps ... 194
How NerveCenter Decodes ICMP Eventso e 195
Listing Trap Masks oo 196
Defininga Trap Mask 198
Writing a Trigger FUNCHiON e 202
v Designing and Managing Behavior NerveCenter 6.2

Models

Functions for Use in Trigger Functions 203
Variables for Use in Trigger Functions 207
Examples of Trigger Functions 208
Documenting a Trap Mask .. il 210
How to Create Notes fora Trap Mask 211
What to Include in Notes fora Trap Mask 214
Enabling a Trap Mask L 216
Using Other Data Sources 219
BUI-IN TGS ...l 220
SNMP ReQUESTS - 220
ICMP ReQUESES . .. o 221
ICMP RESPONSES ..o 221
Built-in Trigger Firing Sequence 223
Matching Errors with Pending SNMP and PingRequests 224
Multi-homed NOdEeS o 224
BUIlt-IN THQQerS ...l 225

An Example Using Built-In TrigQers 228
Another NerveCenter e 229
Creating a Trap Mask ...l 230
Variable Bindings for NerveCenter Informs 234

An Example Trigger Function ... il 235
Using Alarms 237
Listing Alarms . 238
Defining an Alarm .. 241
AlaIMN S COPE L 244
Defining States 245
Defining a State L 247
Changing the Size of the State lcons 248
Deleting a State ... L 249
Defining Transitions 249
Defining a Transitionl 250

NerveCenter 6.2 Designing and Managing Behavior Vi

Models

Associating an Actionwitha Transition 251

Changing the Size of Transition ICoONs i 252
Changing the Color of Transition Lines 253
Deleting a Transitionl 254
Documenting an Alarm . il 254
How to Create Notes foran Alarm e 255
What to Include in Notes foran Alarm i 257
Enabling an Alarm . 259
Correlation EXPressioNs 261
Alarm Actions 269
ACHON ROULEr 269
Alarm COoUN e . 271
B D <. 274
Clear TrgOer . 275
COMMANG 277
Delete NOAe ... 278
EVeNtLOg .. 279
Fire TrQQer - il 280
FOrWard TraD oo 284
] o o o 286
INform Platform . 289
Inform Specific NUMbers 290
Logto File oo L 291
N O S e 292
Perl SUBIoUtiNe e 294
Defining a Perl Subroutine 295
Functions for Use in Perl Subroutines 297
NerveCenterVariables 301
Perl Subroutine Example 303
Send SIS | 304
SN T AP <. 305
Set AttribUle .. 308
SMT P Mail .l 311
SN St L 312
vii Designing and Managing Behavior NerveCenter 6.2

Models

Performing Actions Conditionally (Action Router) 315

Listing Existing Action Router Rules il 316
Creating an Action Router Rule 318
Defininga Rule Condition il 319
Defining a Rule Action L 323
Creating Multi-Alarm Behavior Models 325
fUpPD owWNStatus By TY e .. o . 325
IF-IStatus Alarm ... 327
IF-SelectType Perl Subroutine 328
Interface-type Alarms . 329
IF-IfFramePV C L 330
IfColdWarmStart Alarm ... e 331
IINMDemand Alarm ... 332
Managing NerveCenter Objects 333
Enabling ObjeCts 333
Copying ObJeCts ... 334
Copying a Property GroUp L 335
Copying Other Objects ... il 335
Deleting Objects il 336
Usinga Delete Button .. il 336
Usinga Pop-Up Menu ..l 337
Changing an Object Property or Property Group 338
Changing Poll or Alarm Properties 338
Changing a Node Property Group L 339
Changing an Alarm SCOPe 339
Suppressing Polling 340
SuppressingaNoOde ... 340
Making a Poll Suppressible .. 341
Changing Other Node Attributes 342
NerveCenter 6.2 Designing and Managing Behavior viii

Models

NerveCenter Severities 343

Definition of a Severity 344
Severity Attributes Used by NerveCenter 345
Severity Attributes and Network Management Platforms _......... 345

Default Severitieso 346

Creatinga New Severity L 348

Creating Custom ColOrs ... il 350

Importing and Exporting NerveCenter Nodes and Objects 353

Exporting Behavior Models to Other Servers i 353

Exporting BehaviorModelstoaFile 355

More About Exporting Behavior Models 357

Exporting NerveCenterObjects and Nodes to Other Servers 357

Exporting NerveCenterObjects and Nodes toaFile 360

More about Exporting Objects 362

Importing Node, Object, and Behavior Model Files 364

Importing Behavior Models or Nodes with ImportUtil 365

Communications and Data 367
Debugging a Behavior Model 371

Enabling a Behavior Model's Components i 371

Checking Properties and Property Groups ... il 371
Checking a Poll's Property . .. 372
Checking a Poll's Poll Condition 372
Checking an Alarm's Property il 373

Matching Triggers and Alarm Transitions i i 373
Identities of Triggers and Transitions 374
Rules for MatChing 375
Examples of Matching Triggers and Transitionsioiiii... 376

Auditing Behavior Models ... il 378

Behavior Model Log o L 379

[Designing and Managing Behavior NerveCenter 6.2

Models

Downstream Alarm Suppression 383
Understanding How the Model Works 383
Testing the Model ... 387

Importing the New Model 387
Identifying Parent-Child Relationships 388
Making the Relationship Information Available to NerveCenter 388
Testing the Alarm Suppression Model 389
Understanding the Technical Details 390
AlaINS 391
Perl SUDIoUtiNES 402

Error Messages 411
Alarm Filter Manager Error Messages L 413
Deserialize Manager Error Messages iiiiiiil. 413
Flatfile Error Messages 413
Inform NerveCenter Error Messages 413
LogToFile Manager Error Messages L 414
Poll Manager Error Messages 414
Protocol Manager Error Messages 414
PA Resync Manager Error Messageso . 415
Server Manager Error Messages 417
Trap Manager Error Messages 419
NerveCenter installation Error Messages L 420

Index 423

NerveCenter 6.2 Designing and Managing Behavior X

Models

Xi Designing and Managing Behavior NerveCenter 6.2
Models

Introduction

Designing and Managing Behavior Models describes how NerveCenter works and how you can monitor
your network most effectively. This book is written for users operating the NerveCenter Client.

NerveCenter Documentation

This section describes the available NerveCenter documentation, which explains important concepts in
depth, describes how to use NerveCenter, and provides answers to specific questions.

The documentation set is provided in online (HTML) format, as well as PDF for printing or on-screen
viewing.
Using the Online Help

You can view the documentation with Google Chrome, Mozilla Firefox, Apple Safari, or Microsoft Edge.
Refer to the NerveCenter Release Notes for the browser versions supported with this release.

Note: For in-depth instructions on using the online documentation, click the Help button E inthe
upper right of the Help window.

Printing the Documentation

The NerveCenter documentation is also available as Portable Document Format (PDF) files that you can
open and print. All PDF files are located in your installpath/doc directory.

Note: You must have Adobe Acrobat Reader to open or print the PDF files. You can download the
Reader free from Adobe’s Web Site at www.adobe.com.

NerveCenter 6.2 Designing and Managing Behavior 1
Models

http://www.adobe.com/

n Introduction

The NerveCenter Documentation Library

The following documents ship with NerveCenter.

Book Title Description Application Audience PDF for Print
NerveCenter | Describes new NerveCenter All All relnotes. pdf
Release features and includes late-
Notes breaking information, software
support, corrections, and
instructions.
Installing Helps you plan and carry out All Installation install. pdf
NerveCenter | your NerveCenter upgrades and team
new installations. Use the
Release Notes in conjunction
with this book.
Managing Explains how to customize and | NerveCenter | Administrator | managing_
NerveCenter | tune NerveCenter after it has Administrator nervecenter.pdf
been installed.
NerveCenter | Explains how to integrate NerveCenter | Administrator | integratingNC.
Platform NerveCenter with network Administrator pdf
Integration management platforms.
Guide
Learning to Provides step-by-step NerveCenter | Users with learningModel.
Create instructions and examples for Client administrative | pdf
Behavior creating behavior models. privileges
Models
Designing and | Explains behavior models in NerveCenter | Users with designingModels.pdf
Managing depth, how to create or modify | Client administrative
Behavior models, and how to manage privileges
Models your models.
Monitoring Explains how NerveCenter NerveCenter | Users monitoringNet.
Your Network | works and how you can most Client pdf
effectively monitor your
network.
UNIX Systems

On UNIX systems, NerveCenter man pages provide command reference and usage information that you
view from the UNIX shell as with other system man pages. When you specify documentation during
NerveCenter installation, the script installs nroff-tagged man pages and updates your system’s
MANPATH environment variable to point to the NerveCenter man page directory.

Designing and Managing Behavior

Models

NerveCenter 6.2

NerveCenter Documentation n

Document Conventions

This document uses the following typographical conventions:

Element Convention Example

Key names, button names, menu names, command Bold Press Tab

names, and user entries Enter ovpa -pc

m A variable you substitute with a specific entry Italic Enter ./installdb -f IDBfile
m Emphasis

m Heading or Publication Title

Code samples, code to enter, or application output Code iifInOctets > O

Messages in application dialog boxes Message Are you sure you want to
delete?

An arrow (>)indicates a menu selection > Choose Start > Programs >
NerveCenter

Caution: A caution warns you if a procedure or description could lead to unexpected results, even data
loss, or damage to your system. If you see a caution, proceed carefully.

Note: A note provides additional information that might help you avoid problems, offers advice, and
provides general information related to the current topic.

Documentation Feedback

LogMatrix, Inc. is committed to providing quality documentation and to helping you use our products to the
best advantage. If you have any comments or suggestions, please send your documentation feedback to:

Documentation

LogMatrix, Inc.

230 N. Serenata Drive, Suite 711
Ponce Vedra Beach, FL 32082 USA

support@logmatrix.com

NerveCenter 6.2 Designing and Managing Behavior 3
Models

mailto:support@logmatrix.com

n Introduction

LogMatrix Technical Support
LogMatrix is committed to offering the industry's best technical support to our customers and partners.

You can quickly and easily obtain support for NerveCenter, our proactive IT management software.

Professional Services

LogMatrix offers professional services when customization of our software is the best solution for a
customer. These services enable us, in collaboration with our partners, to focus on technology, staffing,
and business processes as we address a specific need.

Educational Services

LogMatrix is committed to providing ongoing education and training in the use of our products. Through a
combined set of resources, we can offer quality classroom style or tailored on-site training.

Contacting the Customer Support Center

For Telephone Support
Phone: Toll Free +1 (800) 892-3646 or Phone +1 (508) 597-5300

For E-mail Support

E-mail: support@logmatrix.com.

4 Designing and Managing Behavior NerveCenter 6.2
Models

mailto:support@logmatrix.com

Understanding NerveCenter

This chapter explains:
m What type of product NerveCenter™ is
m How NerveCenter manages nodes
m What the NerveCenter main components are

m What roles NerveCenter can play in a network or system management solution

What is NerveCenter?

There are many network management tools designed to identify network faults and send alerts, but in
doing so they may often flood the event console with raw data. Each critical or warning message
indicating a potential problem — a failed router, for example — is usually accompanied by many additional
messages regarding devices downstream that cannot be contacted. As a result, there is a great deal of
information to sift through before the real problem can be identified and corrected.

NerveCenter is a network management tool that helps automate the identification, tracking, management,
and resolution of important network events to facilitate proactive isolation and response to key events.
NerveCenter uses the Simple Network Management Protocol (SNMP) to acquire data about managed
devices, as well as Internet Control Message Protocol (ICMP) messages from your network to provide
basic information about unresponsive devices.

For each device being monitored, NerveCenter's event correlation engine creates one or more finite state
machines — or alarms — that define operational states of interest and the transitions between those
states. These state machines enable NerveCenter to correlate data from multiple sources over time
before concluding that a problem exists. As a simple example, an interface link-down trap might not
indicate a problem if a link-up trap is received within a given amount of time, allowing both traps to be
ignored. If the link-up trap does not follow in the given time, then NerveCenter can then implement
predefined actions such as notifying an administrator, executing a script to correct the problem, or
notifying a network management platform.

In addition to being an advanced event automation solution, NerveCenter is also a highly scalable cross-
platform client/server application. It can run co-resident with a network management platform (such as
IBM Tivoli Netcool/OMNIBus) and manage thousands of nodes, or distributed as a background process
at tens or even hundreds of remote offices.

NerveCenter 6.2 Designing and Managing Behavior 5
Models

n Understanding NerveCenter

How NerveCenter Manages Nodes

To perform its job of event automation, NerveCenter relies on the definition of behavior models. These
models are constructed from NerveCenter objects (which we'll discuss in detail later) and define:

m Which nodes the behavior model will affect

m How NerveCenter will detect certain conditions on these nodes
m How NerveCenter will correlate the conditions it detects

m How NerveCenter will respond to network problems

The following sections elaborate on the tasks that NerveCenter performs in order to automate event
handling.

Defining a Set of Nodes

NerveCenter can get the list of devices to monitor from a network management platform, discover them
on the network, or import this information from another NerveCenter database.

NerveCenter assigns to each managed node a set of properties, and these properties determine which
behavior models apply to a node. Properties typically describe the type of the device—for example, a
router—or are named after objects in the management information base (MIB) used to manage the node.

Once NerveCenter assigns a set of properties to a node, NerveCenter automatically applies to that node
all of the models that refer to those properties. If NerveCenter detects that a node has been deleted or that
its properties have changed, the product immediately retires or updates the set of models that are actively
managing that node. This dynamic process enables NerveCenter to adapt at once to changes in network
configuration reported by the management platform or by NerveCenter's own discovery mechanism.

It is also possible to assign properties to nodes manually to further refine the set of models that
NerveCenter uses to manage a node. For example, you may want to distinguish a backbone router from a
campus router to regulate how much and how often status information is collected.

Detecting Conditions

As is discussed in the section Role in Network Management Strategy on page 22, NerveCenter can
collect network and system data from a variety of sources. However, most frequently NerveCenter
obtains data from Simple Network Management Protocol (SNMP) agents running on managed nodes.
This means that NerveCenter detects most conditions by:

m Receiving and interpreting an SNMP trap
m Polling an SNMP agent for data and analyzing that data

One of the criticisms of SNMP-based enterprise management platforms over the years has been that,
because SNMP trap delivery is unreliable, the platform must poll agents and this polling generates too
much network traffic. NerveCenter helps alleviate this problem by enabling you to determine the interval
at which a poll is sent and to turn a poll off. Even more important is NerveCenter's smart polling feature.
NerveCenter sends a poll to a node only if the poll:

6 Designing and Managing Behavior NerveCenter 6.2
Models

How NerveCenter Manages Nodes n

m Is part of a behavior model designed to manage that node

m Can cause achange in the alarm’s state.

Also, because of NerveCenter’s client/server architecture, NerveCenter servers can be distributed so
that all polling is done on LANs, and not across a WAN. Furthermore, use of SNMP v2c and v3 features
allow SNMP to be utilized both reliably and securely.

Correlating Conditions

Event correlation involves taking a number of detected network conditions, often a large number, and
determining:

m How these conditions, or some subset of them, are related
m The underlying cause of a set of conditions, or the problem to which they have led

Forinstance, NerveCenter may look at a large number of events and identify a subset of events that
relate to SNMP authentication failures on a managed node. NerveCenter may then determine that the
authentication failures were far enough apart that no problem exists, or it may find that several failures
occurred within a short period of time, indicating a possible security problem. In the latter case,
NerveCenter might notify administrators of the potential problem. In this way, administrators receive one
notice about a potential security problem rather than having to browse through a long list of detected
conditions and identify the problem themselves.

Detected conditions can be correlated in many ways. In fact, once you start working with NerveCenter,
you will help determine how these conditions are correlated yourself. However, there are some typical
ways in which NerveCenter finds relationships between conditions. Several of these methods are
discussed in the following sections:

m Detecting the Persistence of a Condition on the next page
m Finding a Set of Conditions on page 9

m Looking for a Sequence of Conditions on page 10

NerveCenter 6.2 Designing and Managing Behavior 7
Models

Understanding NerveCenter

Detecting the Persistence of a Condition

Probably the simplest method of correlating detected conditions is to search for the persistence of a
problem. For example, a network administrator might want to know if an SNMP agent sends a link-down
trap and that trap is not followed within three minutes by a link-up trap. NerveCenter can track such a link-
down condition using a state diagram similar to the one shown below.

Start timer

\ i

DownTrap

Link-down trap

Timer

Link-up trap ﬂ
goes 0

Inform
management
platform

Delete timer

A\

=

LinkDown

I X

Ground
Link-up trap

Figure 1: State Diagram for Detecting a Link-Down Condition

Let’s say that NerveCenter has this state diagram in memory and is tracking a particular interface for a
link-down condition.

m Thefirst time NerveCenter sees a link-down trap concerning that interface, the current state
becomes DownTrap, and NerveCenter starts a three-minute timer.

m If NerveCenter receives a link-up trap within three minutes of the link-down trap, the current state
reverts to Ground (normal) because NerveCenter is looking for a persistent link-down condition. In
addition, NerveCenter stops the timer. However, if three minutes expire before a link-up trap
arrives, the current state becomes LinkDown, and NerveCenter informs a network management
platform that the link is down.

m The current state remains LinkDown until a link-up trap does arrive. At that point, the current state
reverts to Ground, and the process begins again.

8 Designing and Managing Behavior NerveCenter 6.2
Models

How NerveCenter Manages Nodes

Finding a Set of Conditions

Another common type of event correlation is the identification of a set of conditions. For example, let’s
say that you're monitoring the interfaces on a router. To be notified when a low-speed interface goes down
or when a high-speed interface goes down, you might use the following state diagram.

Interface
back up

Interface
back up

Low-speed High-speed
interface down interface down

Low-speed _
Problem E-mail

High-speed
Problem

Page

Figure 2: State Diagram for Detecting a Router Interface Problem

What causes state transitions in this situation? NerveCenter can poll the SNMP agent on the router for
the values of the following interface attributes: ifOperStatus, ifAdminStatus, ifSpeed, ifinOctets, and
ifOutOctets.

If the poll successfully returns values for these attributes, NerveCenter can then evaluate the expression
shown below in pseudocode:
if ifOperStatus is down && i1ifAdminStatus is up &&
(1fInOctets > 0 || 1fOutOctets > 0)
if ifSpeed < 56K
move to lowSpeedProblem state
else

move to highSpeedProblem state
else

move to ground state
This code is looking for two sets of conditions. The first set is:
m The operational state of the interface is down.
m The administrative status of the interface is up.

m Traffic has been passed on this interface. (If no traffic has been passed, the interface is just coming
up.)
m Theinterface’s current bandwidth is less than 56K.

If this set of conditions is met, a problem exists on an interface that is probably used for a dial-up
connection.

NerveCenter 6.2 Designing and Managing Behavior 9
Models

n Understanding NerveCenter

The second set of conditions is the same as the first, except that the last condition is that the interface’s
current bandwidth is greater than or equal to 56K. If this set of conditions is met, a problem exists on a
higher speed interface.

If neither of these sets of conditions is met, the current state should return to, or remain at, Ground.

NerveCenter may detect many conditions concerning an interface before it finds the set of conditions it is
looking for. The administrator need not see information about each of these conditions. He or she will be
emailed or paged if the interface goes down.

Looking for a Sequence of Conditions

NerveCenter also enables you to correlate conditions by looking for sequences of conditions. This type of
correlation is possible because, in NerveCenter, each state in a state diagram can look for a different set
of conditions. Forinstance, let’s look at a state diagram that NerveCenter uses to track the status of a
node and its SNMP agent. The diagram includes states for the following conditions:

m The node and its SNMP agent are up.
m Thenode is up, but its agent is down.
m The node is unreachable.

m Thenode is down.

10

Designing and Managing Behavior NerveCenter 6.2
Models

How NerveCenter Manages Nodes

Ground

Net unreachable Port unreachable
| 1 |

‘ Node unreachable I ‘ SNMP Timeout I

‘ Net unreachable ” Port unreachable I

‘ Node unreachable ‘ SNMP Timeout I

Unreachable Unknown Agent Down
‘ Net unreachable ‘ Node up I
‘ Node unreachable I
‘ ICMP timeout I
ICMP timeout Device Down ICMP timeout I

Figure 3: State Diagram for Determining Node Status

Note: A more realistic state diagram for tracking the status of a node would include transitions from the
terminal problem states back to Ground.

NerveCenter 6.2 Designing and Managing Behavior 11
Models

n Understanding NerveCenter

When checking the status of a node and its SNMP agent, NerveCenter begins by polling the node to see
if the node’s SNMP agent will return the value of the MIB attribute sysObjectID. If the agent returns this
value, the current state remains Ground. However, NerveCenter makes Error the current state if:

m The node, or the network the node is on, is unreachable
m The node is reachable, but the SNMP agent doesn’t respond

Similarly, NerveCenter changes the current state to Unknown if it detects for a second time that the node
is unreachable or the node’s SNMP agent isn’t responding.

Once the current state becomes Unknown, though, NerveCenter begins looking for a different set of
conditions. NerveCenter checks to see whether the node will respond to an ICMP ping. If it will,
NerveCenter knows that the node is up, but its SNMP agent is down. If it receives another network- or
node-unreachable message, NerveCenter knows that the node is unreachable. And if the ping times out,
NerveCenter knows that the node is down.

This ability of different states to monitor different conditions gives you the ability to correlate sequences of
conditions. That is, a sequence of two SNMP timeouts followed by a Node up indicates that the node is
up but its agent is down. And a sequence of two Node unreachables followed by an ICMP timeout
indicates that the node is down.

Responding to Conditions

NerveCenter not only enables you to detect network and system problems, but is able to respond
automatically to the conditions it detects. To set up these automated responses, you associate actions
with state transitions.

The possible actions you can define are discussed in the following sections:
m Notification on the facing page
m Logging on the facing page
m Causing State Transitions on page 14
m Corrective Actions on page 14

m Action Router on page 15

12

Designing and Managing Behavior NerveCenter 6.2
Models

How NerveCenter Manages Nodes

Notification

If a particular network or system condition requires the attention of an administrator, the best action to
take in response to that condition is to notify the appropriate person. NerveCenter lets you notify
administrators of events in the following ways:

m You can send an audible alarm (a beep) to workstations running the NerveCenter Client.
m You can send a message to an administrator using either SMS service or SMTP mail.
m You can page an administrator.

m You can send information about a network or system condition to another NerveCenter server. This
capability is useful if you have a number of NerveCenter servers at different sites and want these
servers to forward information about important events to a central server.

m You can send information about a network or system condition to a network management platform
such as IBM Tivoli’'s Netcool/OMNIbus. Administrators can then be notified of a problem found by
NerveCenter using the other management tool’s console.

For more information on integrating NerveCenter with other network management products, see the
section Role in Network Management Strategy on page 22.

Logging
If you want to keep a record of an event that takes place on your network, you must explicitly log
information about the event at the time it occurs. NerveCenter provides three actions that provide for such
logging:

m LogtoFile

m systemlog (syslog)

Log to File writes information about an event to a file. The EventLog action writes information about an
event to the system log.

When you assign a logging action to a behavior model, you have the choice of logging default data or
customizing what data you deem relevant. This saves disk space and streamlines information used later
for analysis and reporting.

NerveCenter 6.2 Designing and Managing Behavior 13
Models

Understanding NerveCenter

Causing State Transitions

In some behavior models, one alarm needs to cause a transition in another. The action that enables such
communication between alarms is called Fire Trigger. This action creates a NerveCenter object called a
trigger that can cause a state transition in the alarm from which it was fired or in another alarm.

The Fire Trigger action also lets you specify a delay, so you can request that a trigger be fired in one
minute or five hours. This feature is especially useful when you’re looking for the persistence of a
condition. Let’s say that you want to look for three intervals of high traffic on an interface within a two-
minute period. When your poll detects the first instance of high traffic, and your alarm moves out of the
Ground state, you can fire a trigger with a two-minute delay that will return your alarm to the Ground
state—unless a second and third instance of high traffic are detected.

If a third instance of high traffic is detected, you should cancel the trigger you fired on a delayed basis.
You do this by adding the Clear Trigger action to the transition from the second high-traffic state to the
third.

NerveCenter also includes a Send Trap action. You define the trap to be sent, including the variable
bindings, and associate the action with a state transition. When the transition occurs, the trap is sent. The
trap can be caught by a NerveCenter trap mask—in which case you can use Send Trap somewhat like
Fire Trigger, to generate a trigger—or by any application that processes SNMP traps.

Corrective Actions

There are a number of NerveCenter actions that you can use to take corrective actions when a particular
state transition occurs. These are:

s Command
m Perl Subroutine
m Set Attribute
m Delete Node
m SNMP Set
The Command action enables you to run any script or executable when a particular transition occurs.

The Perl Subroutine action enables you to execute a Perl script as a state-transition action. You first
define a collection of Perl scripts and store them in the NerveCenter database; then, you choose one of
your stored scripts for execution during a state transition.

The Set Attribute action enables you to set selected attributes of the NerveCenter objects used to build
behavior models.

The Delete Node action deletes the node associated with the current state machine from the NerveCenter
database. This action is useful if you use a behavior model to determine which nodes you want to monitor
and manage.

The SNMP Set alarm action changes the value of a MIB attribute when an alarm transition occurs.

14 Designing and Managing Behavior NerveCenter 6.2
Models

Main NerveCenter Components n

Action Router

The Action Router enables you to specify actions that should be performed when a state transition occurs
and other conditions are met. To set up these conditional actions, you add the Action Router action to
your state transition. Then, you use the Action Router tool to define rules and their associated actions.

For example, let’'s assume that you want to be notified about a state transition only if the transition puts
the alarm in a critical state. You can define the following rule:

S$DestStateSev eq ‘Critical’

Then define the action you want taken if the severity of the destination state is Critical, for example, a
page. You will be paged if:

m The Action Router action is associated with the current state transition
m The destination state for the transition is Critical

Action Router rules can be constructed using many variables that NerveCenter maintains; for instance,
you can also construct rules based on:

m The name of the alarm

m The day of the week

m Thetime of day

m The name or IP address or group property of the node being monitored
m The name of the trigger that caused the state transition

m The name of the alarm’s property

m The name or severity of the origin state

m The contents of atrap

m The contents of the varbind data associated with a trap or a poll

Main NerveCenter Components

NerveCenter is a distributed client/server application and includes the following components:
m The NerveCenter Server on the next page
m The NerveCenter Database on the next page

m NerveCenter Interfaces on page 19

NerveCenter 6.2 Designing and Managing Behavior 15
Models

n Understanding NerveCenter

The NerveCenter Server

The NerveCenter Server is responsible for carrying out all of the major tasks that NerveCenter performs.
For example, it handles the polling of SNMP agents, creates NerveCenter objects such as the finite
alarms mentioned earlier, and makes sure that state transitions occur at the appropriate times. The server
also performs all actions associated with state transitions.

The server can run as a daemon on UNIX systems. This capability to run in the background has important
implications with regard to using NerveCenter at remote sites. You can install the server and database at
a remote office and have that server manage the local network, yet control the server (via the
NerveCenter Client) from a central location. Servers located at remote sites can forward noteworthy
information to a server at the central location as required.

The NerveCenter Database
The NerveCenter database is primarily a repository for the NerveCenter objects that make up a set of
behavior models. The principal objects used in these models are:
= Nodes
m Property groups and properties
m Polls
m Trap masks
m Alarms

For brief explanations of what these objects are and how they are used, see Objects in the Database
below.

A set of objects that define many useful behavior models ships with NerveCenter and is available as soon
as you've installed the product. For a list of these predefined behavior models, see the section Predefined
Behavior Models on page 18.

On UNIX systems, the NerveCenter database is implemented as a flat file.

Objects in the Database
This section contains brief definitions of the basic objects used in the construction of behavior models.

m Nodes - A node represents either a workstation or a network device, such as a router. Each node
has an attribute called its property group that controls which behavior models NerveCenter will
employ in managing the node.

Note: Strictly speaking, a node is not part of a behavior model; rather, it is the entity managed by a
behavior model.

m Property groups and properties - As mentioned above, each node has a property group. This
property group is simply a container for a set of properties, which are strings that typically either
describe the type of node or name an object in the MIB used to manage the node. It is actually a
node’s properties, rather than its property group, that determine whether a particular behavior model
will be used to manage that node.

16

Designing and Managing Behavior NerveCenter 6.2
Models

Main NerveCenter Components

m Polls - A poll defines what MIB variables NerveCenter should request the values of, how those
values should be evaluated, and what action the poll should take. If the poll takes an action, it will
be to fire a trigger, which may cause a state transition in one of NerveCenter’s finite state
machines.

m Trap masks - A trap mask describes an SNMP trap and contains the name of a trigger. If
NerveCenter receives an SNMP trap that matches the description given in the trap mask,
NerveCenter fires a trigger with the name defined in the trap mask. If NerveCenter receives a trap
that does not match a trap mask, it discards that trap.

m Alarms - NerveCenter’s finite state machines are called alarms. Each alarm defines a set of
operational states (such as Normal and Down) and transitions between the states. Transitions are
effected by the receipt of the proper trigger and can have actions associated with them. If actions
are associated with a transition, the server performs these actions each time the transition takes

place.

Behavior Models

Once a set of managed nodes has been defined, NerveCenter's monitoring activities are controlled by a
set of behavior models. A behavior model is the group of NerveCenter objects required to detect and take
action upon a single network condition, such as high traffic on an interface.

The central object in each behavior model is a deterministic finite state machine called an alarm. For
instance, the alarm shown in Figure 4 tracks the level of traffic on an interface.

T T MediumlLoad

MediumLoad |
LowLoad | / \

LowLoad

LowlLoad |

HighLoad

=
HighLoad

Figure 4: Alarm State Diagram

g

The possible states in this alarm are low, medium, and high. And these states have the severities Normal,
Medium, and High, respectively. (The color of each state denotes its severity.) The gray rectangles in the
alarm represent state transitions.

NerveCenter 6.2 Designing and Managing Behavior 17
Models

Understanding NerveCenter

What about the inputs and outputs of the state machine? The inputs are called triggers and can come from
several sources. For example, one predefined NerveCenter poll queries the SNMP agent on a device for
the level of traffic on, and the capacity of, each interface on the device. If the level of use exceeds a
certain percentage of the capacity for an interface, the poll fires the trigger mediumLoad, which can cause
a state transition in an alarm.

The outputs of an alarm are called alarm actions. These actions are associated with the transition from
one state to another by the designer of a behavior model, and NerveCenter performs these actions each
time the transition occurs. There are many possible actions, including the following:

m Sending an audible alert to the workstation on which the NerveCenter Client is being run
m Executing a program or script

m Deleting a node from the NerveCenter database

m Informing a network management platform of a condition

m Logging information to a disk file

m Sending mail to an administrator

m Paging an administrator

m Sending an SNMP trap

m Setting a MIB attribute

Predefined Behavior Models

When you install NerveCenter and create a new database, that database contains the objects that make
up a number of predefined behavior models. These include behavior models for:

m Detecting authentication failures

m Monitoring the error rate on network interfaces

m Monitoring link-up and link-down traps

m Monitoring the amount of traffic on network interfaces

m Indicating the status of network interfaces: up, down, and so on

m Detecting errors that inhibit accurate SNMP device management

m Determining whether a device is down, unreachable, or up with/without an agent
m Giving early warning concerning TCP connection saturation

m Verifying that the current TCP retransmission algorithm is the most efficient
m Categorizing devices based on TCP retransmission activity

m Logging information about SNMP traps

NerveCenter also includes predefined behavior models that you can import to monitor specific vendors’
devices and additional models for troubleshooting, interface status, data collection, and downstream
alarm suppression. For more information about behavior models, see "Behavior Models and Their
Components" on page 27.

18

Designing and Managing Behavior NerveCenter 6.2
Models

Main NerveCenter Components

NerveCenter Interfaces

This section introduces NerveCenter's principal user interfaces:
m "The NerveCenter Administrator" below
m The NerveCenter Client Console
m "The NerveCenter Client" on page 21

m "The Command Line Interface" on page 22

The NerveCenter Administrator
Users with administrator privileges can use the NerveCenter Administrator interface to:
m Configure NerveCenter discovery mechanisms
m Configure the number of SNMP polling retries and the retry interval
m Configure NerveCenter mail and paging actions
m Manage NerveCenter log files

m Configure NerveCenter to work with a network management platform

NerveCenter 6.2 Designing and Managing Behavior 19
Models

Understanding NerveCenter

Figure 5 shows the NerveCenter Administrator.

4 LogMatrix NerveCenter Administrator - NERVECENTER — O X
Admin Server View Window Help

E- 1]

ICMP | SNMP | SNMPv3 | Log | Connections | Classify
SNMP Agent | Poling | Trap Destinations | SNMP Traps
Server |Noda Soucal Filters I Inform Eodigurdionl Actions

- License

| EVAL. 100 nodes, 5 pollers

~Logs— [Reports
NCServerlog | Poll Thioughput |

Audit Trail | Poll Schedule I
SNMP+3 Operations I U I

Node List I

Pollist |

For Help, press F1 [[Num a

Figure 5: NerveCenter Administrator

20 Designing and Managing Behavior NerveCenter 6.2
Models

Main NerveCenter Components

The NerveCenter Client

The figure below shows the GUI for the NerveCenter Client.
B LogMatrix NerveCenter Client — O X
Client Server Admin Window View Help
8| 8 | nervecenten | | (1| M| oP| | (IS |2 3 @) %)

B Aggregate Alarm Summary (o] -E- s

g Severity A
&-0 Fault Server Time Name Node SubObj... | State | Severity | Trigger | Type | Source

.. Critical

wCrit
aMin
nlnf

. @ Major

O Minor

B Warning
.. B Inform
. B Special
... B Normal
- Traffic

B Saturated
-8 VeryHigh

NUM e

Figure 6: NerveCenter Client

Two types of users run the NerveCenter Client. Users with NerveCenter User privileges can run the client
to:

m Monitor active alarms

m Filter alarms for the alarm summary windows

m View an alarm’s history

m Resetalarms

m Monitor the state of managed nodes

m Generate reports

For complete information on using the NerveCenter Client to perform the tasks listed above and others,
see Monitoring Your Network.

Users with NerveCenter Administrator privileges can perform all the tasks that users with User privileges
can. In addition, they can use the client to:

m Create new behavior models
m Customize the predefined behavior models

m Modify, copy, or delete any object in the NerveCenter database

NerveCenter 6.2 Designing and Managing Behavior 21
Models

Understanding NerveCenter

The Command Line Interface

You can use NerveCenter's command line interface (CLI) to delete, list, or set (enable or disable) alarms,
trap masks, nodes, and polls from a Windows Command Prompt or a UNIX shell. You can also connect
to, display the status of, and disconnect from NerveCenter servers using the CLI. You can issue
commands manually or from a script.

See the appendix Controlling NerveCenter from the Command Line for command descriptions.

Role in Network Management Strategy

NerveCenter can play a variety of roles in an overall network management strategy. The role that
NerveCenter plays in your strategy depends largely on the size of your network and on what other
products you are using to manage your network and systems:

m If you are managing a small network, NerveCenter can be used as a standalone system. It can
discover the workstations and network devices on the network, detect and correlate network
conditions, respond automatically to conditions, and display information about active alarms. See
the section "Standalone Operation" on the facing page for further information.

m Forlarger networks, multiple NerveCenters can be used in concert. Local NerveCenter systems
could be set up to manage remote sites, and the local NerveCenter servers could forward important
information to the NerveCenter server at the central site. See the section "Using Multiple
NerveCenter Servers" on page 24 for further information.

m NerveCenter can be used in conjunction with a network management platform such as IBM Tivoli
Netcool/OMNIbus which manages systems systems, networks, intranets, and databases.
NerveCenter can be configured to receive messages from or send messages to this and similar
network management platforms. See the section "Integration with Network Management
Platforms" on page 24 for further information.

22 Designing and Managing Behavior NerveCenter 6.2
Models

Role in Network Management Strategy

Standalone Operation

At smaller sites, you can use NerveCenter alone for your network management tasks. As we've seen,
NerveCenter is very strong in the areas of event correlation and automated actions. In addition,
NerveCenter includes an alarm console, as shown in Figure 7.

_!I LogMatrix NerveCenter Client - NERVECENTER — | X

alal:) %)

Client Server Admin Window View Help

MWERVECENTER -] %g|g|~|f|*

=Crit
aMin
ulnf

g2

B NERVECENTER:Alarm Summary [=)
=-£ NERVECENTER 13 A
&6 Severity 13 Name | Time | Node SubObject | State | Severity | Trigger | Type | Source A

.7 Fault 13 ifStatus 06/09/20... Cisco-Switch ifEntry.1 Up Normal ifUp poll ifStatu

B Critical ifStatus 06/09/20... Cisco-Switch ifEntry.2 Up Normal ifUp poll ifStatu

B Major ifStatus 06/09/20... Cisco-Switch ifEntry.3 Up Normal ifUp poll ifStatu

O Minor ifStatus 06/09/20.. Cisco-Switch ifEntry.4 Up Normal ifUp poll ifStatu

. ifStatus 06/09/20... Cisco-Switch ifEntry.5 ifEntry Special ifEntry poll ifStatu

- B Warning ifStatus 06/09/20.. Cisco-Switch ifEntry.6 ifEntry Special ifEntry poll ifStatu

B Inform 2 ifStatus 06/09/20... Cisco-Switch ifEntry.7 ifEntry Special ifEntry poll ifStatu

B Special 6 ifStatus 06/09/20.. Cisco-Switch ifEntry.8 ifEntry Special ifEntry poll ifStatu

B Normal 5 ifStatus 06/09/20... Cisco-Switch ifEntry.9 ifEntry Special ifEntry poll ifStatu

& 02 Traffic ifStatus 06/09/20.. Cisco-Switch ifEntry.10 ifEntry Special fEntry poll ifStatu

W Saturated ifStatus 06/09/20... Cisco-Switch ifEntry. 11 Down Inform ifAdmin.. poll ifStatu

ECh . m NE 0 N Cirrm Conidrls HCmbm 17 Mmcsiem lom mvmm A A -l EChab.

-~ @ VeryHigh < >
O High v

NUM 2

Figure 7: NerveCenter's Alarm Console

This console displays information about every current alarm instance. In addition, if you double-click on a
line in the event console, you are taken to an Alarm History window that displays information about all of
the alarm transitions that have occurred for the alarm instance you selected.

At small installations, no discovery mechanism is necessary; you can add nodes to NerveCenter
manually. At somewhat larger sites, however, such a mechanism is helpful, and NerveCenter provides
one in its Discovery behavior model.

NerveCenter 6.2 Designing and Managing Behavior 23
Models

n Understanding NerveCenter

Using Multiple NerveCenter Servers

Because a NerveCenter server can inform another NerveCenter server or management platform of a
network condition, it’s possible to set up NerveCenter servers at remote sites that notify a centrally
located NerveCenter server or management platform (Figure 8).

Central Site

D '- Client and Server

Server

= e e

—

Remote Site A Remote Site B Remote Site C

Figure 8: Distributed NerveCenter Servers

This is a reliable solution because the remote NerveCenter servers use TCP/IP to notify the central
NerveCenter server and retransmit messages as necessary to ensure their delivery. There are a few
advantages to this type of setup:

m Only a small amount of data is transmitted over the WAN. Any bandwidth intensive monitoring is
conducted on a LAN and is managed by a remote NerveCenter server.

m Remote NerveCenter servers can be run in lights-out mode, which means that:
> NerveCenter runs as a UNIX daemon
> You can monitor and configure NerveCenter from a remote location
> You can modify all NerveCenter parameters without shutting NerveCenter down
> Nodisplay or operators are required at a site

m The central NerveCenter can further correlate and filter conditions across remote NerveCenter
Server domains

Integration with Network Management Platforms

A network management platform (NMP) is an operations and problem-management solution for use in a
distributed multi-vendor environment. Intelligent distributed agents on managed nodes monitor system
and application log files and SNMP data. The agents apply filters and thresholds to monitored data and
forward messages about conditions of interest to a central management station. When the management
station receives messages, it can automatically take corrective action—such as broadcasting a
command to a set of systems—or an operator can initiate a response.

24 Designing and Managing Behavior NerveCenter 6.2
Models

Role in Network Management Strategy n

You can integrate your NerveCenter installation with the NMP so that the NMP can send messages to
NerveCenter for correlation or processing. After the messages arrive, NerveCenter correlates the
conditions described in these messages with related conditions—from the NMP or from other sources—
and can respond with any of its alarm actions, as appropriate. In addition, NerveCenter can send a

message to an NMP in response to any network condition, whether the condition was originally detected
by the NMP or not.

NMPs alone can detect a condition and invoke an action in response. However, you must integrate the
NMP with NerveCenter if you want to:

m Correlate conditions detected by the NMP on different devices
m Correlate different types of conditions detected by the NMP on the same device

m Correlate conditions detected by the NMP with other types of events or conditions on the same
device or across different devices

See the NerveCenter Platform Integration Guide for more information.

NerveCenter 6.2 Designing and Managing Behavior 25
Models

n Understanding NerveCenter

26 Designing and Managing Behavior NerveCenter 6.2
Models

Behavior Models and Their
Components

"Understanding NerveCenter" on page 5 introduced behavior models and the objects from which they’re
built. This chapter explains how to approach the design of a behavior model, provides detailed definitions
of the NerveCenter objects used in building behavior models, and illustrates how these objects interact.

Behavior Models

For NerveCenter to detect a network condition or correlate network conditions, someone must specify
how NerveCenter is to detect and react to one or more conditions. Such a specification is called a
behavior model. Some behavior models ship with NerveCenter—these are called predefined behavior
models—and others you must write to handle site-specific conditions.

When writing a behavior model, you must answer the following questions:
m What condition or conditions do | want to detect?

Although NerveCenter can receive status information from a number of sources, the most
common source of such information is an SNMP agent on a managed node. Therefore, in most
cases, you must decide whether the behavior model will be poll driven or event driven. That is, will
you poll the agent’s MIB for status information, look for SNMP traps, or both?

NerveCenter provides two objects—polls and trap masks—that enable you to get information from
SNMP agents. For an overview of these objects, see the section Detecting Conditions on the next

page.
m What network conditions, or states, do | want to keep track of?
Each behavior model includes at least one alarm, and the definition of each alarm consists
primarily of a state diagram. For example, an alarm that tracks the status of a managed node’s
SNMP agent might have the following terminal states:
o Normal
o Device Unreachable
o Agent Down
o Device Down

The state of such an alarm changes as related polls and trap masks gather new information.

For an overview of alarms, see the section Tracking Conditions on the next page.

NerveCenter 6.2 Designing and Managing Behavior 27
Models

n Behavior Models and Their Components

m What set of nodes do | want to manage?

A particular behavior model may not be intended for all managed devices. NerveCenter enables
you to specify the set of devices that a model will manage using the following objects: nodes,
property groups, and propetrties.

For an overview of the roles these objects play in a behavior model, see the section Monitoring a
Set of Nodes on the facing page.

Detecting Conditions

In the typical situation where your behavior model is either polling, or looking for a trap from, an SNMP
agent, you detect network conditions by creating polls and trap masks.

A poll contains a poll condition that refers to a single MIB base object. For example, the following poll
condition looks at an attribute of the ip base object (1.3.6.1.2.1.4):

if (ip.ipForwarding == 1) {
FireTrigger (“gatewayFound”) ;

}

When NerveCenter polls an agent on a device, NerveCenter evaluates the poll condition against
information stored in the agent’s MIB. In the case of the poll condition shown above, NerveCenter would
check the value of the ipForwarding attribute and compare it to 1. If the value of ipForwarding is 1—
indicating that the device is a gateway—the poll generates a trigger. In this case, the trigger is
gatewayFound. Every poll must be capable of generating at least one trigger.

A trap mask describes the contents of an SNMP trap. This description can be very general, such as
“generic trap 4.” Or it can be very specific and include an enterprise OID, a specific trap number, and the
contents of the trap’s variable bindings. In either case, if the NerveCenter server receives an SNMP trap
that matches the description given in a trap mask, that trap mask generates a trigger. Like the triggers
generated by polls, this trigger can affect the state of one or more alarms.

Tracking Conditions

NerveCenter tracks each detected network condition using one or more alarms. The scope of an alarm is
variable: an alarm can represent the state of an interface on a device, the device itself, or an entire
enterprise. Many instances of an alarm can exist simultaneously.

Each alarm is basically a finite state machine. It consists of a series of states and transitions between the
states. Each transition is initiated by one or more input events and can produce one or more output
events. This state machine is represented in NerveCenter by a state transition diagram.

28

Designing and Managing Behavior NerveCenter 6.2
Models

Behavior Models n

For example, you could use the state diagram in Figure 9 to monitor the traffic on an interface.

HiLoadPersists

Figure 9: Monitoring the Load on an Interface

In this diagram, the states are low, medium, and high, and the transitions are LowLoad, MediumLoad,
HighLoad, and HiLoadPersists. The initial state of the interface-traffic alarm is low. The instantiation of an
alarm instance and a transition to the medium state occur when the alarm manager receives the trigger
mediumLoad from a poll that is gathering information about an interface. Note that the trigger name and
the transition name are the same.

When a transition occurs, not only does the alarm’s state change, but NerveCenter can perform actions.
These actions are defined as part of the transition and can include such things as sending e-mail to an
administrator or notifying a network management platform that a condition has been detected. For an
overview of NerveCenter's alarm actions, see the section Responding to Conditions on page 12.

Monitoring a Set of Nodes

In addition to creating the polls, trap masks, and alarms that define how to detect a network condition,
track its severity, and respond to it, you must define which devices you want to monitor for this condition.
NerveCenter uses a simple mechanism, involving three types of objects, to define this set of devices.
The three types of objects are:

m Nodes
m Property groups

m Properties

NerveCenter 6.2 Designing and Managing Behavior 29
Models

n Behavior Models and Their Components

Nodes represent workstations and network devices and contain property groups, which in turn contain
strings called properties. Polls and alarms are assigned properties. Given this situation, NerveCenter can
enforce the following rules:

m A poll can be sent to a particular node only if the node’s property group contains the poll’s property.

m Analarm can be instantiated for a node only if the node’s property group contains the alarm’s
property.
For more detailed information about the NerveCenter objects used to construct behavior models, see
NerveCenter Objects below.

NerveCenter Objects

The upcoming sections provide details about the data structures of the NerveCenter objects used in the
construction of behavior models. These sections not only list each object’s data members, but explain
how each member affects the way a behavior model functions (where appropriate). It’s important to
understand these details before you attempt to design a behavior model and create these objects.

The object types are discussed in the following sections:
m Nodes below
m Property Groups and Properties on page 36
m Polls on page 37
m Trap Masks on page 39

m Alarms on page 41

Nodes

In NerveCenter terminology, a node is either a workstation or a network device such as a router.
NerveCenter monitors and manages a set of nodes, and each behavior model manages a subset of those
nodes.

A node object has the data set shown in Table 1. The table explains what information these data members
contain and, where appropriate, how NerveCenter uses that information.

Note: The names of the data members shown in Table 1 match the labels used in the Node Definition
window, where you create and modify node objects.

SNMP Properties
Table 1: Definitions of Node Attributes: SNMP Properties

Attribute Description

SNMP Version | The list at the upper-left corner of the SNMP tab configures how the agent is to be
polled. Choose from SNMPv1, SNMPv2c, or SNMPV3 to set the level of SNMP to be
used. Or select ‘Unknown’ to disable SNMP polling.

Port Contains the number of the port that the node’s agent uses to receive SNMP
messages. By default, the port is set to 161.

Designing and Managing Behavior NerveCenter 6.2
Models

NerveCenter Objects

Attribute Description

Use GetBulk | Selecting this check box permits NerveCenter to use GetBulk when retrieving tables
from the agent on this node when polling is done using SNMP v2c or v3. When not
selected (or when polling is doing using SNMP v1), GetNext is used.

Polling

Use Defaults

When selected, NerveCenter uses the system-wide defaults when polling the agent
on this node. Clear the check box to apply node-specific parameters.

Retry Interval | The delay, in seconds, that NerveCenter will wait for a response to any issued poll
request (Get, GetNext, GetBulk) before issuing another request. If Use Default is
unchecked, you may enter a value from 1 to 600 (10 minutes).

Attempts The number of poll requests NerveCenter will issue before declaring a poll to be timed
out. If Use Default is unchecked, you may enter a value from 1 to 11 (an initial attempt
followed by up to 10 retries).

Timeout Displays the maximum poll timeout duration (Retry Interval x Attempts).

SNMP vi/iv2c

Read Contains the community name NerveCenter will include for SNMP v1 and v2c¢ poll

Community requests (Get, GetNext, GetBulk) it sends to the SNMP Agent on this node. By
default this value is “public”. This value is not used when polling is done using SNMP
v3.

Write Contains the community name NerveCenter will include in any SNMP v1 or v2c Set

Community request sent to the SNMP Agent on this node. By default this value is “public”. This
value is not used when doing a Set operation when using SNMP v3.

SNMP v3

Select User Selects the configuration to be used when polling with SNMP v3.

m User #1 and User #2 are system-wide parameter sets, configured via
NerveCenter Administrator.

m Local User allows you to enter node-specific credentials that define the
parameters for polling the agent on this node.

Selecting Local User enables the fields in that area of the SNMP v3 section

NerveCenter 6.2

Designing and Managing Behavior 31
Models

n Behavior Models and Their Components
Attribute Description

Security Level

The security level determines whether authentication or encryption services are used
in communications between NerveCenter and the node. There are three security
levels:

m NoAuthNoPriv:NerveCenter uses neither authentication nor encryption when
communicating with the agent, so no passwords are required.

m AuthNoPriv: Message authentication is used without encryption while
communicating with the agent. An authentication protocol and password are
required. The authentication password is the same for all nodes managed by the
NerveCenter user.

m AuthPriv: Both authentication and encryption are used when communicating
with the agent. Both the authentication and privacy protocols and passwords
are required. These passwords are the same for all nodes managed by the
NerveCenter user.

For more information about SNMPvV3 security, see Overview of NerveCenter
SNMPv3 Support in Managing NerveCenter. For details about passwords, see
Configuring SNMPV3 Security Settings in Managing NerveCenter.

Local User When Select User is set to Local User, you may enter custom attributes for this
node:
1. Enterthe User Name to use for the node.
2. Configure the Local User Authentication and Privacy as necessary:

m For AuthNoPriv or AuthPriv security, select the Authentication
protocol (MD5 or SHA-1) and click Set Auth Key to set the
authentication password.

m For AuthPriv security, you must also select the Privacy protocol
(DES, 3DES, AES128, AES192, or AES256) and click Set Priv Key to
set the privacy password.

3. Optionally, enter a Context value for the node. (This is empty by default is and
is only needed for special cases within SNMPv3.)
Engine ID Holds the SNMP v3 Engine ID for the agent on this node. NerveCenter self-populates

this field when establishing communication with the device. However it can be
manually set by typing here the value

ICMP Properties
Table 2: Definitions of Node Attributes: ICMP Properties

Attribute Description

Ping

Use When selected, NerveCenter uses the system-wide defaults when pinging this node. Clear
Defaults | the check box to apply node-specific parameters.

32

Designing and Managing Behavior NerveCenter 6.2
Models

NerveCenter Objects

Attribute Description

IPv4 TTL | Sets how many “hops” the request can proceed across the network towards the node. The

+ IPv6 default is 128. The range is 0 up to 255.

Hop Limit

Payload | Sets the size of the data region, in bytes, that is included in a Ping request. The default is
the minimal amount of 56.

IPv4/v6 | Displays the size of the IPv4/v6 ping request given the specified payload.

ICMP

Ping Size

Polling

Use When selected, NerveCenter uses the system-wide defaults when polling this node. Clear

Defaults | the check box to apply node-specific parameters.

Retry The delay, in seconds, that NerveCenter will wait for a response to any issued poll request

Interval (Get, GetNext, GetBulk) before issuing another request. If Use Default is unchecked, you
may enter a value from 1 to 600 (10 minutes).

Attempts | The number of poll requests NerveCenter will issue before declaring a poll to be timed out.
If Use Default is unchecked, you may enter a value from 1 to 11 (an initial attempt followed
by up to 10 retries).

Timeout | Displays the maximum poll timeout duration (Retry Interval x Attempts).

Trace Properties

Table 3: Definitions of Node Attributes: Trace Properties

Attribute Description

Poll Layer Select the Trace check box to record polling information for the node. The data is

Tracing viewable as a spreadsheet, uploaded to the desktop where the NerveCenter Client is
running.

Protocol Select the Trace check box to record SNMP request and response traffic for the node.

Layer The data is viewable as a spreadsheet, uploaded to the desktop where the NerveCenter

Tracing: Client is running.

SNMP

Protocol Select the Trace check box to record ICMP Ping requests and responses for the node.

Layer The data is viewable as a spreadsheet, uploaded to the desktop where the NerveCenter

Tracing: Client is running.

ICMP

NerveCenter 6.2

Designing and Managing Behavior 33

Models

Behavior Models and Their Components

Attributes Properties

You can add attributes of your own design. Each attribute consists of a name and a value that you
specify. Both the name and value of an attribute are text entries and all attributes are saved as part of the
node’s definition in the NerveCenter node database. There is no limit to how many attributes you create,
but the name of each attribute must be unique.

Examples of user-defined attributes could include items such as vendor, model, serial number, config
info, access details, usage details and so on.

) NERVECENTER:Node Definition : Cisco-Switch =N Ech <=
MIE Query | Parents | SHMP | ICMP | Trace Attibutes ll:olurnnsl i)
Attibutes [7)
Attribute I Value I
sysDescr Wireless-N Gigabit Security Router with V...
model SPA 504G
sysObjectlD enterprises.9.6.1.22.250.2
s/n CCQ165210N1
vendor Cisco
type Cisco IP Phone
MAC E0:2F:6D:62:0C:29

Refresh Add Edit | Delete |

Save | Cancel | Undo | Notes | Help |

Columns Properties

You can add attributes of your own design in a second manner. With ‘Columns’, each attribute consists of
an index (a non-negative number) and a value that you specify. The index must be a number and the value
is text. All ‘Columns’ are saved as part of the node’s definition in the NerveCenter node database. There
is no limit to how many Columns you can add to a node. Each index, though, must be unique.

34

Designing and Managing Behavior NerveCenter 6.2
Models

NerveCenter Objects

MIB Query | Parents | SNMP | ICMP | Trace | Attibutes Columns |

Columns [3)
Column | Value I
20 %5351
41 45.0
190 Sales Dept.
Refresh | Add Edt | Delte |
Save | Cancel I Undo | Notes I Help I

35

NerveCenter 6.2

Designing and Managing Behavior

Models

n Behavior Models and Their Components

Property Groups and Properties

Another attribute of a node—one that requires a little explanation—is the node’s property group. A property
group is alist of properties, which are strings that generally name either an object in the management
information base (MIB) used to manage a node, or the role the node plays in the network (such as
“router”). These property strings can be:

m The name of a MIB base object

m A user-defined string

Property group Properties
Contains 3
Routers “atEntry”
“ifEntry” .
MIB base objects
“interfaces”
J
“router” User-defined string

Figure 10: Property Groups and Properties

Property groups are assigned to nodes and control which nodes will be contacted by a particular poll and
which nodes can be monitored using a particular alarm. Both types of properties—MIB base objects and
user-defined strings—play a part in making these determinations.

For example, NerveCenter ships with a predefined property group called Router. This property group
contains the following properties:

m atEntry ip snmp

m egp ipAddrEntry system

m egpNeighEntry ipNetToMediaEntry tcp

m icmp ipRouteEntry tcpConnEntry
m ifEntry nl-ping udp

m interfaces router udpEntry

36

Designing and Managing Behavior

Models

NerveCenter 6.2

NerveCenter Objects n

In this case, all the properties are MIB objects except “router,” which describes the type of the device.

For the person who programs NerveCenter to monitor particular devices for specific error conditions, the
properties associated with each node are important. These properties allow the programmer to define
which devices NerveCenter should poll for MIB data and which error conditions NerveCenter should look
for on each device, among other things.

You can filter the nodes that you are monitoring based on their properties. For example, you might choose
to monitor only nodes that have been assigned the Router property group, that is, all routers.

Polls

A NerveCenter poll periodically sends an SNMP message to a set of nodes, requesting information from
the agents running on those nodes. When the poll receives this information from a node, it uses the
information in the evaluation of a poll condition, which may cause a trigger to be fired. For example, a poll
may fire a trigger if the number of discarded packets on an interface is too high. The poll condition must be
able tofire at least one trigger, and may be capable of firing several. These triggers can cause alarms to
be instantiated, to change states, or perform actions—under the right circumstances.

The key attributes of a poll are listed in Table 4 This table explains what information these data members
contain and, where appropriate, how NerveCenter uses that information.

Poll
Table 4: Definitions of Poll Attributes
Data o
Member Definition
Name A unique name that you assign to the poll.
Property The Property attribute is a string. This string determines (in part) whether a poll will

request MIB data from a particular node. Only if the node’s property group contains the
poll’s property can polling possibly occur. However, before a poll will request information
from a node’s SNMP agent, other conditions must be satisfied as well. For further
information, see the explanation below for Poll Condition.

Port Optional. If you specify a port number here, NerveCenter will send the poll to this port on
the nodes that are configured to receive the poll. Otherwise, NerveCenter will send the
poll to the port specified in each node’s definition.

Poll Rate The number of seconds, minutes, hours, or days between polls.

NerveCenter 6.2 Designing and Managing Behavior 37
Models

n Behavior Models and Their Components

Overrun
Policy

Definition

Determines how the Poll should handle an event where it is time to run a poll while the
previous instance of that poll is still running. This condition may occur with short Poll
Rate settings wherein the connection to the targeted device is returing large numbers
of timeouts and retries, or when the data being retrieved is a large table of many
thousands of rows. There are four options:

Skip: Skips this poll and schedules it to occur later per the Poll Rate.

m Allow: Lets the poll run despite the prior instance still running.

m Chain: Waits for the prior poll to finish before running this poll.

Restart: Cancels the running poll and starts this new poll immediately.

Suppressible

A poll’'s Suppressible attribute works in conjunction with a node’s Suppressed attribute.
If anode is suppressed and a related poll is suppressible, that poll will not query that
node. If a poll is not suppressible, then it will poll even a suppressed node. Generally,
the only polls that are insuppressible are those designed to determine when an
unresponsive node becomes responsive again. When a node becomes responsive, the
behavior model of which the poll is a part can change the status of the node from
suppressed to unsuppressed. (You set an attribute of a node using the Set Attribute
alarm action.)

Execute Perl
in Global
Space

Choose whether the logic of this polls event handler execute in either the Perl interpreter
available to all contexts (Poll, TrapsMasks, PerlSubroutineActions, Action Router
Rules) orin a Perl interpreter available only to Poll Handlers.

Handlers

m On Enabled / Disabled: Select this check box if the Poll requires event handlers
which will occur when the Poll is enabled or disabled. (See Enabled attribute.)
When selected, additional Property Sheets are added to the Dialog window for
containing the OnEnabled and OnDisabled handlers.

m On Scheduled / Unscheduled: Select this check box if the Poll requires event
handlers for when this poll gets initially scheduled for a node or when it is removed
from being run against a node. When selected, additional Property Sheets are
added to the Dialog window for containing the OnScheduled and OnUnscheduled
handlers.

m On Start / End Execution: Select this check box if the Poll requires event
handlers that are called when each run of this poll against a node are started or
ended. When selected, additional Property Sheets are added to the Dialog
window for containing the OnStart and OnEnd handlers.

Enabled

A poll’s enabled status (Off or On) is similar to a node’s Managed status. That is, if a poll
is disabled, it will never send a request to an SNMP agent.

Trace

Select the Trace check box to record basic poll execution data to a spreadsheet. The spreadsheet can be
uploaded to the desktop running Client by using the View Log button.

38

Designing and Managing Behavior NerveCenter 6.2
Models

NerveCenter Objects

Trigger
If a poll fires a trigger, that trigger has the attributes shown in Table 5.
Table 5: Definitions of Trigger Attributes

Data
Member

Definition

Name The name of the trigger, which is defined in the poll definition.

Node The name or IP address of the node that responded to the poll and caused the trigger to be
name/IP | fired.

address

Subobject | In general, the Subobject has a value of the form BaseObject.Instance. BaseObject is the
name of the MIB base object that the poll inquired about, and Instance is the unique
identifier associated with a row of MIB data returned by the poll. In most cases, Instance is
the number associated with a particular interface on the node. The subobject, however, can
also be an arbitrary string. The important thing is that subobjects can be used to uniquely
identify alarm instances so that triggers can be directed to exactly the right alarm instance.

Property | The Property, as always, is simply a string. A trigger fired by a poll does not have a
property, but as you'll see later, other triggers do.

Variable | The trigger also contains the values of the MIB attributes referred to in the Poll Condition.
bindings | Each attribute and its value are called a variable binding.

A trigger's Name, Node name/IP address, Subobject, and Property are all important when it comes to
determining what effect, if any, a trigger has on an alarm. You'll find more on this subject in the section
Constructing Behavior Models on page 47.

Trap Masks

A trap mask filters SNMP traps that NerveCenter receives. Based on criteria that you specify, the trap
mask either filters out each trap or fires a trigger in response to it. A trigger fired by a mask is exactly the
same as a trigger fired by a poll except that a trap trigger contains the trap’s variable binding list instead of
the values of MIB attributes. (For further information about the trigger object, see the section Polls on
page 37.)

The principal attributes of a trap mask are shown in Table 6. The table explains what information these
data members contain and, where appropriate, how NerveCenter uses that information.

Note: The names of the data members shown above match the labels used in NerveCenter's Mask
Definition window, where you create and modify trap masks.

NerveCenter 6.2 Designing and Managing Behavior 39
Models

n Behavior Models and Their Components

Table 6: Definitions of Trap Mask Attributes

Name

Attribute Definition

The name of the trap mask.

Generic

The generic trap type is an enumeration constant indicating the nature of the event being
reported:

m O—coldStart

m 1—warmStart

m 2—linkDown

m 3—linkUp

m 4—authenticationFailure
m 5—egpNeighborlLoss

m 6—enterpriseSpecific

You supply a Specific trap number (see below) only if the generic trap type is 6.

From

Indicates that the object identifier (OID) contained in the trap’s Enterprise field must
represent a branch in the MIB tree that is the same as, or subordinate to, the branch
represented by the contents of the trap mask’s Enterprise field.

From
Only

Indicates that the OID contained in the trap’s Enterprise field must match the trap mask’s
Enterprise attribute exactly.

Enterprise

An OID (or name) representing the object referenced by the trap.

Specific

A trap number supplied by the vendor of the product whose agent generated the trap. The
significance of the trap number is defined in an ASN.1 file provided by the vendor.

Trigger
Type

Trigger Type can be set to either Simple Trigger or Trigger Function. See the next two table
entries for definitions of these trigger types.

Simple
Trigger

A simple trigger is one that will be fired whenever the trap mask sees a trap that meets the
criteria specified in the fields discussed above.

The value of this attribute affects how this object interacts with other objects in a behavior
model.

Trigger
Function

A trigger function is a Perl script that is called whenever the trap mask sees a trap that
meets the criteria specified in the fields discussed above. This function typically looks at
information in the trap’s variable bindings and fires a trigger if a condition is fulfilled. The
trigger function fires this trigger using NerveCenter’s FireTrigger() function.

The value of this attribute affects how this object interacts with other objects in a behavior
model.

Enabled

As with a poll, a trap that is disabled (Enabled is set to Off) is nonfunctional.

40

Designing and Managing Behavior NerveCenter 6.2
Models

NerveCenter Objects

Alarms

As mentioned in the section Behavior Models on page 17, a NerveCenter alarm consists primarily of a
state diagram, which defines the alarm’s states, the transitions between states, and the alarm actions to
be performed when each transition takes place. This alarm definition is analogous to a class in
object-oriented programming. That is, the alarm itself does not monitor a network condition; rather, an
alarm instance (comparable to an object) is created to track such a condition.

For example, the section Behavior Models on page 17 showed the definition of an alarm designed to

monitor traffic on an interface.
MediumlLoad

Mediumload |

HiLoadPersists

LowlLoad

Figure 11: Definition of the alarm IfLoad

If NerveCenter detects a medium or high level of traffic on an interface it is managing, it creates an
instance of this alarm to track the condition. If NerveCenter detects medium or high traffic on five
interfaces, it creates five instances of the alarm. Each instance of the alarm maintains such information
as:

m Theinstance’s current state
m The severity of that state
m The node the instance is monitoring

In addition, each alarm instance causes the appropriate alarm actions to take place when a state
transition occurs.

If five instances of IfLoad are created, how do you distinguish them? Depending on the scope of the
alarm, you might need to look at the instance’s node attribute or at both its node and subobject attributes.

In NerveCenter, alarms can have one of four scopes: enterprise, instance, node, or subobject. Only one
instance of an enterprise-scope alarm can be created. This instance monitors a condition across all
managed nodes. For example, one alarm instance could cause an action to take place if three or more
routers in an enterprise are down at the same time.

NerveCenter 6.2 Designing and Managing Behavior 41
Models

Behavior Models and Their Components

A node-scope alarm monitors a single managed device for a condition. For instance, the alarm
SnmpStatus (shipped with NerveCenter) determines whether a device is in a normal state, unreachable,
down, or up but unable to respond to SNMP requests. An instance of this type of alarm can be identified
by its alarm name and the name of the node it is monitoring. This node name is an attribute of the alarm
instance.

A subobject-scope alarm most often monitors an interface on a device. For example, an instance of the
alarm IfLoad monitors each interface that is experiencing a medium to high level of traffic. This type of
instance can be identified by its alarm name, the name of the node it is monitoring, and the name of the
subobject being monitored. This subobject name is usually composed of the name of a MIB table followed
by an instance number. That is, if an instance of the IfLoad alarm is monitoring port 2 on a device, its
subobject attribute has the value ifEntry.2.

Instance scope alarms track instances for every interface or port that fits the polled condition regardiess
of the base object. Instance scope is similar to Subobject scope but has the following difference: Instance
scope lets you monitor any instance for different base objects. This allows you to track a variety of events
for any managed subobject in a single alarm instance.

Alarm Scope

All NerveCenter alarms have a property called scope. This property can have one of four values:
m Subobject
m Instance
m Node
m Enterprise

If an alarm has Subobject scope, an instance of that alarm tracks activity on a component that can be
described using a nonzero MIB object instance, for example, an interface on a router.

Instance scope alarms track instances for every interface or port that fits the polled condition regardless
of the base object. Instance scope is similar to Subobject scope but has the following difference: Instance
scope lets you monitor any instance for different base objects. This allows you to track a variety of events
for any managed subobject in a single alarm instance.

If an alarm has Node scope, an instance of that alarm tracks activity on a single device. If an alarm has
Enterprise scope, an instance of that alarm tracks activity on all managed nodes.

Note: It might be useful to think of an alarm instance as a copy of the alarm’s state diagram whose
current state is something other than Ground.

42 Designing and Managing Behavior NerveCenter 6.2
Models

NerveCenter Objects

Why is NerveCenter architected this way? Well, think about the following network management problem:
You want to be notified whenever four interfaces on a device experience high traffic.

Your first step in solving this problem might be to create a poll that detects high traffic on an interface and
fires the trigger highTraffic. You might then create an alarm with node scope and five states, as shownin

Figure 12.

TwoPortsHigh

FourPortsHigh

highTraffic

highTraffic

highTraffic

highTraffic

OnePortHigh

hreePortsHigh

Figure 12: Possible Alarm Diagram for Looking for High Traffic on Four Interfaces

Most likely, this alarm won’t detect the condition you're looking for because all four transitions can be
effected if the poll repeatedly detects high traffic on a single port.

To solve your problem, the trigger highTraffic must cause one or more transitions in a subobject scope
alarm, and this alarm must fire a busyPort trigger (using the Fire Trigger alarm action) during its final
transition. Such an alarm is shown in Figure 13.

highTraffic

Action

Fire Trigger - busyPort

Figure 13: A Subobject Scope Alarm

BusyPort

NerveCenter 6.2

Designing and Managing Behavior

Models

43

n Behavior Models and Their Components

When the high-traffic poll detects high traffic on an interface, a subobject scope alarm will be instantiated,
and the transition highTraffic will occur. During this transition, the alarm will fire a trigger called busyPort.
Note that once a subobject alarm instance transitions to the BusyPort state, additional high-traffic triggers
for the interface concerned have no effect. However, if the high-traffic poll detects high traffic on other
interfaces, new alarms will be instantiated and fire the trigger busyPort. Each instance fires its own
busyPort trigger.

Now a node scope alarm similar to the one shown in Figure 14 can be configured to receive up to four

busyPort triggers, each one from its own instance of the high traffic alarm. Each busyPort trigger signals
high traffic on a different interface.

TwoPortsHigh FourPortsHigh

busyPort busyPort busyPort busyPort

OnePortHigh hreePortsHigh

Figure 14: Node Scope Alarm Detecting High Traffic from Four Alarm Instances

An instance scope alarm behaves in a similar manner as the subobject scope alarm. The main difference
between subobject and instance scope is that, with instance scope, you could add another transition to
the alarm to monitor a different base object than the one for high traffic. Then, the alarm could be

instantiated by the high-traffic poll and then transition again when an entirely different condition (MIB
object) is detected.

44 Designing and Managing Behavior NerveCenter 6.2
Models

NerveCenter and Perl

NerveCenter and Perl

In prior versions of NerveCenter, there was one Perl interpreter and that interpreter was single threaded.
This meant that only one poll, trap mask function, Perl subroutine, or action router rule could run at one
time. Perl scripts that take a long time to run, such as logging to a file, performing database queries, or
issuing external system calls, can slow down NerveCenter’s performance. As shown in Figure 15, all poll
conditions, trigger functions, action router rules and Perl subroutines all used the same Perl interpreter.

—_— NerveCenter Perl Results
Perl —
. Interpreter NerveCenter
% Server
JLIE=NTE $GlobalVariables
2

Figure 15: Previous NerveCenter Perl Interpreter Architecture

The advantage of this architecture is that you can use the same variables through out your Perl in
NerveCenter. The disadvantage comes with high-use situations. Since there is only one Perl interpreter,
only one Perl routine can run at a time. If your NerveCenter installation is receiving thousands of traps,
and hundreds of these traps cause Perl-intensive triggers to fire or polls to run, with hundreds of Perl
subroutines to follow as actions, NerveCenter performance can quickly degrade.

NerveCenter 6.2 Designing and Managing Behavior 45
Models

Behavior Models and Their Components

NerveCenter today gives you the option of using separate Perl interpreters for the three major
components in NerveCenter which use Perl—poll conditions, trigger functions, perl subroutines. Action
router rules and OpC trigger functions continue to use a global—or shared—Perl interpreter. Figure 16
shows the new architecture.

& " Poll Conditions
a | Poll Conditions Perl Interpreter
\ s $PoliConditionVariables
%
\oo
OO}'
!43
s
:) _ Trigger Functions
T Trigger F””C,E[O“S Perl Interpreter
k — N ~ _ _
\-’gg&ﬁ‘uq \ $TriggerFunctionVariables To
~Jlong NerveCenter
~ Server
Global
Action Router Rules — > Perl Interpreter
— $GlobalVariables
(ﬁ“{\fﬁe —
Ut

pet
’Eell Subroutines

Perl Subroutines

Perl Interpreter Path to Perl Interpreter

== == = Pathto Perl Interperter
if Execute Perl in Global
Space is selected

$PerlSubroutineVariables

Figure 16: CurrentNerveCenter Perl Interpreter Architecture

With four different interpreters handling the Perl work load, less time is spent waiting for one Perl routine
to finish. Polls can run independent of triggers or Perl subroutines. Remember, now that each interpreter
is separate, global variables only work within one interpreter.

Using multiple interpreters is optional. If it is better for your NerveCenter configuration to continue using a
single interpreter, you can choose to send some or all of your poll conditions, trigger functions, and Perl
subroutines to the Global Perl interpreter used by the action router and OpC triggers.

46 Designing and Managing Behavior NerveCenter 6.2
Models

Constructing Behavior Models n

Constructing Behavior Models

Given the NerveCenter objects discussed in NerveCenter Objects on page 30, it's possible to create a
behavior model, which can be defined as the set of NerveCenter objects required to deal with a single
network or system condition. Figure 17 shows a simple example of the objects that might make up a
behavior model.

Trigger

GetRequest

%] &
, >
Nodes GetResponse Poll Alarm
Contains
O =

Property

Group

Behavior model

Figure 17: A Behavior Model

The next two sections:
m Discuss in general how the various objects fit together to make a model

m Present an example of a behavior model

NerveCenter 6.2 Designing and Managing Behavior 47
Models

n Behavior Models and Their Components

How the Pieces Fit Together

Let’s first review how you define which managed nodes a behavior model will monitor and manage. As
Figure 18 shows, each node belongs to a property group, and that property group contains properties.

Node Property group Properties
tcp I atEntry |
ifEntry |
ipRouteEntry |

tcp |

Figure 18: Nodes, Property Groups, and Properties

Any set of nodes that share a unique property can be managed as a set of devices. (The nodes need not
be members of the same property group.) In the figure above, the tcp property might be that unique
property.

For a node to be pollable, the principal requirements are that:
m The poll's property must be in the node’s property group.

m The base object around which the poll’s poll condition is built must be a property in the node’s
property group.

m The poll’'s trigger must correspond to a pending alarm transition, and the alarm’s property must be in
the node’s property group.

48 Designing and Managing Behavior NerveCenter 6.2
Models

Constructing Behavior Models

Figure 19 shows the definition of a poll that has been designed to work with the node shown in Figure 18.

5V NERVECENTERPoll Definitien : SnmpPoll =N ES B NERVECENTER:Poll Definition : SnmpPall =R =R ="
Pal | OnResponss | Trace | Pol OrResponse | Trace |
Fal |D: (0010 Ease Objects [1) Aributes 2]
wtemn spzlontact DoletShing
L [SnarePl sysDescr. OcletSirng =
| J apslocationr OcketSting
Fropery syhem speHame: DetetSiring
Add Table | Add Seala| Delets apeDbect e 0D
) 4 4 J apelRLastChange: TimaTicks
Part | [eho setection: =] |aysSenices INTEGER -
Pl Rale Called for sach recaivad responze: -
10 (s o & o if(system.sysCbjectID present)
I:F eTrigger ("agentlp®™);
Ovenun Palicy | Skin =l
m Harvlkrs
r
-
=
r
Enabled
®0On OF Ciear Edl..
Save Cancl | U&\ju | Hates | Aeb Save | Cancel | Unda Maies Halp
system

Figure 19: Relationship Between Node and Poll

As you can see, the node’s property group, Mib-Il, contains a property tcp that matches the poll’s property
and the base object used in the poll’s poll condition. Once this poll is enabled, the poll TcpMedRetrans will
poll the node, unless there is no alarm that the poll can affect or the node is suppressed. (If the node is
suppressed, no polling will occur because the poll is marked suppressible.)

Note: Since trap masks do not have properties, this type of matching is not necessary for masks.

If TcpMedRetrans polls the node, receives a response to its query, and that response satisfies the poll
condition, the poll will fire a trigger. If an alarm has been defined whose first transition is tcpRetransMed
(the poll’s trigger) and that alarm is enabled has the property tcp, a new instance of that alarm will be
instantiated to monitor the node. Because the alarm is instantiated using the trigger's Node and
Subobject, the key attributes of the trigger and alarm will match, and the first transition will be effected.

NerveCenter 6.2 Designing and Managing Behavior 49
Models

n Behavior Models and Their Components

Once an alarm instance has been instantiated and has gone through one transition, the transitions that
can be effected from its current state determine which triggers affect the alarm. For example consider the
following alarm, TcpRetransMon.

| tcpRetranshied | > tcpMedRtrans

i | tcpRetransNorm |

—
[tcpRetransitefl | | | tcpRetransHigh |
| —

Y | tcpRetransKorm |

| tcpRetransHigh | > tcpHighRirns

Figure 20: An Alarm: TcpRetransMon

When this alarm is first instantiated and the tcpRetransMed transition is made, the alarm transitions to the
tcpMedRtrans state, so two transitions are pending: tcpRetransNorm and tcpRetransHigh. If
NerveCenter sees a trigger with one of those names, and the trigger's Node and Subobject match those
of the transition, the transition occurs.

An Example of a Behavior Model

This section presents an overview of the set of steps you would need to perform to create a behavior
model that monitors node interfaces. The possible interface conditions are link up and link down.

Note: Don't try to follow these directions. Just read over them to get an overview of the procedure.
Detailed procedures are available in following chapters.

Create a property group named CheckLink.
Add to this property group the properties ifEntry (base object) and checkLink (user defined).

3. Assign the property group CheckLink to all of the managed nodes whose interfaces you want to
monitor.

50 Designing and Managing Behavior NerveCenter 6.2
Models

Constructing Behavior Models n

4. Create two masks: LinkUp and LinkDown.

The values you use to create LinkUp are shown in the table below.

Table 7: Values Needed to Create LinkUp

Attribute Value

Name LinkUp
Generic LinkUp=3
Trigger Type Simple Trigger
Enabled On

The definition for LinkDown is the same as the definition of LinkUp except for the name of the
mask and Generic SNMP trap number (LinkDown=2).

5. Create the alarm shown below.

DownTrap

Ground

Once this alarm is enabled, the behavior model will become functional.

The IfLinkUpDown alarm contains the property ifEntry, which is in the property group CheckLink.
Even though a trap mask filters all traps sent to NerveCenter, the IfLinkUpDown alarm will only
become instantiated when the SNMP agent sending the trap belongs to a node in the CheckLink
property group.

NerveCenter 6.2 Designing and Managing Behavior 51
Models

n Behavior Models and Their Components

Here's how the behavior model might interact with one port on a workstation that belongs to the property

group:
1.

The mask LinkDown will cause a transition to the DownTrap state, as well as start a three-minute
timer (link Timer).

If the agent comes back up, then the alarm transitions back to Ground and the timer is cleared.

If three minutes has passed and the interface remains down, then the alarm transitions to
LinkDown and sends a 7004 Inform to the network management platform.

52

Designing and Managing Behavior NerveCenter 6.2
Models

Getting Started with the NerveCenter
Client

Before you can begin monitoring your network using the NerveCenter Client, you must start the client and
then establish a connection between the client and one or more NerveCenter servers. You may also want
to set up alarm filters to control which alarm instances the NerveCenter Client will display information

aboult.

Starting the NerveCenter Client

TO START THE NERVECENTER CLIENT

m Select the Start menu.Select Programs > LogMatrix NerveCenter > Client.

NerveCenter displays the NerveCenter Client window.

Note: These steps depend on a typical NerveCenter installation. The directory path may be different.

LogMatrix NerveCenter Client
Client Server Admin Window View Help

i | M

[nom A 4

Figure 21: The NerveCenter Client Window

Most buttons and menu options are not enabled until you connect the client to a NerveCenter server.

Designing and Managing Behavior 53

NerveCenter 6.2
Models

Getting Started with the NerveCenter Client

Connecting to a Server

Before you can use the client, you must connect the client to a NerveCenter server. This server collects
data from managed devices, creates alarm instances, and performs the actions defined in alarms. The
server also gives the client access to information about alarm instances and the status of nodes.

You can connect your client to more than one server at one time and view information about all the active
alarm instances being managed by those servers. However, only one server can be the active server. The
active server determines which NerveCenter database is used when you ask for a list of polls or the
definition of an alarm.

For information on connecting to a NerveCenter server, see the following subsections:
m Connecting to a Server Manually on the facing page
m Connecting to a Server Automatically on page 57
m Sharing MIB Information from Multiple Servers on page 59
You may also be interested in the following topics, which relate to connecting to a server:
m Selecting the Active Server on page 60
m Deleting a Server from the Server List on page 60

m Changing the Server Port on the Client on page 61

54

Designing and Managing Behavior NerveCenter 6.2
Models

Connecting to a Server

Connecting to a Server Manually

If you haven’t configured the client to connect to one or more servers at startup, or if you want to establish
a connection with a server that you don’t typically use, you must establish your connection with the server
manually.

To CONNECT TO A NERVECENTER SERVER MANUALLY

1. From the Server menu, select Connect.

The Connect to Server window displays.

2 Log K A
NerveCenter 6.2.00 (6200 BLD11) o}>—-
- Log o

Server Port [V Use Default 32504 .

User Name | o ’ ¢
o
(1

Password I

Server Name

Connect | Cancel Help |

|Selver Name, Server Port, User Name and Password are required. Ll

2. Inthe Server Name field, type the hostname or IP address of the machine where the NerveCenter
server is running or select a hostname or IP address from the Server Name drop-down list.

The first time you connect to a server, the drop-down list is empty. After that, it contains a list of
the machines to which you’ve connected, or attempted to connect, in the past. (The list won’t
display the names of machines to which you’re already connected.) For information on removing
an entry from the drop-down list box, see the section Deleting a Server from the Server List on
page 60.

3. Type a user name and password in the User ID and Password fields.

You must enter a user name and password. The user whose name you enter here must be a
member of the NerveCenter Users (ncusers) or NerveCenter Admins (ncadmins) group on the
NerveCenter Server host.

4. Select the Connect button.

If the machine to which you try to connect is not running the NerveCenter server, you see the
message The server did not respond.

NerveCenter 6.2 Designing and Managing Behavior 55
Models

n Getting Started with the NerveCenter Client

When the client successfully connects to the server, all of the buttons in the button bar become enabled,
and the Aggregate Alarm Summary window appears.

_!l LogMatrix NerveCenter Client — O X

ala)y =%

Client Server Admin Window View Help

8| B |[NErvECENTER ~| &

aCrit
M

PRI

in
alnf

[P

B Aggregate Alarm Summary (=N (ECh <=
g2 Severity A
&6 Fault Server Time Name | Node | SubObj... | State | Severity | Trigger | Type | Source
. B Critical

Major
Minor

Inform
Special
.. B Normal
&2 Traffic
B Saturated
O VeryHigh v

- |

.0
B Warning
| |

- |

NUM | a
Figure 22: Client Connected to a Server

Table 8 lists the client windows you can reach by using the buttons in the client’s toolbar.

Table 8: Windows Accessible from Toolbar

Button Window

Opens the Connect to Server window, from which you can connect the client to a
NerveCenter server.

Opens a Client message window containing the prompt Disconnecting from Hostname.
Use this window to confirm that you want to disconnect the client from a NerveCenter server.

==

Opens the Property Group List window. From this window, you can view the currently defined
property groups and the properties that each property group contains.

o]
1

ALY SR

Opens the Node List window. From this window, you can view a list of the nodes defined in
the NerveCenter database and a brief definition of each node.

Opens the Poll List window. From this window, you can view a list of the polls defined in the
NerveCenter database and a brief definition of each poll.

Opens the Mask List window. From this window, you can view a list of the trap masks defined
in the NerveCenter database and a brief definition of each trap mask.

Opens the Alarm Definition List window. From this window, you can view a list of the alarms
defined in the NerveCenter database and open a definition window for each alarm.

Displays a list of currently defined correlation expressions. Correlation expressions enable
you to create alarms from Boolean expressions.

56 Designing and Managing Behavior NerveCenter 6.2
Models

Connecting to a Server n

Button Window

«crit | Opens the Severity List window, from which you can view a list of the severities defined in the
ainé | NerveCenter database. (A severity has a name, a severity level, and a color associated with
it.)

Opens the Perl Subroutine List window. From this window, you can view a list of the currently
defined Perl subroutines.

Opens the Action Router Rule List window. From this window, you can view a list of the
current set of rules that you have defined for the Action Router.

models from one NerveCenter to another.

Opens the Export Objects and Nodes dialog. From this dialog, you can export specific objects

[g Opens the Import Objects and Nodes dialog. From this dialog, you can import behavior
i
ﬂ or groups of objects from one database to another.

+—1 | Opens the Server Status dialog. This dialog provides you with a comprehensive view of all
i =-| | your NerveCenter server settings.

Opens the Alarm Summary window. This window presents information about the current
alarm instances for the active server.

Opens the Aggregate Summary window. This window presents information about the current
=l | alarm instances for all the servers to which you're connected.

Connecting to a Server Automatically

If you want to establish a connection with the same set of servers each time you run the client, you can
use NerveCenter’'s Autoconnect feature.

Note: Before you activate the Autoconnect feature, you might want to manually connect to the
NerveCenter Server, to verify that you can indeed access the server.

NerveCenter 6.2 Designing and Managing Behavior 57
Models

Getting Started with the NerveCenter Client

TO SET UP A LIST OF SERVERS TO WHICH YOU’LL CONNECT AT STARTUP

1.

From the client’s Client menu, choose Configuration.
The Client Configuration dialog displays.

Client Configuration ? X

Server Connections | Alam Fiker Selection | Alam Filter Modification |

Connection Infarmation
Server Name User ID

[NERVECENTER [

Server Port Password

I~ Autoconnect I

add | Update | Delete
Server List
Name ‘ Autoconnect
NERVECENTER Off
Server Port Heartbeat Configuration
32504 [v Heartbeat Retry Interval [sec) |30

-

Cancel | Help |

Enter the hosthame or IP address of the server to which you want to connect in the Server Name
field.

Generally, you'll leave the default value in the Server Port field.

However, if the administrator who configured the server you want to connect to has changed the
server port to be used for client/server communication, you must enter the new port number here.
The NerveCenter Client uses this same port number for every NerveCenter Server to which it
attempts to connect.

Check the Autoconnect checkbox.
Type a user name and password in the User ID and Password fields.

You must enter a user name and password. The user whose name you enter here must be a
member of the NerveCenter Users (ncusers) or NerveCenter Admins group (ncadmins) on the
NerveCenter Server host.

Select the Add button.

The server's name and automatic-connection status are displayed in the list near the bottom of the
window.

Repeat the process for each server you want to connect to automatically.

58

Designing and Managing Behavior NerveCenter 6.2
Models

Connecting to a Server

8. Select the OK button.

When you restart and log on to the client, you will be connected to the servers that have an Autoconnect
status of On. Alternatively, you can connect, or reconnect, to these servers by selecting Autoconnect
from the client’s Server menu.

Sharing MIB Information from Multiple Servers

The NerveCenter Client needs a copy of the same MIB file that a NerveCenter Server uses to provide
MIB base objects and attributes. If you intend to connect to multiple servers that use the same MIB file,
you can direct NerveCenter to share MIB information. When you use this option, the NerveCenter Client
saves only the MIB information sent to it by the first connected server.

For more information about MIBs, refer to Managing Management Information Bases (MIBs) in Managing
NerveCenter.

To SHARE MIB INFORMATION

1. Disconnect from any connected servers.
2. From the client’s Client menu, choose Configuration.
The Client Configuration dialog is displayed.

Client Configuration ? X

Server Connections | Alaim Filter Selection | Alam Filter Modification |

Caonnection Infarmation
Server Name User ID
|NERVECENTER [ncadmin

Server Port 32504 Password

[~ Autoconnect Inxm,x,,

add | Update | Delete
Server List
Name | Autoconnect
NERVECENTER Off
NC6200-CENTOS6-G Off
Server Port Heartbeat Configuration
32504 v Heartbeat Rety Interval [sec) |3|:I

¥ Share MIB [client uses MIB from first connected server)

Cancel | Help |

3. Select the Share MIB checkbox.

NerveCenter 6.2 Designing and Managing Behavior 59
Models

n Getting Started with the NerveCenter Client

4. Select the OK button.

Selecting the Active Server

The active server is the one whose database you can read data from. That is, you have access to this
server's alarm definitions, poll definitions, and so on. You can view alarm instances for any number of

servers at the same time.

TO MAKE A PARTICULAR SERVER THE ACTIVE SERVER

1. Display the server drop-down list on the client’s button bar.

_! LogMatrix NerveCenter Client - Untitled

Client Server Admin Window View Help

| A |Nervecenter <] &5]2 | o b

NC6200-CENTOS6-G

2. Select from the list the name of the server you want to make the active server.
The name of the active server appears in the drop-down list box.

Deleting a Server from the Server List

NerveCenter maintains a list of servers that a client has connected to, or attempted to connect to, in the
past. This list is used in the Connect to Server window, which you use to establish a connection to a
server manually, and it also appears in the Client Configuration window. This list may contain the names
of servers that you will never connect to again, or, even worse, the misspelled names of servers you were

unable to connect to because of a misspelling.

60 Designing and Managing Behavior NerveCenter 6.2
Models

Connecting to a Server

TO DELETE THE NAME OF A SERVER FROM THE SERVER LIST

1. From the client’s Client menu, select Configuration.

NerveCenter’s Client Configuration window is displayed.

Client Configuration ? X

Server Connections | laim Filter Selection | Alam Filter Modification |

Cannection Information
Server Name User ID
|NERVECENTER [ncadmin

Server Port 32504 Password

[Autoconnect I

add | Update | Deletz |
Server List
Name | Autoconnect |
NC6200-CENTOS6-G Off
Server Port Heartbeat Configuration
32504 ¥ Heartbeat Retry Interval (sec) |3|:I

=

Cancel | Help |

2. Inthe Server List near the bottom of the window, select the server name you want to remove from
the server list.

3. Select the Delete button.
Select the OK button.

Changing the Server Port on the Client

Each NerveCenter server uses a special port on its host for client/server communication. By default,
servers use port 32504; however, the person who configures the NerveCenter server can change the
number of this communication port if port 32504 is being used by another application. If this number is
changed on the server side, you must make a corresponding change on the client side before you will be
able to connect to the server.

NerveCenter 6.2 Designing and Managing Behavior 61
Models

Getting Started with the NerveCenter Client

TO CHANGE THE CLIENT’S SERVER PORT

1. From the client’s Client menu, choose Configuration.

The Client Configuration window is displayed.

Client Configuration ? X

Server Connections | Alarm Fiter Selection | Alam Filter Modification |

Cannection Information
Server Name User ID
|NERVECENTER [ncadmin

Server Port 32504 Password

[~ Autoconnect Inxm,x,,

add | Update | Delete |
Server List
Name | Autoconnect |
NC6200-CENTOS6-G Off
Server Port Heartbeat Configuration
12345 ¥ Heartbeat Retry Interval (sec) |3|:I

.

Cancel | Help |

2. Inthe Server List near the bottom of the window, select the name of the server that uses the non-
default port number.

Connection information for that server is displayed.

3. Type the new port number in the Server Port text field.
Select the OK button.

Setting Up Alarm-Instance Filters

Before or after you’ve connected to the servers from which you want to retrieve alarm instances, you can
set up one or more alarm-instance filters, per server. These filters control which alarm instances are
displayed in the NerveCenter Client. You can filter alarm instances by:

m The IP address of the instance’s node
m The severity of the instance’s state
m The property group associated with the instance’s node

If you filter alarm instances by a severity, only instances whose states have this severity will be
displayed in the client. Filters based on property groups and IP address ranges work similarly.

62 Designing and Managing Behavior NerveCenter 6.2
Models

Setting Up Alarm-Instance Filters n

A single filter can contain any combination of:

m Alist of subnets
m Alist of severities
m Alist of property groups

These filters offer two advantages. First, they limit the number of alarm instances that will show up in the
client, enabling you to focus your attention on the alarm instances that are specifically of interest to you.
Using filters also improves the performance of the client, since NerveCenter only transfers to the client
those alarm instances that match the filter criteria.

For information on how to build an alarm-instance filter and on how to associate a filter with a server, see
the sections listed below:

m Filtering Alarms by IP Range below

m Filtering Alarms by Severity on page 70

m Filtering Alarms by Property Groups on page 74
m Associating a Filter with a Server on page 77

m Rules for Associating Filters with Alarms on page 79

Filtering Alarms by IP Range

When you filter alarms by IP range, you are specifying that you only want to display alarm instances in the
NerveCenter Client from particular nodes identified by their IP addresses. See IP Subnet Filter Exclusion
Rules on page 66, for more about filtering alarms by IP ranges. Although you can create a filter simply
based on an IP range, a single filter can contain any combination of:

m Alist of subnets
m Alist of severities
m Alist of property groups

For information on how to build an alarm-instance filter based on severities and property groups, see the
respective section listed below:

m Filtering Alarms by Severity on page 70
m Filtering Alarms by Property Groups on page 74

NerveCenter 6.2 Designing and Managing Behavior 63
Models

Getting Started with the NerveCenter Client

TO CREATE AN ALARM FILTER BASED ON AN IP RANGE

1. Choose Configuration from the Client menu.

The Client Configuration dialog is displayed.

Client Configuration ? X

Server Connections | Alarm Fiter Selection | Alam Filter Modification |

Cannection Information
Server Name User ID
|NERVECENTER [ncadmin

Server Port 32504 Password

[Autoconnect

add | Update | Delete
Server List
Name | Autoconnect
NERVECENTER Off
NC6200-CENTOSE-G Off

Server Poit - Heartbeat Configuration

32504 ¥ Heartbeat Retry Interval [sec) |3|:|

¥ Share MIE (client uses MIB from first connected server)

Carcal_| |

2. Select the Alarm Filter Modification tab.
The Alarm Filter Modification page is displayed.

64 Designing and Managing Behavior NerveCenter 6.2
Models

Setting Up Alarm-Instance Filters

Client Configuration ? X

Server Connections | Alaim Filter Selection Alam Filter Modification

Filter | Severity | Group IP Range

New Edt | Delete |

Carcal_| |

3. Select the New button.
The Alarm Filter Definition dialog is displayed.

Alarm Filter Definition ? X

IP Range l Sevelityl Property Group

Subret | Add

Mask I Delete

il

Exclusion I Update

Subnet l Mask I Exclusion

Filker Mame
(1] I Cancel I Undo Help

NerveCenter 6.2 Designing and Managing Behavior 65
Models

n Getting Started with the NerveCenter Client

4. If youwant tofilter alarm instances based on the IP addresses of the alarm instances’ nodes,
perform the steps below for each subnet you want to be part of the filter. That is, you want to see
information about instances whose nodes have IP addresses on these subnets.

a. Enteran IP address in the Subnet text field.
The IP address must consist of four octets separated by periods.
b. Entera subnet mask in the Mask text field.

The subnet mask must consist of four octets separated by periods. Taken together with the
subnet address, this mask defines the subnet whose nodes you're monitoring.

c. Inthe Exclusion text field, enter the last octet of the IP address of any node on the subnet
that you're not monitoring.

You can enter multiple exclusions separated by commas. You can also enter a range of
excluded nodes using a hyphen. For example, if you enter 24, 76-78 in the Exclusion field,
the nodes whose addresses end in 24, 76, 77, and 78 will be excluded by the filter.

d. Select the Add button.

e. Repeat Step a to Step d to add other subnets to the alarm filter.
Enter a name for your filter in the Filter Name field.
Select the OK button.

The Alarm Filter Definition dialog is closed and you return to the Client Configuration dialog box.

You've now defined an alarm filter based on an IP range. Before the client will use the filter, however, you
must associate the filter with a server. For instructions on how to create this association, see the section
Associating a Filter with a Server on page 77.

IP Subnet Filter Exclusion Rules

When you filter by subnet, you specify which subsets of nodes are managed by NerveCenter. Filtering
does not apply to nodes that have been imported from a file or from another NerveCenter. For an example,
see IP Subnet Filter Examples on page 68.

You can exclude specific nodes that belong to the filter by entering an exclusion. To exclude one or more
nodes, you must specify the full subnet and mask, and then enter the individual nodes you want excluded.
Enter the part of the IP address that is not affected by the subnet’s mask.

NerveCenter filters Class B and C networks.

m In a Class C network, the first three octets of the address specify the network and the last octet
specifies the host. For example, in network 194.123.45.0, the 194.123.45 value pertains to the
network. The remaining octet is used to identify nodes (up to 254) on the network, and you can
exclude nodes by specifying ID values in this octet.

m In a Class B network, only the first two octets of the address specify the network. For example, in
network 132.45.0.0, the 132.45 value pertains to the network. The remaining two octets are used to
identify nodes, and you can exclude nodes by specifying ID values in these two octets.

Example

In the following example, the node whose IP address is 134.204.179.40 is excluded from the filter (the
node is filtered out and, therefore, is not managed by NerveCenter).

66

Designing and Managing Behavior NerveCenter 6.2
Models

Setting Up Alarm-Instance Filters

134.204.179.0

255.255.255.0

40

Rules for Exclusions

You can enter several nodes separated by a comma. NerveCenter accepts comma-separated
values with or without spaces following the commas. You can enter the node values in any order.

The following three examples (each on a separate line) illustrate valid exclusions:

7,8,9,15
7, 8, 9, 15
8,7,9,15
You can enter a range of values using a hyphen.
For example, you can enter as an exclusion range: 40-60
You can also enter the range in inverse order; 60-40
You can include multiple entries for the same subnet if you have values or ranges that are not
incremental.
o For example, you can enter as afilter:
134.204.179.0
255.255.255.0
7,8,9
134.204.179.0
255.255.255.0
40-60
134.204.179.0
255.255.255.0
70-90
> You can combine ranges, for example:
134.204.179.0
255.255.255.0
40-60,70-90
> You can also combine formats, for example:
134.204.179.0
255.255.255.0
7-9,31,33,40-60

NerveCenter 6.2

Designing and Managing Behavior 67
Models

n Getting Started with the NerveCenter Client

IP Subnet Filter Examples

The following examples can help you understand how to filter nodes for Class B and C networks.

Class C Network
The following subnet filters are for two sample nodes:
m Sample node #1 with IP address: 197.204.179.25
m Sample node #2 with two IP addresses:
o 134.204.179.40
o 197.204.179.7
The filter values in Table 9 have the following effects on the sample nodes:

Table 9: Class C Network Examples

Subnet Mask
Exclusion

134.204.179.0
255.255.255.0

Results of Filter

This filter does not contain any exclusions.

Node #1 is not on this subnet and is not included in the filter or managed by
NerveCenter.

Node #2 is included in the filter because it’s on the subnet.

134.204.179.0

Node #1 is not on this subnet and is not included in the filter.

255.255.255.0 Node #2 is listed as an exclusion and is not included in the filter.
25,40

197.204.179.0 Node #1 is included.

255.255.255.0 Node #2 is not included because it’s listed in the exclusion range.
7-20

197.204.179.0
255.255.255.0
7-20
134.204.179.0
255.255.255.0
40

Node #1 is included in the first subnet.

Node #2 is not included because it’s listed as an exclusion on both subnets.

197.204.179.0
255.255.255.0
25,40

Node #1 is not included because it’s listed as an exclusion.
Node #2 is included.

Designing and Managing Behavior NerveCenter 6.2

Models

Setting Up Alarm-Instance Filters

Class B Filters

The following subnet filters are for two sample nodes:
m Sample node #1 with IP address: 132.45.160.10
m Sample node #2 with IP address: 132.45.174.10

The mask you use for this filter is 255.255.0.0.

Table 10: Class B Filter Examples (Set One)

Subnet
Mask Results of Filter

Exclusion

132.45.0.0 | Both nodes are included in the filter and managed by NerveCenter.
255.255.0.0

132.45.0.0 | Node #1 is included in the filter.
255.255.0.0 | Node #2 is excluded from the filter. The filter includes all nodes except 132.45.174.10.
174.10

132.45.0.0 | Node #1 is listed in the exclusion range and is excluded from the filter.
255.255.0.0 | Note #2 is included in the filter.

160.10-
174.5

132.45.0.0 | Both nodes are excluded from the filter and, therefore, neither node is managed by
NerveCenter. The filter includes all nodes except 132.45.xxx.10, where xxx can be any

255.255.0.0
value greater than 1 and less than 255.
10
NerveCenter 6.2 Designing and Managing Behavior 69

Models

n Getting Started with the NerveCenter Client

If you use a subnet mask of 255.255.240.0, you would get different results.
m Sample node #1 with IP address: 132.45.160.10
m Sample node #2 with IP address: 132.45.174.10

You must first apply the filter before determining the node’s ID. The filter values in the table below have
the following effects:

Table 11: Class B Filter Examples (Set Two)

Subnet Mask

. Results of Filter
Exclusion

132.45.160.0 | The node is not included in the filter. The filter includes all nodes except 132.45.174.10.
255.255.240.0
174.10

132.45.160.0 | Neither node is included in the filter. The filter includes all nodes except those ending in
255 955.240.0 .10. The third octet of an excluded node can be 174 or any value between 160 and 174.

10

Filtering Alarms by Severity
When you filter alarms by severity, you are specifying that you only want to display alarm instances in the
NerveCenter Client from particular nodes identified by the severity of the alarm instance’s state.
Although you can create afilter simply based on severity, a single filter can contain any combination of:
m Alist of subnets
m Alist of severities
m Alist of property groups

For information on how to build an alarm-instance filter based on IP range and property groups, see the
respective section listed below:

m Filtering Alarms by IP Range on page 63
m Filtering Alarms by Property Groups on page 74

70 Designing and Managing Behavior NerveCenter 6.2
Models

Setting Up Alarm-Instance Filters

TO CREATE AN ALARM FILTER BASED ON SEVERITY

1. Choose Configuration from the Client menu.
The Client Configuration dialog is displayed.

Client Configuration ? X

Server Connections | Alam Filter Selection | Alam Filter Modification |

Connection Infarmation
Server Name User ID

|NERVECENTER [

Server Port I Password

™ Autoconnect |

Al | Update | Delete
Server List
Name | Autoconnect
NERVECENTER Off

Server Port -~ Heartbeat Configuration

32504 [V Heartbeat Retry Interval [sec) |3|:I

r are MIB [client w: MIB from first ed sery

ok | Cancel | Help |

NerveCenter 6.2 Designing and Managing Behavior 71
Models

Getting Started with the NerveCenter Client

2. Select the Alarm Filter Modification tab.
The Alarm Filter Modification page is displayed.

Client Configuration ? X

Server Connections | Alarm Fiter Selection Alam Filter Modification

Filter | Severity | Group IP Range

carcs_| |

3. Select the New button.
The Alarm Filter Definition dialog is displayed.

Alarm Filter Definition ? X

IP Range l Sevelityl Property Group

Subret | Add

Mask I Delete

i

Exclusion | Update

Subnet] Mask I Exclusion

Filker Mame
0K I Cancel | Undo Help

This is the dialog you use to define your filter.

72 Designing and Managing Behavior NerveCenter 6.2
Models

Setting Up Alarm-Instance Filters

4. Select the Severity tab.
The Severity tab is displayed.

Alarm Filter Definition ? X

IPRange Severity | Property Group

Available Severities Selected Severities
Low Critical
Medium High
Minar Inform
Normal Major
Saturated > Waming

> |
YeryHigh <

And User-specified
Severity

——

Fiter Name |Importan]
’TI Cancel | Undo ‘ Help ‘

5. Inthe Available Severities list, for each severity you want to use in your filter, select the severity
and then select the >> button. That is, you want to see information about alarm instances whose
states have these severities.

The severities in this list box are the union of the severities defined by all of the servers to which
you're connected. You can also add a user-defined severity to the list of severities to filter by
entering it in the And User-specified Severity text box, and then clicking >>.

The name of the severity is moved to the Selected Severities list. Information about alarm
instances with this severity will be displayed in the alarm summary views.

To remove a severity from the Selected Severities list, select the severity and then click <<.

Enter a name for your filter in the Filter Name field.
Select the OK button.
You return to the Client Configuration dialog box.

You've now defined an alarm filter based on severity. Before the client will use the filter, however, you
must associate the filter with a server. For instructions on how to create this association, see the section
Associating a Filter with a Server on page 77.

NerveCenter 6.2 Designing and Managing Behavior 73
Models

Getting Started with the NerveCenter Client

Filtering Alarms by Property Groups

When you filter alarms by property groups, you are displaying alarm instances in the NerveCenter Client
from particular nodes belonging to one or more property groups. While you can create a filter based on
membership within a property group, a single filter can contain any combination of subnets, severities, or
property groups.

For more on building an alarm-instance filter based on an IP range and severities, see the respective
section listed below:

m Filtering Alarms by IP Range on page 63
m Filtering Alarms by Severity on page 70

TO CREATE AN ALARM FILTER BASED ON PROPERTY GROUPS

1. Choose Configuration from the Client menu.
The Client Configuration dialog is displayed.

Client Configuration ? K

Server Connections | Alam Filter Selection | Alam Filter Modification |

Connection Information
Server Name User ID
|NERVECENTER [

Server Port | Password

™ Autoconnect I

add | Update | Delets
Server List
Name | Autoconnect
NERVECENTER Off
Server Port — Heartbeat Configuration
32504 v Heartbeat Retry Interval [sec) |30

-

Cancel | Help |

74 Designing and Managing Behavior NerveCenter 6.2
Models

Setting Up Alarm-Instance Filters

2. Select the Alarm Filter Modification tab.
The Alarm Filter Modification tab is displayed.

Client Configuration ? X

Server Connections | Alarm Fiter Selection Alam Filter Modification

Filter | Severity | Group IP Range

NerveCenter 6.2 Designing and Managing Behavior 75
Models

Getting Started with the NerveCenter Client

3. Select the New button.
The Alarm Filter Definition dialog is displayed.

Alarm Filter Definition ? X

IP Range l Sevelityl Property Group

Subret | Add

Mask | Delete

i

Exclusion | Update

Subnet] Mask I Exclusion

Filker Mame
0K I Cancel | Undo Help

This is the dialog you use to define your filter.
4. Select the Property Group tab.
The Property Group tab is displayed.
Alarm Filter Definition ? X

IP Range | Severity Property Group

Available Property Groups Selected Property Groups
DEC-ELAN-MIB lemp
EFIX-MIB Mib-l

FIBERMLUX-MIB

HP-UNIX-MIB

Mib-l-router-subl
MICROSOFT-INTEF
MICROSOFT-SERVI <«
NAT-MIB 4|
!‘llEDefPulllGroup v

And User-specified
Property Group

—

Filter Name |Commor]
0K I Cancel | Undo Help

76 Designing and Managing Behavior NerveCenter 6.2
Models

Setting Up Alarm-Instance Filters n

5. Inthe Available Property Groups list, for each property group of each alarm instance’s node,
perform the steps below for each property group you want to be part of the filter. That is, you want
to see information about instances whose nodes belong to these property groups.

The property groups in this list box are the union of the property groups defined by all of the servers
to which you’re connected.

The property group is moved to the Selected Property Groups list. Information about alarm
instances with this property will be displayed in the alarm summary views. Optionally, you can
also add a user-defined property group to the list of properties to filter by entering a property group
in the And User-specified Property Group text box, and then click >>.

To remove a property group from the Selected Properties list, select it and then click <<.

Enter a name for your filter in the Filter Name field.
Select the OK button.
You return to the Client Configuration dialog box.

You've now defined an alarm filter based on property groups. Before the client will use the filter, however,
you must associate the filter with a server. For instructions on how to create this association, see the
section Associating a Filter with a Server below.

Associating a Filter with a Server

When you define an alarm filter, that filter is not used to filter alarm instances from all connected servers.
It is only used to filter alarm instances from a server with which you have explicitly associated it.

NerveCenter 6.2 Designing and Managing Behavior 77
Models

Getting Started with the NerveCenter Client

TO ASSOCIATE AN ALARM FILTER WITH A NERVECENTER SERVER

1. Choose Configuration from the Client menu.
The Client Configuration dialog is displayed.

Client Configuration ? X

Server Connections | Alam Filter Selection | Alam Filter Modification |

Connection Infarmation
Server Name User ID

|NERVECENTER [

Server Port | Password

™ Autoconnect I

Al | Update | Delete
Server List
Name | Autoconnect
NERVECENTER Off

Server Pot — Heartbeat Configuration

32504 v Heartbeat Retry Interval [sec) |30

C 1 L TOm

2. Select a server from the list of servers at the bottom of the dialog.

The name of the server appears in the Server Name text field in the Connection Information group
box. This is the server with which you will associate your alarm filter.

78 Designing and Managing Behavior NerveCenter 6.2
Models

Setting Up Alarm-Instance Filters

3. Select the Alarm Filter Selection tab.

The Alarm Filter Selection page is displayed.

Client Configuration ? X
Server Connections Alaim Filter Selection I Alarm Fiter Modification |

Server List

Name I Autoconnect

NERVECENTER Ooff
NC6200-CENTOSE-G Off

Available Filters Selected Filters

Traffic
Important

All >

<< Al

adis

Cancel

Help

4. Select afilter from the Available Filters list.
This is the filter you want to associate with the server you selected in Step 2.

5. Select the >> button to move the filter from the Available Filters list to the Selected Filters list.
To remove a filter from the Selected Filters list, select the filter and then select the << button.

6. Select the OK button at the bottom of the dialog.

Rules for Associating Filters with Alarms
When deciding whether to apply multiple filters to your alarms, you should keep in mind the following
general rules:
m Multiple filters are ORed together

m Multiple conditions in a single filter are ANDed together

NerveCenter 6.2 Designing and Managing Behavior 79
Models

n Getting Started with the NerveCenter Client

Multiple Filters are ORed Together

When you select more than one filter for a server, each filter is independent of the other filters. Their
behavior is equivalent to a logical OR operation.

For example, say you associate two filters with a NerveCenter Server. The two filters are defined as
follows:

m Filter#1 is configured to display only those alarms that have a severity level of Critical.

m Filter#2 is configured to display only those alarms coming from the network 132.168.196.0.
When both filters are applied to a server, you see the following alarms:

m Alarms with a Critical severity level from all existing networks defined for the server.

m From the network 132.168.196.0, you see all alarms regardless of severity.

Multiple Conditions in a Single Filter are ANDed Together

If, instead of the above view, you want to limit your alarms to Critical instances coming from the network
132.168.196.0, you need to create one filter with both of those conditions. You would create one filter that:

m Specifies a severity level of Critical, and
m Specifies an IP range of 132.168.196.0.

With this filter applied to the server, you see only those alarms that have a Critical severity level and that
come from network 132.168.196.0. One filter with multiple conditions is equivalent to a logical AND
operation; each condition is ANDed with the other conditions for optimum filtering.

Specifying Heartbeat Messaging

The NerveCenter Client sends a message called a heartbeat to each connected NerveCenter Server on a
standard interval. This messaging ensures the reliability of communications between the server and
client. If a server fails to respond after three consecutive heartbeat messages from the client, a message
box is displayed on the client console to alert the operator of the server’s heartbeat failure. (In such cases,
you should check with your network administrator to obtain the status of that particular NerveCenter
Server.)

You can set the interval at which the NerveCenter Client sends a heartbeat to the NerveCenter Server (30
seconds by default). You can also choose to deactivate heartbeat messaging.

See the following sections for more information:
m Modifying the Heartbeat Message Interval on the facing page

m Deactivating Heartbeat Messaging on page 82

Designing and Managing Behavior NerveCenter 6.2
Models

Specifying Heartbeat Messaging n

Modifying the Heartbeat Message Interval

You can change the interval NerveCenter Client uses to send heartbeat messages to verify its connection
with your NerveCenter Servers.

TO MODIFY THE HEARTBEAT MESSAGE INTERVAL

1. Choose Configuration from the Client menu.
The Client Configuration dialog is displayed.

Client Configuration ? X

Server Connections | lam Filter Selection | Alam Filter Modification |

Connection Infarmation
Server Name User ID
|NERVECENTER [

Server Port | Password

™ Autoconnect I

add | Update | Delete
Server List
Name | Autoconnect
NERVECENTER Off
Server Port — Heartbeat Configuration
32504 v Heartbeat Retry Interval [sec) |30

r -

Cancel | Help |

2. Inthe Heartbeat Configuration panel, make sure the Heartbeat checkbox is checked. If it's not
checked, heartbeat messaging is turned off.

3. Inthe Retry Interval field, enter the number of seconds you want NerveCenter Client to wait
between heartbeat messages. The default is 30 seconds. (The number of retries is three.)

Note: When you modify heartbeat messaging, it applies to all NerveCenter Servers to which this client
connects.

4. Select the OK button.

NerveCenter 6.2 Designing and Managing Behavior 81
Models

Getting Started with the NerveCenter Client

Deactivating Heartbeat Messaging

The NerveCenter Client sends heartbeat messages on an interval that you specify (or by default, every 30
seconds) to verify its connection with your NerveCenter Servers. If you choose, you can deactivate (or
activate) heartbeat messages going to and from all your connected servers.

TO DEACTIVATE HEARTBEAT MESSAGES

1. Choose Configuration from the Client menu.
The Client Configuration dialog is displayed.

Client Configuration ? X

Server Connections | Alam Filter Selection | Alam Filter Moditication |

Connection Information
Server Name User ID
|NERVECENTER [ncadmin

Server Port |32504 Password

[Autoconnect Iu

add | Update | Delete
Server List
Name | Autoconnect
NERVECENTER Off
NC6200-CENTOS6-G Off
Server Poit — Heartbeat Configuration
32504 [~ Heatbeat Retry Interval [sec) |3|:|

-

Cancel | Help |

2. Inthe Heartbeat Configuration panel, uncheck the Heartbeat checkbox.

Note: If there is no check mark in this checkbox, heartbeat messaging has already been deactivated for
NerveCenter Client. When you activate or deactivate heartbeat messaging, it applies to all NerveCenter
Servers to which this client connects.

3. Select the OK button.

Heartbeat deactivation takes effect the next time you connect NerveCenter Client to one or more
of your NerveCenter Servers.

82 Designing and Managing Behavior NerveCenter 6.2
Models

Disconnecting from a Server n

Disconnecting from a Server

When you exit the client, all connections to NerveCenter servers are broken. However, you may also
want to disconnect the client from a server without stopping the client.

TO DISCONNECT THE CLIENT FROM A SERVER

1. From the server drop-down list on the client’s button bar, select the server with which you want to
break the connection.

LogMatrix NerveCenter Client - Untitled - O X

Client Server Admin Window View Help

NC6200-CENTOS6-G

2. From the client’'s Server menu, choose Disconnect.

You see a pop-up window that asks you to confirm that you want to disconnect from the selected
server.

Client X

i Disconnecting from NC6200-CENTOS6-G.

0K Cancel

3. Select the OK button.

NerveCenter 6.2 Designing and Managing Behavior 83
Models

n Discovering and Defining Nodes

Discovering and Defining Nodes

Before NerveCenter can manage a set of devices, a set of node definitions must reside in the
NerveCenter database. There are two ways to enter these definitions into the NerveCenter database:

m By using a discovery mechanism. Both network management platforms and NerveCenter itself
have the ability to explore a network and discover what devices are on the network. NerveCenter
can use the information gleaned during this discovery process to create a set of node definitions.

m By defining the nodes manually using the NerveCenter GUI.

Generally, if you're managing a network of any size, you'll use a discovery mechanism to gather
information about the devices on your networks. Defining nodes manually is appropriate only if you have a
very small network or if you want to add to your database some nodes that were not found during the
discovery process (perhaps because they were on a subnet that the discovery program did not explore).

Discovering Nodes

Generally, you add node definitions to the NerveCenter database using a discovery program. The two
most common scenarios are listed below:

m You are using NerveCenter with a network management platform and you use the platform’s
discovery mechanism to explore the network and write node definitions to the platform’s database.
You then define the machine on which the platform is running as NerveCenter’'s node source. This
action causes NerveCenter to copy the node definitions in the platform’s database to its own
database. The node information in NerveCenter's database is updated whenever the node
information in the platform’s database changes, for example, if a node is added to or deleted from
the platform’s database or if a node’s attributes are changed.

m You are using NerveCenter in standalone mode, and you use NerveCenter's IPSweep behavior
model to explore the network and write node definitions to NerveCenter's database.

There are also other, less common, scenarios. For example, you may be using NerveCenter with a
network management platform, but NerveCenter may be set up at a remote site and the platform may be
running at a central site. In this case, it may make sense to have NerveCenter discover the remote
network and forward the node information it gathers to the platform. NerveCenter can then retrieve node
definitions from the platform as in the first case mentioned above.

In any of these situations, you may only want information about nodes on particular subnets. This type of
filtering is easy to do with NerveCenter; however, it must be set up from the NerveCenter Administrator.
For information on how to perform this task, see Filtering Nodes in Managing NerveCenter

For more detailed information about discovering nodes, see Using IPSweep Behavior Model on the facing
page

84

Designing and Managing Behavior NerveCenter 6.2
Models

Discovering Nodes n

Using IPSweep Behavior Model

NerveCenter can be configured to discover nodes and add them to its database. With discovery enabled,
if the NerveCenter database does not already have a node matching the source of an SNMP trap or
NerveCenter Inform, it adds the node to the database. If NerveCenter Administrator is configured to auto-
classify, NerveCenter also attempts to classify the node’s SNMP version.

You typically use NerveCenter to discover nodes when NerveCenter is not integrated with a network
management platform.

For times when you want NerveCenter to discover the devices on a network, NerveCenter includes the
IPSweep behavior model. To use this behavior model, you—or for the first step, an administrato—must
perform the following tasks:

1. Someone must specify the following information:

o Which subnets the IPSweep behavior model should explore, and any nodes on those subnets
that the model should ignore

o Whether node information should be sent to NerveCenter or to a network management platform

o Whether the IPSweep alarm should be started automatically when the NerveCenter Client is
started.

This information can be specified either when NerveCenter is installed or later via the NerveCenter
Administrator. For installation details, see Installing NerveCenter, and for information about using
the NerveCenter Administrator, see Populating Using the IPSweep Behavior Model in Managing
NerveCenter.

2. You must make minor changes to the predefined NerveCenter alarm: IPSweep.

3. You must enable the IPSweep alarm.
Once the IPSweep behavior model becomes operational, it finds devices on the subnets you've specified
and, for each node, send a trap to the NerveCenter server or the network management platform. If the trap
is sent to NerveCenter, the server creates a node definition and places it in the NerveCenter database. If

the trap is sent to the platform, the platform writes information about the node to its database, and then
that information becomes available to NerveCenter.

Both the customization and enabling of the IPSweep alarm is handled from the NerveCenter Client. For
instructions on how to modify and enable these alarms, refer to the following sections:

m Modifying the IPSweep Alarm on the next page
m Enabling the IPSweep Alarm on page 90

NerveCenter 6.2 Designing and Managing Behavior 85
Models

Discovering and Defining Nodes

Modifying the IPSweep Alarm

The IPSweep alarm actually executes the program, ipsweep, that discovers devices on your network. If
NerveCenter was installed in the default directory, this alarm will work correctly without modification.
However, if the product was installed in a non-default directory, you must change the Command action
associated with one of the alarm’s transitions so that the path to ipsweep is correct. You may also want to
change the delay between executions of the ipsweep program. The instructions below explain how to
change both the delay and the path to the ipsweep program.

TO MODIFY THE IPSWEEP ALARM

1. From the client's Admin menu, choose Alarm Definition List.
The Alarm Definition List window is displayed

Y NERVECENTER:Alarm Definition List (=@ |
D | Name Enabled | Property | Scope A
9 AllTraps_LogToFile Off NO_PROP Node
10 Authentication Off NO_PROP Subobject
2 Forward-AllTraps On NO_PROP Node
5 lempStatus Off icmpStatus Node
8 IfErrorStatus Off ifEntry Subobject
7 IfLinkUpDown Off ifEntry Subobject
1 ifStatus On ifEntry Subobject
f fllnDownStatus QOff ifFntre Subnhiect ¥
< >

| Newl | Close Export... Help

2. Select the IPSweep alarm from the list.
The Open button is enabled.

86 Designing and Managing Behavior NerveCenter 6.2
Models

Discovering Nodes

3. Select the Open button.

The definition of the IPSweep alarm is displayed in the Alarm Definition window.

NERVECENTER:Alarm Definition : IPSweep =N =R =~

® = e
P Ground

PingSweep

TrueTrigger

IPSweep I | TrueTrigger I

Name |IPSweep Property INEI_F'HEIF' ;] Scope |Enterprise LI
Enabled
C on & OK [™ Clear Triggers for Reset To Ground or OFf
State List Transition List

State | Severity From State To State Trigger

Wait Normal Wait PingSweep IPSweep

PingSweep Normal PingSweep Wait TrueTrigger

Ground Normal Ground PingSweep TrueTrigger

Save | Cancel | Undo | Notes Help

4. Ifthe alarmis enabled, set its Enabled status to Off.

The alarm may be turned on even if it was never explicitly enabled. This is possible because
NerveCenter server can be configured to enable this alarm on startup.

NerveCenter 6.2 Designing and Managing Behavior 87
Models

Discovering and Defining Nodes

5. Double-click the transition from the PingSweep state to the Wait state.
The Transition Definition dialog is displayed.

Transition Definition ? X

Transition
From Trigger

To
| | TrueTrigger | [wat |

Actions

Type Argument

Beep
Fire Trigger IPSweep, $50, SNODE, SPROPERTY, 300

New Action o | |
ok | cencel | Help

6. Double-click the Fire Trigger action.
The Fire Trigger Action dialog is displayed.

Fire Trigger Action 2 «
Trigger Name
Sublbject 450 = o |
Node [snoDE 7] "o |
Property [sPROPERTY =

Delay

" Days Hows |5

& Minutes O Seconds

7. Change the delay for the Fire Trigger action from 5 minutes to the length of time you want to wait
between invocations of the ipsweep program.

A short delay will generate more network traffic, while a long delay will mean a longer wait for new
devices to be discovered.

Select the OK button in the Fire Trigger Action window.

9. Select the OK button in the Transition Definition window.

88 Designing and Managing Behavior NerveCenter 6.2
Models

Discovering Nodes

10.

1.

12.
13.
14.
15.

Double-click the IPSweep transition.
The Transition Definition window is displayed.

Double-click the Process Command action in the Transition Definition window.

The Command Action dialog is displayed.

Command Action 7 X

Command:

I!opl!tl SInc/bin/ipsweep

Special Symbol Ll .f’l‘\.

| |
0K | Cancel | Help |

Edit the Command text field so that it contains the correct path to the ipsweep program.
Select the OK button in the Command Action window.

Select the OK button in the Transition Definition window.

Select the Save button in the Alarm Definition window.

NerveCenter 6.2

Designing and Managing Behavior 89
Models

Discovering and Defining Nodes

Enabling the IPSweep Alarm

Once you’'ve modified the IPSweep alarm, you must enable the alarm for the IPSweep behavior model to
become functional.

TO ENABLE THE IPSWEEP ALARM

1. Foreach alarm, perform this step and the following steps. From the client’s Admin menu, select
Alarm Definition List.

The Alarm Definition List window is displayed.

5

B NERVECENTER:Alarm Definition List o =]
D | Name Enabled I Property I Scope A
9 AllTraps_LogToFile Off NO_PROP Node
10 Authentication Off NO_PROP Subobjec
2 Forward-AllTraps On NO_PROP MNode
5 lempStatus Off icmpStatus Node
8 IfErrorStatus Off ifEntry Subobjec
7 IfLinkUpDown Off ifEntry Subobjec
1 ifStatus On ifEntry Subobjeci
6 fUpDownStatus Off ifEntry Subobjec!
1 IPSweep Off NO_PROP Enterprise v
< >
m I Mote Close Export... I Help
90 Designing and Managing Behavior NerveCenter 6.2

Models

Discovering Nodes

2. Highlight the name of the alarm you want to enable.
The Open button is enabled.

3. Select the Open button.
The alarm’s definition is displayed in the Alarm Definition window.

& NERVECENTER:Alarm Definition : IPSweep =N EcR—™
@ L o |
P Ground PingSweep
IPSweep I [TrueTrigger I
Name |IPSweep Property | NO_PROP _-I Scope |Enterprise ;l
Enabled
@ Ba € of [Clear Triggers for Reset To Ground or Off
State List . Transition List
State I Severity From State To State Trigger
Wait Normal Wait PingSweep IPSweep
PingSweep Normal PingSweep Wait TrueTrigger
Ground Normal Ground PingSweep TrueTrigger
Save | Cancel | | Notes Help

4. Select the On radio button in the Enabled frame.
5. Select the Save button at the bottom of the window.

Note: You can also enable an alarm by selecting it in the Alarm Definition list, pressing the right mouse
button while your cursor is positioned over the highlighted alarm, and selecting On from the pop-up
menu.

NerveCenter 6.2 Designing and Managing Behavior 91
Models

Discovering and Defining Nodes

Defining Nodes Manually

There are three situations in which you should define nodes manually using the NerveCenter Client.

m You are managing a very small network, and it is easier to define the nodes in the network manually
than to configure NerveCenter's IPSweep behavior model.

m You've discovered most of your nodes using either your network management platform’s or
NerveCenter’s discovery mechanism, but you need to add to your database a few nodes on a
subnet that wasn’t explored during the discovery process.

m You are managing a network with IPv6 support.

In any case, you can define your nodes using the Node Definition window in the client.

TO DEFINE A NODE MANUALLY

1. From the client’'s Admin menu, select Node List.
The Node List window is displayed.

B NERVECENTER:Node List =N Ech I~
Node Count : 4 | Search I
ID | Name | 1P Address Group | Severity | Managed | Suppressed | SNMP Version | Error Status | IP Addresses
3 Cisco-Switch 192.168.1.220 Mib-II Inform Managed No vaec
1 LAPTOP-TJBKAICD 192.168.1.184 lcmp Normal Managed No vl
2 Linksys-Router 192.168.1.1 Mib-Il Normal Managed No vl
4 nervecenter 192.168.1.191 lemp Normal Managed No vl
L4 >
New f Close Export... Help
Format EnginelD

92 Designing and Managing Behavior NerveCenter 6.2
Models

Defining Nodes Manually

2. Inthe Node List window, select the New button.

The Node Definition window appears.

B NERVECENTER:Node Definition ==
Node lAIalrns} Alarmlnstancesl MIB Queryl F‘arentsl SNMF'I ICMP] Tred | 4
Mode ID: [~ Managed
Name | ¥ Autodelete
Property - ™ Suppressed
Group INCDeIauItErnup :I
™ Platform
Node

IP Address

IP Address
IP Address
List

Save ‘ Cancel | Undo | Notes | Help |

3. Inthe Name text field, type the name of the workstation or network device that the node object
represents. The name can be a fully qualified hosthame or an IP address.

Note: The maximum length for node names is 255 characters.

4. Select the node’s property group from the Group list box.

The Group list box contains a list of all the valid property group names defined in the NerveCenter
database.

5. Inthe Port text field, type the number of the port on the node to which NerveCenter should send
messages.

SNMP agents use port 161 to receive SNMP messages.

NerveCenter 6.2 Designing and Managing Behavior 93
Models

n Discovering and Defining Nodes

6. IntheIP Address text field, type the node’s IP address. Then select the Add button to add the
address to the IP Address List. If the node is multihomed, you can add the node’s other addresses
to the list in the same manner.

If you need to delete an address from the address list, highlight that address, and then select the
Delete button.

If you have a properly configured DNS or NIS server, you can also use IP Lookup to find the IP
Address(es) for the node. See Using IP Lookup on the facing page for more details.

7. Check the Managed checkbox if you want NerveCenter to manage the node.

You can leave Managed unchecked if you do not want the node to be affected by any NerveCenter
behavior models.

8. Check the Auto Delete checkbox if you want the node to be deleted if it is not in your network
management platform’s (NMP’s) node database.

The setting of this property is meaningful only if you are using an NMP as your node source. If
you're using an NMP as a node source and you check the Auto Delete checkbox, the node you're
defining will be deleted when the NerveCenter database is synchronized with the NMP’s node
database, if the node you’re defining is not found in the NMP’s node database. If you don’t want the
node to be deleted in this situation, don’t check the Auto Delete checkbox.

9. The Platform checkbox is a read-only control.

When you define a node manually, Platform is read-only and is unchecked and indicates that the
node you are defining was not discovered by a network management platform.

10. Check the Suppressed checkbox if you want the node to be in a suppressed state.

A suppressed node is not polled by any suppressible polls (a poll’s default state). Only polls
designed to monitor a device’s responsive/unresponsive state are not suppressible.

Note: Normally, you do not check Suppressed. A node’s suppressed attribute is usually set by an
alarm action when the alarm detects that the node is not reachable.

11. By default, NerveCenter deems the SNMP version for a node to be version 1. If you want to
manage the node using SNMP version 2c or 3, you must configure the appropriate SNMP settings
in the SNMP tab. In the SNMP tab, you can also change the Read and Write community names for
a node that’s using SNMP version 1 or 2c.

For details, see Configuring SNMP Settings for Nodes on page 99.

12. Select the Save button.

When adding nodes manually, you can also search for the IP Addresses available for the hostname of the
node.

Note: IP Lookup functions only if you have a properly configured DNS or NIS server. Connectivity is not
enough for IP Lookup to find the correct IP address.

IP Lookup is separate from the DNS Lookup used by NerveCenter when discovering nodes from traps.
See Managing Node Data in Managing NerveCenterfor more details about DNS Lookup.

94

Designing and Managing Behavior NerveCenter 6.2
Models

Defining Nodes Manually

USING IP LookupP

1. From the client’'s Admin menu, select Node List.
The Node List window is displayed.

2. Inthe Node List window, select the New button or select a Node and select Open.
The Node Definition window appears.

B NERVECENTER:Node Definition =N R ==
Node lAIalmsl Alarmlnstancesl MIB Quelyl F‘arenlsl SNMF'l ICMP | Tret | »
Node ID: [~ Managed
Name | WV Autodelete
Property |NCDeIauItErnup LI [Suppressed
Graup
™ Platfom
Node
IP Address
IP Address [
pdd | Update | | Delete | 1P Lockup| StopLockup

IP Address
List

Save | Cancel I Undo | Notes | Help |

3. Inthe Name text field, type the fully qualified name of the workstation or network device that the
node object represents.

NerveCenter 6.2 Designing and Managing Behavior 95
Models

n Discovering and Defining Nodes

4.

Select IP Lookup.
The IP Address Selection window opens.

If the IP Address Selection window does not open, you can click StopLookup to stop the the IP
lookup and return control to the NerveCenter client.

IP Addresses Selection X
Mode Name: . boston.com

Available IP Addresses Selected IP Addresses

151.101.0.153

161.101.128.153
151.101.192.153 Q
151.101.64.153

Addesses Filter
+ |Pv4 address only " IPv# and IPv6 addresses " IPvE address only

ok | Cancel | Hep |

If any node IP Addresses have been defined, they appear in the Selected IP Addresses field.

If you already defined IP addresses for the node, select them all and select Delete to move them to
the Available IP Addresses field.

Select what type of IP Addresses you want to collect, IPv4, IPv6, or a combination of IPv4 and
IPv6 addresses.

See IPv6 and NerveCenter on the facing page for more details about NerveCenter's IPv6 support.

Note: If you have any invalid IP Addresses in the Available IP Addresses field—for example, if you
defined IP Address manually in the Node Definition window—NerveCenter deletes them when you
select an Address Filter.

7.

Select the IP Addresses you want to assign to the Node from the Available IP Addresses field and
click Add to move them to the Selected IP Addresses field.

Select OK to return to the Node Definition window.

Select Save.

96

Designing and Managing Behavior NerveCenter 6.2
Models

IPv6 and NerveCenter

IPv6 and NerveCenter

NerveCenter supports networks running IPv6 and IPv4 within the following guidelines:

m Your network must support the IPv6 protocol. If IPv6 devices reside on different network than the
NerveCenter management node, your routers must support IPv6 routing.

m You must configure The SNMP agent on your IPv6 devices to support all SNMP requests on IPv6.
m You must install the NerveCenter server on a machine with IPv6 and IPv4 stack support.

m Youmust have a working DNS, NIS or other server properly configured to use name resolution for
IPv6 addresses.

m You must install the NerveCenter server on a machine with IPv6 and IPv4 stack support.

IP Addresses Selection X
Node Name: www.att.com

Available IP Addresses Selected IP Addresses
104.100.153.111

2600:141b:2000:183::2db1
2600:141b:2000:1bd:: 2db1 Q

[s

Addesses Filter
" |Pv4 address only * |Pv4 and IPv6 addresses " IPvE address only

oK | Cancel | Help

While NerveCenter supports monitoring IPv6 networks, it has the following limitations:

m Communication between the NerveCenter server, the Administrator, and the Client does not
support IPv6.

= Communication between NerveCenter and network management platforms does not support IPv6.

m The IPSweep alarm does not support IPv6.

NerveCenter 6.2 Designing and Managing Behavior 97
Models

n Discovering and Defining Nodes

98 Designing and Managing Behavior NerveCenter 6.2
Models

Configuring SNMP Settings for
Nodes

A node must have SNMP version information before NerveCenter can poll the node or process a trap from
the node. If the node is using SNMPv3, the SNMP agent must be configured properly on the node. See
Using the SNMP Test Version Poll on page 126 for help testing communication with a node.

You can manually specify the correct SNMP version for the node or command NerveCenter to classify
the node. If you specify the node as SNMPv3 or if the node is classified as SNMPv3, you can set the
security level, user name, context and, if applicable, the authentication and privacy protocols used by
NerveCenter to poll the node.

Manually Changing the SNMP Version Used to Manage a Node

NerveCenter must use different versions of SNMP to communicate with the different versions of SNMP
agents. Most often, you will want NerveCenter to classify the SNMP version for nodes when they are
added to your database. You can, however, manually change the version that NerveCenter uses for
communicating with a particular node.

You might change the version, for example, if you are using SNMPv3 and it is not configured correctly at
the agent. Instead of continuing to send SNMPv3 polls that may generate numerous alarms, you can
temporarily change the node’s SNMP version to v1 or v2c until you have a chance to reconfigure the v3
information at the agent. With this change, you can still poll the node for certain MIB variables defined in
your behavior models and continue monitoring minimal MIB information for the node.

This feature also allows you to override the maximum version classification value configured in
NerveCenter Administrator. For example, if maximum classification value is v2c, you can specify
SNMPv3 for a particular node and run a test poll against that node.

NerveCenter 6.2 Designing and Managing Behavior 99
Models

Configuring SNMP Settings for Nodes

To CHANGE A NODE’S SNMP VERSION MANUALLY

1. From the client’'s Admin menu, select Node List.
The Node List window is displayed.

B NERVECENTER:Node List =R =R
Node Count : 4 | Search I

ID | Name | 1P Address | Group | Severity | Managed | Suppressed | SNMP Version | Error Status | IP Addresses

3 Cisco-Switch 192.168.1.220 Mib-II Inform Managed No v2c

1 LAPTOP-TJ6KAICD 192.168.1.184 lcmp Normal Managed No vl

2 Linksys-Router 192.168.1.1 Mib-lI Normal Managed No vl

4 nervecenter 192.168.1.191 lcmp Normal Managed No vl

< >

Oper New Notes Close Export... Help
Format EnginelD [

100 Designing and Managing Behavior NerveCenter 6.2
Models

Manually Changing the SNMP Version Used to Manage a Node

2. Inthe Node List window, select New if defining a new node, or select the node and then Open to
change an existing node.

The Node Definition window appears.

3. Select the SNMP tab.

-

B NERVECENTER:Node Definition : Cisco-WirelessVPNRouter | = || = |[si3m]
Node 1 Alarms l Alarm Instances I MIB Query] Parents SNMP | ICMP | Tred ¥
SNMPv2Ze - Classiy Pelling
Use Defaults v
Port 161 Judp Use GetBulk v Retry
Interval
SNMP v1/v2c [seconds)
Read Community |public Attempts
‘Write Community |public Timeout
| [seconds)
SNMP v3
Select User Security Level
Local User
User Name |
Authentication |M[l5
Privacy |[‘EE‘
Contest |
Engine D | Parse | Felch
Status |
Save | Cancel Unda Notes | Help |

4. Select the node’s SNMP Version.

o If you select Unknown or an incorrect version, NerveCenter cannot poll the node or process
traps from the node.

o If you select v1 or v2, set the Read Community and Write Community values as appropriate for
the node.

> If you select v3, click the Select User list and select User #1, User #2, or Local User; and

select the appropriate Security Level. If you select Local User, you can configure a node-
specific username, authentication and privacy settings, and context as necessary.

NerveCenter 6.2 Designing and Managing Behavior 101
Models

H Configuring SNMP Settings for Nodes

5. Select the Save button.

Caution: NerveCenter performs no type of error check to validate the version you choose. However,
you can manually confirm SNMPv3 communication with the node by clicking Save and then testing this
setting with Get on the Query Node tab.

Note: To change the version of one or more nodes from the Node List window, right-click one or more
nodes, select Version, and select the version you want for the nodes.

Changing the Security Level of an SNMPv3 Node

NerveCenter lets you set the security level you want for each managed node using SNMPv3. The
security level of a node determines whether authentication or encryption services are used with
communications between NerveCenter and the node.

SNMPv3 nodes can have one of the following security levels:

m NoAuthNoPriv—Neither message authentication nor encryption is used while communicating
with the agent. No passwords are required.

m AuthNoPriv—Message authentication is used without encryption while communicating with the
agent. An authentication protocol and password are required. The authentication password can be
set to one of the two global passwords defined under User #1 or User #2, or can be set on a per-
node basis.

m AuthPriv—Both authentication and encryption are used when communicating with the agent. Both
the authentication and privacy protocols and passwords are required. These passwords can be set
to one of the two global passwords defined under User #1 or User #2, or can be set on a per-node
basis.

For more information on SNMPv3 security, see NerveCenter Support for SNMPv3 Security on page 118.
For details about passwords, see NerveCenter Support for SNMPv3 Digest Keys and Passwords on
page 119.

102 Designing and Managing Behavior NerveCenter 6.2
Models

Changing the Security Level of an SNMPv3 Node

To cHANGE AN SNMPV3 NODE’S SECURITY LEVEL

1. From the client’'s Admin menu, select Node List.
The Node List window is displayed.

@

B NERVECENTER:Node List =R =R

Node Count : B || Search

ID | Name | 1P Address | Group | Severity | Managed | Suppressed | SNMP Version | £f IF Addresses
3 Cisco-WirelessVPNRouter 192.168.1.220 Mib-II Inform Managed No vic 1921681131
1 LAPTOP-7J6KAICD 192.168.1.184 lcmp Normal Managed No vl

2 Linksys-Router 192.168.1.1 Mib-II Normal Managed No vl

4 nervecenter 192.168.1.191 NerveCenter Normal Managed No vl

5 HP-Photosmart-6520 192.168.1.242 lemp Normal Managed No vl

6 nc6200-centosb-g 192.168.1.239 MNerveCenter Normal No No vl

< >

Open | New Notes Close Export... Help
Format EnginelD |~

NerveCenter 6.2 Designing and Managing Behavior 103
Models

Configuring SNMP Settings for Nodes

2. Inthe Node List window, select New if defining a new node, or select the node and then Open to
change an existing node.

The Node Definition window appears.

3. Select the SNMP tab.

| NERVECENTER:Node Definition : Cisco-WirelessVPNRouter | = | = |[utm])

Node | Alarms | Alarm Instances | MIB Query | Parents SNMP IIEMP | Tl

SNMPY3 = Classify Palling
Use Defaults v
Port 161 Judp UseGetBuk W Rety
Interval
SNMP +1/v2c [seconds)
Read Community |public Attempts
‘wiite Commurity | public Timeout
Y | [seconds)
SHNMP v3
Select User |Local User - I Security Level |NoAuthMoPriv v
Local User
User Hame |nelvecenter
Authentication |pp5 |
Privacy DES I
Context |
Engine D | Parse | Fetch
Status |
Save | Cancel Undo MNotes | Help |

4. Select the Security Level.

If you are setting the security level for the Local User, you can configure the necessary
authentication and privacy keys from this screen. If you are setting the security level for User #1 or
User #2, those keys are configured from the SNMPv3 tab in the NerveCenter Administrator (see
Configuring SNMPvV3 Security Settings in Managing NerveCenter).

5. Select the Save button.

Note: You can change node security levels from the Node List window. Right-click one or more nodes,
select Security Level, and then select the level you want for the nodes.

104 Designing and Managing Behavior NerveCenter 6.2
Models

Changing the Authentication Protocol for an SNMPv3 Node

Changing the Authentication Protocol for an SNMPv3 Node

If you change the authentication protocol on an SNMPv3 agent, you must likewise change the protocol
used by NerveCenter to manage that agent.

An authentication protocol must be specified when the node’s security level is AuthNoPriv or
AuthPriv.NerveCenter supports either HMAC-MD5-96 (MD5) or HMAC-SHA-96 (SHA-1) as
authentication protocols. The default is MD5.

TO CHANGE THE AUTHENTICATION PROTOCOL USED TO MANAGE AN SNMPV3 NODE

1. From the client’'s Admin menu, select Node List.
The Node List window is displayed.

B NERVECENTER:Node List =N Ech I~

Node Count : [|| Search

ID | Name | 1P Address Group | Severity | Managed | Suppressed | SNMP Version | £ IP Addresses
3 Cisco-WirelessVPNRouter 192.168.1.220 Mib-II Inform Managed No vac 192.168.1.191
1 LAPTOP-7JGKAICD 192.168.1.184 lemp Normal Managed No vl

2 Linksys-Router 192.168.1.1 Mib-II Nermal Managed No vl

4 nervecenter 192.168.1.191 NerveCenter Normal Managed No vi

5 HP-Photosmart-6520 192.168.1.242 lcmp Neormal Managed No vl

6 nc6200-centosb-g 192.168.1.239 NerveCenter Normal No No vl

< >

Open | New Notes Close Export... Help
Format EnginelD [

2. Inthe Node List window, select New if defining a new node, or select the node and then Open to
change an existing node.

The Node Definition window appears.

NerveCenter 6.2 Designing and Managing Behavior 105
Models

Configuring SNMP Settings for Nodes

3. Select the SNMP tab.

Y NERVECENTER:Node Definition : Cisco-WirelessVPNRouter | = | = |[ssm]

Node | Alaims | Alarm Instances | MIE Query | Parents SNMP IIEMF' | Tredt [»

SNMPv3 x| Classiy Poling

Use Defaults v
Port 161 fudp UseGetBuk ¥ Reky
Interval
SNMP v1/v2e [seconds)
|Dubllc Attempts

Read Community

Wiite Community |public Timeout
| [seconds)

SNMP v3
Select User |Local User v | Securty Level |AuthNoPriv -
Local User
User Name Inervecenta

Authentication |SHA—1 - SetAuth Key
Privacy AES-128 f

Context |
Engine 1D | Parse| Felch
Status |
Save | Cancel | Unda | Notes | Help |

4. Click the Select User list and select User #1, User #2, or Local User; and select the appropriate
Security Level. If you select Local User, you can configure a node-specific username,
authentication and privacy settings, and context as necessary.

5. Select the new protocol from the Authentication list box.
Click Save.

Note: You can change the protocol for one or more nodes from the Node List window. Right-click one or
more nodes, click Authentication, and then select the protocol you want for the nodes. Polling is halted
for all selected nodes during this change.

106

Designing and Managing Behavior NerveCenter 6.2
Models

Classifying the SNMP Version Configured on Nodes H

Classifying the SNMP Version Configured on Nodes

A node must have SNMP version information before NerveCenter can poll the node or process a trap from
the node. NerveCenter enables you to obtain the SNMP version for a node and classify the node with that
version. This is required when you don’t know the SNMP version for a node or when NerveCenter
receives its nodes from a Network Management Platform (NMP). When NerveCenter receives nodes
from OpenView, NerveCenter deems the SNMP version for these nodes to be version 1.

A node must already exist in the database before it can be classified. To classify a node as SNMPv3, the
agent must have an initial user configured for discovery. For details, see Managing SNMP Settings in
Managing NerveCenter.

For a detailed study of classification, see The Need for Node Classification in Managing NerveCenter.
There are three ways in which NerveCenter classifies nodes:

m Enable auto-classification of nodes. If auto-classification is enabled, when NerveCenter adds
nodes to its database (discovered from a trap, added from a NMP, or imported from another
NerveCenter), any nodes without version information are classified at the highest possible level up
to the maximum version specified in NerveCenter Administrator. NerveCenter does not attempt
auto-classification for nodes that you add manually in Client.

For details, refer to Managing Node Data in Managing NerveCenter.

m Manually classify SNMP version for one or more nodes. NerveCenter attempts to classify one or
more nodes at the highest level up to the maximum version specified in NerveCenter Administrator.

For details, see Classifying the SNMP Version for One or More Nodes Manually on page 109 in
Managing NerveCenter.

m Manually classify all nodes in the Client’s Node List. NerveCenter attempts to classify all nodes in
its database at the highest level up to the maximum version specified in NerveCenter
Administrator.

For details, see Classifying the SNMP Version for All Nodes Manually on page 110.

Note: You can also manually confirm the SNMP version defined for a node. When you use this option,
NerveCenter attempts to poll a node using the version specified for the node. The maximum classified
version configured in NerveCenter Administrator has no effect on this operation. For details, see
Confirming the SNMP Version for a Node on page 111.

If NerveCenter classifies a node as SNMPv3, NerveCenter assigns a default security level for
communicating with the node. The default security level is NoAuthNoPriv. For details about changing the
security level, see Changing the Security Level of an SNMPv3 Node on page 102.

Caution: If NerveCenter fails to classify the node, then the version of the node is set to “Unknown.”
NerveCenter does not poll nodes or process traps from nodes whose SNMP version is Unknown.

NerveCenter 6.2 Designing and Managing Behavior 107
Models

Configuring SNMP Settings for Nodes

For more information about classification, see also:

m When NerveCenter Classifies Node SNMP Versions on page 114

m How NerveCenter Classifies a Node SNMP Versions on page 115
SNMP version classification is also important for using the GetBulk function.

You can disable NerveCenter’s per-node default of using GetBulk. To block NerveCenter from using
GetBulk for a node, find it in the Node List, open it and select the ‘SNMP’ tab. There, uncheck the ‘Use
GetBulk’ checkbox and then select Save.

.)
| NERVECENTER:Node Definition : Cisco-WirelessVPNRouter | = || & |[ne3m]

Node | Alams | Alarm Instances | MIB Query | Parents SNMP IICMP | Tret] ®

SNMPvZe ~ Classify Polling

Use Defaults v
Port 161 Jfudp UseGetBuk [Rety

Interval

SNMP v1/v2c [seconds)

Read Community |Dub|iC Attempts

‘white Community | public Timeout

| [seconds)
SNMP v3
Select User ’—j Security Level [—:‘
Local User
User Mame

Authentication

Privacy

Context |
Engine ID | Parse | Fetch
Status |
Save | Cancel | Undo | Motes ‘ Help ‘

NerveCenter utilizes the SNMP getbulk operation. Getbulk operations allow NerveCenter to retrieve
large portions of a table in a single response, instead of making repeated getnext requests. This
increases NerveCenter's polling performance on nodes possessing MIB tables with a large number of
instances, such as a managed device with many ports or interfaces (for example, multiple ifEntry table
rows).

You do not need to make any changes to take advantage of the getbulk functionality, though certain
criteria must be met for NerveCenter server to use getbulk instead of getnext.

m Getbulkoperations are used when a polled Node's SNMP version is classified as v2c or v3.
m The Property being polled must be associated with a MIB table (as opposed to a singleton object).
m The Property Group's Property must not have a Filter applied.

m Instance-scope and Suboject-scope alarm instances that have transitioned out of ground utilize
standard individual polls to allow flexible state transitions for each unique instance.

108 Designing and Managing Behavior NerveCenter 6.2
Models

Classifying the SNMP Version Configured on Nodes

With these restrictions in mind, you can employ several techniques to optimize the performance of
NerveCenter polling:

m Classify Node versions as at least v2c if they support that level of SNMP
m Utilize Property Filters only when eliminating a large range of instances from a large table

m Design Alarm models that do not transition out of ground for trivial events.

Classifying the SNMP Version for One or More Nodes Manually

Follow the procedure below to classify the SNMP version for one or more nodes manually. When using
this method, NerveCenter attempts to classify the selected nodes at the highest level up to the maximum
version specified in NerveCenter Administrator.

TO CHANGE THE AUTHENTICATION PROTOCOL USED TO MANAGE AN SNMPV3 NODE

1. From the client’'s Admin menu, select Node List.
The Node List window is displayed.

" 5

! NERVECENTER:Node List El (o]
Node Count : B I Search
M Name | IP Address | Group | Severityl Managed | Suppressed l SNMP Version l E& IP Addresses
3 Cisco-WirelessVPNRouter 192.168.1 Managed No v2c
1 LAPTOP-7J6KAICD 192.168.1 Managed Managed No vl
2 Linksys-Router 192.168.1 Unmanaged Managed No
4 nervecenter 192.168.1 Delete Managed No vl
5 HP-Photosmart-6520 192.168.1 Managed No vl
6 nc6200-centosb-g 192.168.1 Property Group No No vl
Auto Delete
< No Auto Delete >
Suppress
pEn MNew Mote Help
| Unsuppress J _,
Format EnginelD [Tracing Off
Test Version
Version b
Authentication
Classify
Security Level
Open
Copy
Reset Alarms
NerveCenter 6.2 Designing and Managing Behavior 109

Models

H Configuring SNMP Settings for Nodes

2. Inthe Node List window, select New if defining a new node, or select the node and then Open to
change an existing node.

The Node Definition window appears.

3. Right-click the node or nodes you want to classify and select Classify.

NerveCenter attempts to classify the SNMP version on the nodes up to the highest level specified
in NerveCenter Administrator.

Classifying the SNMP Version for All Nodes Manually

NerveCenter Client can attempt to classify nodes’ SNMP versions, at the highest level to the maximum
specified in NerveCenter Administrator.

TO CLASSIFY NODES MANUALLY

m From the client’s Admin menu, select Classify All Nodes.

NerveCenter attempts to classify the SNMP version on all nodes up to the level specified.

110 Designing and Managing Behavior NerveCenter 6.2
Models

Classifying the SNMP Version Configured on Nodes

Confirming the SNMP Version for a Node

You can verify the SNMP version that NerveCenter has configured for any particular node, which is useful
when manually defining a node to be added to the node list.

With this option, NerveCenter attempts to poll the node using the version specified; the maximum
classified version configured in NerveCenter Administrator does not apply to this classification method.
For example, if the maximum classification value is v2c and you have set the version for a particular node
to SNMPv3, you can still confirm SNMPv3 communication using this method.

TO CONFIRM A NODE’S SNMP VERSION

1. From the client's Admin menu, select Node List.
The Node List window is displayed.

B NERVECENTER:Node List E=REER <=

Node Count : B || Search

ID I Name l IP Address Group I Severity I Managedl Suppressed | SNMP Version I gq [P Addresses
3 Cisco-WirelessVPNRouter 192.168.1.220 Mib-II Inform Managed No vic 192.168.1.131
1 LAPTOP-7J6KAICD 102.168.1.184 lcmp Normal Managed No vl

2 Linksys-Router 192.168.1.1 Mib-II Normal Managed No vl

4 nervecenter 192.168.1.191 NerveCenter Normal Managed No vl

5 HP-Photosmart-6520 192.168.1.242 lcmp Normal Managed No vl

& ncb200-centosb-g 192.168.1.239 NerveCenter Normal No No vl

< >

Open | New Notes Close Export... Help
Format EnginelD [

NerveCenter 6.2 Designing and Managing Behavior 111
Models

Configuring SNMP Settings for Nodes

2. Inthe Node List window, select New if defining a new node, or select the node and then Open to
change an existing node.
The Node Definition window appears.

3. Select the MIB Query tab.

Y NERVECENTER:Node Definition : Cisco-WirelessVPNRouter | — | (= [t

Node | Alarms] Alam Instances MIB Query | F'arenls' SNMF‘] ICMP] Tre 4 I 4

IP Address [132168.1.220 =l
Base Object (* Isystem LI
0iD c |

Query | Stop Export I

No query running.

— Query Results

#l Name I Type | Value
Save Cancel Unda Notes Help
112 Designing and Managing Behavior NerveCenter 6.2

Models

Classifying the SNMP Version Configured on Nodes

4. Select the Query button.

B NERVECENTER:Node Definition : Cisco-WirelessVPNRouter | = || =) |[s2m]

Node | Alarmsl Alam Instances MIB Query | Parentsl SNMPI ICMP I Tre d | L4

IP Address [152.1681.220 B
Base Object |$yslem LI
oID o

Query | Export... |

Query completed. 26 Responses. SNMPv2c. Community “public’

Query Results

#J Name | Type | Value o
1 system.sysD.. Octet.. Wireless-N Gigabit Security Rout.

2 system.sysO.. Objec.. 1.3.6.1.4.1.9.6.1.22.250.2

3 systemsysU.. Time.. 909810471

4 system.sysC.. Octet.. N.Bergeron

5 system.sysN.. Octet.. cisco-wrvsdd00n

6 system.sysl.. Octet.. Office

7 system.sysS.. Integ.. 72

8 system.sysO.. Time.. 18

9 sysOREntry.s.. Objec.. 1.3.6.1.2.1.31

1.. sysOREntry.s... Objec.. 1.3.6.1.6.3.1 v
< >
Save | Cancel | Undo | Notes | Help |

NerveCenter attempts to communicate with the node using the SNMP version specified in the
SNMP Version field on the SNMP tab. See Testing SNMPv1 and v2c¢ agents below and Testing
SNMPv3 agents below for details.

Testing SNMPv1 and v2c agents

To test the agent on a node configured in NerveCenter with SNMP version 1 or 2c, the Test Version poll
sends the agent an SNMP GetRequest for the system description, sysDescr.0. This operation is similar
to the GetRequest issued by clicking the Get button on the Query Node tab of a node’s definition window.

Testing SNMPv3 agents

To test the agent on a node configured in NerveCenter with SNMPv3, the Test Version poll issues
GetRequest messages for the following:

m Engine ID for a node
m Boots/timeticks if the security level on the node is either AuthNoPriv or AuthPriv

m sysObjectlD for the node

NerveCenter 6.2 Designing and Managing Behavior 113
Models

H Configuring SNMP Settings for Nodes

To establish communication, NerveCenter sends a GetRequest for the node’s sysObjectID. Before
sending this GetRequest, however, NerveCenter first requires engine information such as enginelD,
engine boots, and time ticks. If this information is not known to NerveCenter, NerveCenter cannot send a
request to the agent.

NerveCenter must obtain engine information in the following cases:
m When the SNMPv3 node has an 'v3InitFail' error status

This status indicates that the enginelD for that node is not available to NerveCenter. NerveCenter
first obtains the engine ID. Then, if the security level for the node is other than NoAuthNoPriv,
NerveCenter obtains the boots and time ticks.

m When the SNMPv3 node has an error status of 'TimeSyncFail.'

This status indicates that the engine boots and time ticks for that node are not available to
NerveCenter.

m When someone has changed the Authentication and Privacy passwords in NerveCenter
Administrator but did not update the passwords on the SNMPv3 agent.

You must change the passwords on the agent and run the TestVersionPoll to restore proper
communication.

After obtaining the engine information, NerveCenter can send the sysObjectID request.

When NerveCenter Classifies Node SNMP Versions

There are two main ways that NerveCenter classifies nodes:

m On demand—You can issue a classify command in NerveCenter Client to classify one, several, or
all nodes in the database.

m Automatically—You can set up auto-classification in NerveCenter Administrator. Then, when
NerveCenter adds nodes to its database (discovered from a trap, added from a network
management platform, or imported from another NerveCenter), any nodes without version
information are classified at the highest possible level. NerveCenter does not attempt auto-
classification for nodes that you add manually in Client. Refer to SNMP Auto and Manual
Classification Settings in Managing NerveCenter for details about auto-classification.

When you enable auto-classification, NerveCenter attempts auto-classification in the following
instances:

m A node is added through a node file either from importutil or from the Client, and the node does not
have a version or has the version “Unknown.” This would happen, for example, if you were
importing the node from a previous version of NerveCenter.

m A node is imported from another NerveCenter Server, and the node does not have a version or has
the version “Unknown.”

m A node is added from a trap, and the node’s version is not v3. NerveCenter needs to verify whether
these nodes are v1 or v2. If the trap indicates v3, NerveCenter does not need any further
verification.

114 Designing and Managing Behavior NerveCenter 6.2
Models

Classifying the SNMP Version Configured on Nodes H

m NerveCenteris co-resident with network management platform and the platform sends nodes to
NerveCenter. All nodes added from a NMP are v1 by default.

Note: NerveCenter does not attempt to auto-classify nodes added manually in Client.

Disabling auto-classification in Administrator prevents auto-classification for all these cases. If you
choose to disable auto-classification, bear in mind that NerveCenter does not poll nodes whose SNMP
version is unknown. (You can still classify nodes manually in NerveCenter Client using the available
commands.)

How NerveCenter Classifies a Node SNMP Versions

There are two main ways that NerveCenter classifies nodes:

m Manually—You can issue a classify command in NerveCenter Client to classify one, several, or all
nodes in the database.

m Automatically—NerveCenter can be configured to classify nodes when they are added to its
database (discovered from a trap, added from a network management platform, or imported from
another NerveCenter). Refer to SNMP Auto and Manual Classification Settings in Managing
NerveCenter for details about auto-classification.

Following is a summary of classification.

Each time NerveCenter attempts to classify a node, NerveCenter sends a series of classification
requests (GetRequest messages) to the node. NerveCenter classifies the node based on the responses
to these requests. Each request corresponds to an SNMP version—either v1, v2c, or v3.

While classifying a node, NerveCenter attempts to detect the maximum supported version on the agent
up to a maximum specified version, which you can configure in NerveCenter Administrator. So, for
example, if you set a maximum classification version of v2c, NerveCenter never attempts to classify
nodes any higher than v2c. (However, you can manually specify any version for a node and then test
communication with the agent using that version. See Manually Changing the SNMP Version Used to
Manage a Node on page 99 for details.)

Based on the response to its messages, NerveCenter changes its SNMP version setting for the node.

Caution: Note the following about node classification: 1) If NerveCenter fails to classify the node, then
the version of the node is set to “Unknown.” NerveCenter cannot poll a node with an unknown version;
2) A node must have correct version information, either supplied manually by the user or obtained via
classification, before NerveCenter can successfully poll the node or process a trap from the node.

NerveCenter 6.2 Designing and Managing Behavior 115
Models

H Configuring SNMP Settings for Nodes

116 Designing and Managing Behavior NerveCenter 6.2
Models

NerveCenter Support for SNMPv3

SNMP version 3 is an extension of SNMP that addresses security and administration.

Overview of NerveCenter SNMPv3 Support

NerveCenter support for SNMPV3 includes new data types and enhanced security for communication.
SNMP v1 and v2c rely on community names for authentication. SNMPv3 enhances authentication and
expands its services to include privacy. SNMPv3 also expands on the earlier concept of MIB views to
control access to management information by using a View-based Access Control Model (VACM) to
determine a user’s access level for viewing MIB data.

Following are highlights of NerveCenter support for SNMPv3:

m Before NerveCenter can discover SNMPv3 agents on nodes, the nodes must have an initial user
configured for discovery.

See Configuring an Initial User for Discovering an SNMPv3 Agent in Managing NerveCenter.

Refer to Confirming the SNMP Version for a Node on page 111 for details about testing
communication with a node using the NerveCenter Test Version poll.

m NerveCenter communicates (sends polls) with SNMPv3 agents on behalf of a specified
NerveCenter user (the global User #1 or User #2 accounts, or a node-specific user). Before
NerveCenter can poll SNMPv3 agents, the agents must be configured to support the user, security
level, and potentially the context.

See Configuring an SNMPv3 Agent for NerveCenter in Managing NerveCenter.
See Configuring SNMPv3 Security Settings in Managing NerveCenter.

m NerveCenter supports three security levels for communicating with SNMPv3 agents. By default,
NerveCenter sets the security level to noAuthNoPriv, which means the v3 agent sends and
receives messages without authentication or encryption.

See NerveCenter Support for SNMPv3 Security on the next page for details about security.

Refer to Changing the Security Level of an SNMPv3 Node on page 102 for details about setting a
node’s security level.

m The authentication and privacy protocols require specialized authentication and privacy keys,
which are generated from the corresponding passwords. You can change these passwords in
NerveCenter, thereby changing the keys.

See NerveCenter Support for SNMPv3 Digest Keys and Passwords on page 119.

See Configuring SNMPv3 Security Settings in Managing NerveCenter.

NerveCenter 6.2 Designing and Managing Behavior 117
Models

n NerveCenter Support for SNMPv3

m NerveCenter supports the HMAC-MD5-96 (MD5) or HMAC-SHA-96 (SHA) protocols for
authentication on a per-node basis, and DES, 3-DES, AES-128, AES-192, or AES-256 as privacy
protocols. If you change an agent’s authentication protocol, you must likewise configure
NerveCenter to use that protocol to manage the corresponding node in its database.

Refer to Changing the Authentication Protocol foran SNMPv3 Node on page 105 for details about
changing the authentication protocol used by NerveCenter for an agent.

m A node must have SNMP version information before NerveCenter can poll or process a trap from
that node. NerveCenter can discover the node version both automatically or manually. If auto-
classification is enabled, then a newly added node (e.g., discovered from a trap, added from a
platform such as HP OpenView, imported from another NerveCenter installation) will be classified
at the highest level possible.

Note: NerveCenter auto-classification is disabled by default. You must enable it before NerveCenter
can classify nodes added to its database.

See SNMP Auto and Manual Classification Settings in Managing NerveCenter.

Refer to Classifying the SNMP Version Configured on Nodes on page 107 for details about
classifying nodes manually.

m SNMPv3 operations are logged to a file so that you can follow the progress of v3 activities. The log
includes information about activities (e.g., a key change initiated by the user) as well as errors that
occur while NerveCenter attempts to perform the activities.

See Viewing the SNMPv3 Operations Log on page 120.

See SNMP Error Status on page 124 for information about SNMPv3 errors.

NerveCenter Support for SNMPv3 Security

SNMPv3 enables devices to communicate in a secure fashion using message authentication to validate
users and encryption to provide communication privacy. SNMPv3 provides a User-based Security Model
(USM) to establish authentication and secrecy.

SNMPv3 nodes can have one of the following security levels:

m NoAuthNoPriv — Neither message authentication nor encryption is used while communicating
with the agent. No passwords are required.

m AuthNoPriv — Message authentication is used without encryption while communicating with the
agent. An authentication protocol and password are required to be set up in agreement on the
device and within NerveCenter's definition for the respective node. In NerveCenter The
authentication protocol and password to be used can be set to either of the global protocols and
passwords User #1 or User #2, or can be set on a per-node basis.

m AuthPriv — Both authentication and encryption are used when communicating with the agent.
Both the authentication and privacy specifics are required to be set up in agreement on the device
and within NerveCenter’s definition for the respective node. In NerveCenter the protocols and
passwords can be set to either of the global User #1 or User #2 definitions, or can be set on a per-
node basis.

118 Designing and Managing Behavior NerveCenter 6.2
Models

Overview of NerveCenter SNMPv3 Support n

Communication between any two SNMPv3 entities takes place on behalf of a uniquely identified domain
user. The security level used for this communication defines the security services — message
authentication and encryption — used while exchanging data. NerveCenter communicates with SNMPv3
nodes on behalf of the NerveCenter poll user in the poll context.

If you do not specify a security level foran SNMPv3 node, NerveCenter uses the NoAuthNoPriv security
level by default, which means that message authentication and encryption services are not used for data
exchange with the node.

Note: The NerveCenter poll users (User #1 and User #2), contexts, and the authentication and privacy
passwords can be changed in NerveCenter Administrator.

The node-specific information (such as version, security level, and authentication protocol) used to poll
each SNMPv3 node is configured in NerveCenter Client. A node-specific poll user and associated
credentials can be managed from the SNMP tab on the Node screen (see "Changing the Security Level
of an SNMPv3 Node" on page 102).

NerveCenter Support for SNMPv3 Digest Keys and Passwords

SNMPv3 allows two devices to communicate in a secure fashion using message authentication and
encryption to ensure secrecy. In any SNMPv3 communication, one of the two communicating entities
plays a role of authoritative entity for the communication, and communication is performed on behalf of a
unique user within the management domain.

The sender of a secure message attaches a code, or digest, for authentication and encrypts the message
to ensure privacy. To generate this digest, the sender uses an authentication key at the authoritative
entity of the user on whose behalf communication takes place. Similarly, to encrypt a message, the
sender uses a privacy key at the authoritative entity of the user on whose behalf communication takes
place. These keys are generated from the authentication password and privacy password, respectively.

SNMPv3 specifications have defined a localized key-generation scheme. For every user, the
authentication key at every SNMPV3 entity is a function of the snmpEnginelD of that entity, the user’s
authentication password, and the authentication protocol. For every user, the privacy key at every
SNMPVv3 entity is a function of the snmpEnginelD of that entity, the user’s privacy password, and the
privacy protocol. NerveCenter supports this localized key-generation scheme.

NerveCenter communicates with SNMPv3 nodes on behalf of a NerveCenter user (User #1, User#2, or a
local, node-specific user). NerveCenter needs to know the authentication and privacy passwords for this
user to generate the keys required for secure communication. Whenever NerveCenter learns the
snmpEnginelD of a newly discovered SNMPv3 agent with a security level other than NoAuthNoPriv,
NerveCenter generates these keys for the NerveCenter poll user on that agent:

m [f authentication is required (a security level of AuthNoPriv is specified for the node), the sender
uses the authentication key to generate the digest for the message, which is appended to the
message.

m If encryption is required (a security level of AuthPriv is specified for the node), the sender uses the
privacy key to generate the digest for the message. For this security level, only the privacy digest is
required; privacy assumes authentication, and you cannot have encryption without authentication.

NerveCenter 6.2 Designing and Managing Behavior 119
Models

n NerveCenter Support for SNMPv3

On receipt of a secure message, a receiver does the following:
m Separates the message from the digest (authentication or privacy).
m Uses the corresponding key from its local store to generate the message’s local digest copy.

m Compares the local digest with the one received in the message. If the two digests match, the
recipient authenticates or decrypts the message using the corresponding local key. If they do not
match (indicating a lack of authentication), the recipient discards the message.

m The recipient reads and processes the message.

Viewing the SNMPv3 Operations Log

Whenever a NerveCenter Server receives a request foran SNMPv3 operation or an error occurs while
attempting to perform an SNMPv3 operation (e.g., v3 initialization fails), the NerveCenter Server logs a
message to V3Messages.log, which resides in the NerveCenter installation log directory on the
NerveCenter Server host machine. The file contains messages about SNMPv3 operations and errors
resulting from requests that originate with any connected NerveCenter Clients, Administrators, and
Command Line interfaces.

After logging the error, the NerveCenter Server notifies all connected NerveCenter Clients and
Administrators in the following ways:

m If you are logged on to the NerveCenter Client or Administrator that initiated the operation that
caused an error condition, NerveCenter displays the error that was logged.

m If you are logged on to a NerveCenter Client or Administrator that did not initiate the error condition,
ared icon appears in the status bar; double-click the icon to display the NerveCenter Server with
the SNMPv3 error. If your Client or Administrator is connected to more than one Server, the dialog
box lists all servers that currently have an error condition.

When your NerveCenter Client or Administrator displays a dialog box with an error condition, you can do
either of the following:

m Acknowledge the error condition by “signing the log.” When you sign the log, NerveCenter notes
that in the log file and changes the red icon back to green for all connected Clients and
Administrators.

m Dismiss the dialog box without acknowledging the error condition, in which case only the icon in
your Client or Administrator turns green. The icon remains red for all other connected Clients and
Administrators to signal that the NerveCenter Server has an unacknowledged/unsigned error.
Moreover, the Server does not indicate acknowledgment in the log file.

You must have administrator rights to initiate an SNMPv3 operation that can result in an error or to
acknowledge a logged error condition. If you are logged on with only user rights, you can dismiss the error
dialog box but not acknowledge an error condition.

Whether you acknowledge or dismiss the error, all messages remain in the V3Messages.log.
For more information, refer to the following topics:
m "Signing a Log for SNMPv3 Errors Associated with Your Client" on the facing page
m "Signing a Log for SNMPvV3 Errors Associated with a Remote Client or Administrator" on page 122

m "Viewing the SNMPv3 Operations Log" on page 123

120

Designing and Managing Behavior NerveCenter 6.2
Models

Viewing the SNMPv3 Operations Log n

Signing a Log for SNMPv3 Errors Associated with Your Client

Whenever an SNMPV3 operation is requested or an error occurs while attempting an SNMPv3 operation,
the NerveCenter Server logs a message to V3Messages.log. If you are logged in to the NerveCenter
Client that initiated the logged request, NerveCenter displays a dialog box with that error.

Error In Server! X
The following servers have enors. Please check their log files for details.

Check the servers to sign their log files and dismiss the errors.

NERVECENTER

ok] vee |

Figure 23: Operations Log Error in Server Dialog Box for Your Client

Users with administrator rights can acknowledge a logged condition from NerveCenter Client by signing
the Operations log. Signing the log causes the icon to turn green in all connected Clients/Administrators.

You can also dismiss the dialog box without acknowledging the error condition. If you are logged on with
user rights rather than administrator rights, your only option is to dismiss the dialog box; you cannot sign
the Operations log..

TO SIGN THE OPERATIONS LOG

1. Afterviewing the message that NerveCenter displays on your screen, check the Sign the log and
dismiss errors checkbox.

2. Click OK.

The icon in the Status Bar turns green for all Clients or Administrators connected to the designated
NerveCenter Server. You can later view this message again in the Operations log.

This V3Messages.log file resides in the NerveCenter installation log directory. The file can be viewed in a
text editor or word processor.

TO DISMISS THE ERROR IN SERVER DIALOG BOX

m Click OK without checking the checkbox.

In this case, only the icon in your Client turns green. For all other connected Clients and
Administrators, the icon remains red and signals to those modules that the NerveCenter Server
has some error that remains unacknowledged.

NerveCenter 6.2 Designing and Managing Behavior 121
Models

n NerveCenter Support for SNMPv3

Signing a Log for SNMPv3 Errors Associated with a Remote Client or
Administrator

Whenever an error occurs while attempting an SNMPv3 operation, the NerveCenter Server logs a
message to V3Messages.log. If you are logged on to a remote NerveCenter Client (one that did not
initiate the error condition), the status bar displays a red icon.

Users with administrator rights can acknowledge a logged condition from NerveCenter Client by signing
the Operations log. Signing the log causes the status icon to turn green in all connected
Clients/Administrators.

You can also dismiss the dialog box without acknowledging the error condition. If you are logged on with
user rights rather than administrator rights, your only option is to dismiss the dialog box; you cannot sign
the Operations log..

TO SIGN THE OPERATIONS LOG

1. Double-click the red icon in the Status Bar.
The Error In Server dialog box is displayed.

Error In Server! x
The following servers have enors. Please check their log files for details.

Check the servers to sign their log files and dismiss the errors.

MNERVECENTER

ok | Hep |

2. Check the NerveCenter Server or Servers for which you want to sign the log.
3. Click OK.

The icon in the Status Bar turns green for all Clients or Administrators connected to the servers
you checked. At a suitable time, you can open the Operations log and view the new message. This
file, named V3Messages.log, resides in the NerveCenter installation log directory. The file can be
viewed in a text editor or word processor.

122

Designing and Managing Behavior NerveCenter 6.2
Models

Viewing the SNMPv3 Operations Log

TO DISMISS THE ERROR IN SERVER DIALOG BOX

1. Double-click the red icon in the Status Bar.
The Error In Server dialog box is displayed.

2. Click OK without checking any of the checkboxes.

In this case, only the icon in your Client turns green. For all other connected Clients and
Administrators, the icon remains red and signals to those modules that the NerveCenter Server
has some error that remains unacknowledged.

Viewing the SNMPv3 Operations Log

Whenever an SNMPv3 operation is requested or an error occurs while attempting the operation, the
NerveCenter Server logs a message to the V3Messages.log file, which resides in the NerveCenter
installation log directory on the NerveCenter Server host machine.

The file can be viewed in a text editor or word processor. As NerveCenter adds more messages to the file,
the file continues to grow until you manually remove old messages.

The log entries resemble the following:
06/20/2017 09:26:29 Tue - Event ID : NC SERVER; Category ID : NC
THREAD V30P; /
Error Status : AutoClassifyFail; Error while communicating

using SNMPvl for 10.52.174.51 /
because of : NC PORT UNREACHABLE;

Following are the fields in the log:

Table 12: Fields in the Operations Log

Field Description

Date/Time | Date and time the record was logged. The format is month/day/year, hour/minute/second,
and day (for example, 12/16/2017 11:32:29 Sat).

EventID This always NC_SERVER.

CategoryID | Name of the thread where the event occurred.

Error One of several error status strings. See Error Status for a description of SNMPv3 error
Status status messages and which ones cause polling to stop for a node.
Error Details of the error or operation.
Description
NerveCenter 6.2 Designing and Managing Behavior 123

Models

n NerveCenter Support for SNMPv3

SNMP Error Status

When NerveCenter is unable to complete an SNMP operation on a node, the error status is displayed in
the Node List (NerveCenter Client and Web Client) and in the SNMP tab of the node’s definition window
(NerveCenter Client). Figure 24 shows the Node List window in the Client.

r

3 NERVECENTER:Node List o & =

Mode Count: 4 || Search

E’ Name IP Address { Group[Severity I Man... [e | S [Error Status I § IP Addresses

1 nervecenter 192.168.1.191 Ilcmp Normal Man.. No vl 192.168.1.191

2 Cisco-Switch 192.168.1.220 Mib-ll Inform Man.. No wv2c

3 Linksys-Ro.. 192.168.1.1 Mib-ll. Normal Man.. No vl AutoClassif...

4 LAPTOP-7).. 192.168.1.184 Ilcmp MNormal Man.. No vl

< >
Open | New Motes Close Export... Help

Format EnginelD [

Figure 24: Node List Window

Though most of the error strings correspond to SNMPv3 errors, some are applicable for v1 and v2c errors
as well. These are noted in the descriptions below.

Sometimes error conditions can be corrected simply by running the SNMP Test Version poll. Others may
require configuration changes to the node's SNMP agent. After changing the configuration of an SNMP
agent, always test communication with the node in NerveCenter Client prior to polling the node.

The following list describes each possible SNMP error status.

m V3InitFail — An attempt to get the snmpEngine ID of an SNMPv3 agent failed or the SNMPv3
configuration defined for that node is causing a failure at the SNMPv3 communication layer. This
can occur either when NerveCenter first attempts to poll the node using the SNMPv3 configuration
or at any point when the SNMP agent changes its SNMPv3 configuration. For all of these cases,
the V3InitFail is augmented by one of the following values in the SNMPv3 Status field
(NerveCenter Client):

o ConfigurationError — The node’s SNMP definition is incomplete with respect to its Security
Level. This status is discovered and reported by NerveCenter before issuing an SNMPv3
request to an SNMP Agent.

Operator intervention is required. The node’s SNMP v3 definition must contain a
User Name regardless of the Security Level — AuthNoPriv requires an
Authentication Protocol and Password; AuthPriv requires Authentication and
Privacy Protocols and passwords for each.

o UnknownUsername — The SNMP Agent reports that the SNMPv3 User Name being sent by
NerveCenter is not one of the user names that it has been configured to handle.

o UnknownContext — The SNMP Agent reports that the SNMPv3 Context being sent by
NerveCenter is not appropriate. Many SNMP Agents do not report this value, eveniifit is the

underlying issue. Instead, the SNMP Agent may not issue any response and the operation will
time out.

124 Designing and Managing Behavior NerveCenter 6.2
Models

SNMP Error Status n

o UnavailableContext — The SNMP Agent reports that the SNMPv3 Context being sent by
NerveCenter is known but inapplicable to the operation (poll, discovery, or classification) being
attempted. Many SNMP Agents do not report this value, even if it is the underlying issue.
Instead, the SNMP Agent may not issue any response and the operation will time out.

o UnsupportedSecLevel — The SNMP Agent reports that it cannot handle the Security Level
defined in a request issued to it by NerveCenter.

o UnknownEnginelD — Either NerveCenter's SNMP Stack or the SNMP Agent is reporting an
issue with the snmpEnginelD used for SNMP v3 communication. This can occur if the
snmpEnginelD is changed on the SNMP Agent during polling.

o IncorrectAuthPasskey — The SNMP Agent reports that the Authentication passkey (digest)
being issued by NerveCenter is not correct. This generally occurs in one of two cases: 1) An
incorrect password was entered either on the SNMP Agent or in NerveCenter, or 2) The
password was entered correctly at both ends, but the selected Authentication protocol is
mismatched between the SNMP Agent and NerveCenter.

m ClassifyFail — An attempt to obtain the node’s SNMP version failed during a classification attempt.
The node’s version will be set to “Unknown” and it will not be polled. You can manually change the
version or try to classify the node again.

m AutoClassifyFail — An auto-classification attempt failed to obtain the node’s version. The node’s
version will be changed to “Unknown” and it will not be polled. You can manually change the version
or try to classify the node again.

Note: ClassifyFail and AutoClassifyFail status values are not limited to SNMPv3 agents. If
NerveCenter attempts to classify an agent and fails for some reason (e.g., the agent is down),
NerveCenter will mark the node with ClassifyFail or AutoClassifyFail regardless of the SNMP version
supported on the agent.

m TestVersionFail — At attempt to poll the SNMP agent failed. The Test Version poll sends a
GetRequest message for a node based on the SNMP version configured for that node.

If the Test Version pall fails, polling will not happen for this node. In that case, you may need to
reconfigure the agent on this node. Then, try running the Test Version poll again (from a node’s
definition window or the right-click menu in the node list).

Note: TestVersionFail is not limited to SNMPv3 agents. You can test the version of any SNMP agent
with this feature.

m Configuration Mismatch — Indicates an SNMP trap was received but there is some problem with
the configuration on the agent. If NerveCenter is unable to decode a trap due to some unspecified
reason (e.g., unsupported authentication or privacy parameters on the agent or an incorrect
NerveCenter user name), NerveCenter can receive the trap and add the node to its database if
configured to discover nodes via traps. After adding the node to its database, however,
NerveCenter assigns an error status of Configuration Mismatch.

Note: Any error that occurs during trap decoding always results in a Configuration Mismatch error.

NerveCenter 6.2 Designing and Managing Behavior 125
Models

n NerveCenter Support for SNMPv3

m TimeSyncFail — An attempt to get the node’s snmpEngine boots/timeticks failed. Polling will
continue for this node. If any polls successfully reach the node, the node responds with an “Out of
time window” report PDU that contains the correct boots/timeticks, and NerveCenter can then
update this information for the node. For the initial polls that generate the report PDU, the SNMP_
NOT_IN_TIME_WINDOW trigger will be fired.

> You can ignore this message, which simply indicates that NerveCenter is getting in sync with
that node. You can recover from this error status by right-clicking the node in the Node List and
selecting v3TestPoall. If the agent corresponding to the node is up, the test poll should be
successful and clear the error message. The SNMPv3 Status field will be set to the following:

m NotinTimeWindow — This is the reply sent by the SNMP Agent or declared by NerveCenter's
SNMP stack upon investigating a request or response PDU wherein the SNMPv3 timestamp
handling shows a time sync failure.

Using the SNMP Test Version Poll

When configuring an SNMP agent or if you encounter problems polling a node, you can test whether
NerveCenter can communicate with the agent. NerveCenter provides an SNMP test poll that verifies
communication with the node using the SNMP version specified for the node. If the agent is configured for
SNMPv3, this poll helps you determine whether the agent is correctly configured for communication with
NerveCenter.

If the poll fails to establish a connection for the specified SNMP version, a TestVersionFail error is
displayed for the node, and polling will not happen for this node.

Testing SNMPv1 and v2c Agents

To test the agent on a node configured in NerveCenter with SNMP version 1 or 2¢, the Test Version poll
sends the agent an SNMP GetRequest for the system description. This operation is similar to the
GetRequest issued by clicking the Get button on the Query Node tab of a node’s definition window.

Testing SNMPv3 Agents

To test the agent on a node configured in NerveCenter with SNMPvV3, the Test Version poll issues
GetRequest messages for the following:

m Engine ID for a node
m Boots/timeticks if the security level on the node is either AuthNoPriv or AuthPriv
m SysObjectID for the node

To establish communication, NerveCenter sends a GetRequest for the node’s sysobjectID. Before
sending this GetRequest, however, NerveCenter first requires engine information such as enginelD,
engine boots, and time ticks. If this information is not known to NerveCenter, NerveCenter must send a
request to the agent.

126 Designing and Managing Behavior NerveCenter 6.2
Models

Using the SNMP Test Version Poll

NerveCenter must obtain engine information in the following cases:

m When the SNMPv3 node has an 'v3InitFail' error status. This status indicates that the enginelD for
that node is not available to NerveCenter.

m NerveCenter first obtains the engine ID. Then, if the security level for the node is other than
NoAuthNoPriv, NerveCenter obtains the boots and time ticks.

m When the SNMPv3 node has an error status of 'TimeSyncFail.' This status indicates that the
engine boots and time ticks for that node are not available to NerveCenter.

m When someone has changed the Authentication and Privacy passwords in NerveCenter
Administrator but did not update the passwords on the SNMPv3 agent. You must change the
passwords on the agent and run the V3TestPoll to restore proper communication.

After obtaining the engine information, NerveCenter can send the SysObjectID request.

How To Use the Test Version Poll

Follow the steps below to verify communication with a node using the Test Version poll.

To use THE SNMP TEST VERSION POLL

1. From the client’'s Admin menu, select Node List.
The Node List window is displayed.

B NERVECENTER:Node List =N Ech I~

Node Count : [|| Search

ID I Name l IP Address Group I Severity I Managed I Suppressed | SNMP Version I Eq IP Addresses
3 Cisco-WirelessVPNRouter 192.168.1.220 Mib-II Inform Managed No vac 192.168.1.191
1 LAPTOP-7JGKAICD 192.168.1.184 lemp Normal Managed No vl

2 Linksys-Router 192.168.1.1 Mib-Il Normal Managed No vl

4 nervecenter 192.168.1.191 NerveCenter Normal Managed No vi

5 HP-Photosmart-6520 192,168.1.242 lcmp Normal Managed No vl

6 nc6200-centosb-g 192.168.1.239 NerveCenter Normal No No vl

< >

Open | New Nates Close Export... Help
Format EnginelD [

NerveCenter 6.2 Designing and Managing Behavior 127
Models

n NerveCenter Support for SNMPv3

2. Right-click one or more nodes you want to test, then select Test Version.

Note: You can also issue this poll for a particular node by selecting the node in the list, clicking the
Open button, and selecting Test Version in the SNMP tab.

The Status Bar indicates the status of the test. If the test fails to establish a connection for the specified
SNMP version, a TestVersionFail error is displayed for the node.

128 Designing and Managing Behavior NerveCenter 6.2
Models

Defining Property Groups and
Properties

Recall that a property is a string, a property group is a container for properties, and property groups are
assigned to nodes. In general, before NerveCenter will use a behavior model to manage a node, the
following requirements must be met:

m The property of any poll in the behavior model must be in the node’s property group.

m The name of the base object used in the poll condition of any poll in the behavior model must be in
the node’s property group.

m The property of any alarm in the behavior model must be in the node’s property group.

This chapter concentrates on the mechanics of listing all existing property groups and properties, creating
properties, creating property groups, and assigning property groups to nodes. The chapter concludes with
a section that offers suggestions on how to use property groups effectively.

Listing Property Groups and Properties

When NerveCenter is first installed and the NerveCenter database is created, many property groups are
loaded into the database. Before you begin creating new property groups, you should review these
existing property groups and see if one of them meets your needs. Or perhaps you can create the property
group you need by modifying an existing property group.

The following sections explain how to display a list of property groups and how to display a list of the
properties in a property group:

m Listing Property Groups on the next page

m Listing Properties on page 131

NerveCenter 6.2 Designing and Managing Behavior 129
Models

Defining Property Groups and Properties

7

Listing Property Groups

TO DISPLAY A LIST OF THE PROPERTY GROUPS CURRENTLY DEFINED IN THE DATABASE FOR THE ACTIVE
SERVER

m From the client’s Admin menu, choose Property Group List.
This action causes NerveCenter to display the Property Group List window.

B NERVECENTER:Property Group List [-5 ==
~Property Groups———————————————— ~ Properties
icmpStatus
il nl-ping Property |
NCDefaultGroup
NerveCenter B I
Attributes:
New Property Group Mew Property
| b | oo | || _es | odee | e |
Save I Cancel | Undo | MIB to Gloq:l Help | 0ID To Property Group

The existing property groups are listed in alphabetical order in the Property Group list on the left
side of the window.

130 Designing and Managing Behavior NerveCenter 6.2
Models

Listing Property Groups and Properties

Listing Properties

You generally only display properties in the context of a property group. That is, you don’t view all the

properties defined in the database in a single list; you view a list of properties that belong to the same
property group.

TOLIST THE PROPERTIES IN A PROPERTY GROUP

1. From the client's Admin menu, choose Property Group List.
NerveCenter displays the Property Group List window.

| B NERVECENTER:Property Group List o] &] |

Property Groups Properties

atEntry

eagp
NCDefaultGroup egpMeighEntry
NerveCenter

icmp
fEntry
interfaces

ip

ip&ddiEntry

ipMetToMediaEntry

ipRouteE ntry

nl-ping v

Property |

Source I

Attributes:

New Property Group New Property
| I
ap | dd | Delete | dd | elete | e |

Save I Cancel | Undo | MIB to Gloq:l Help | 0ID To Property Group

2. Select a property group from the Property Group list.

All of the properties belonging to that property group are listed in alphabetical order in the Property
list on the right side of the window.

NerveCenter 6.2 Designing and Managing Behavior 131
Models

Defining Property Groups and Properties

Creating a Property

If you design a new behavior model and intend it to manage a group of nodes that don’t currently share a
unique property, you must create a property to serve as that unique property. Because you must create
this property in the context of an existing property group, you will probably need to create a property group
before you create your property, as described in Creating a New Property Group on the facing page. Once
you've created both the property group and the property, you can assign the new property group to the
nodes you want to manage with the new behavior model.

TO CREATE A PROPERTY

1. From the client's Admin menu, select Property Group List.
The Property Group List window is displayed.

B NERVECENTER:Property Group List [-2 ==

Property Groups Properties
icmpStatus

Mib-ll niping Property I

NCDefaultGroup

NerveCenter e I

Attributes:
New Property Group New Property
| | Delete | | | |
Save | Cancel | Undo | MIB to Gloupl Help | QID To Property Group

2. Select a property group from the Property Group list.

Often you select a property group that you've created expressly to contain your new property.
When you create the property, it will belong to this property group.

3. Type the name of the new property in the New Property text field.

Note: The maximum length for property names is 255 characters.

4. Select the Add button below the Property list.
The property is added to the Property list.

5. Select the Save button at the bottom of the window.

132 Designing and Managing Behavior NerveCenter 6.2
Models

Creating a New Property Group

Creating a New Property Group

As you develop your network management strategy, you may need to create new property groups. For
example, NerveCenter ships with a property group called Router that you can use to uniquely identify the
routers on your network. However, suppose you decide that while some of your behavior models should
apply to all routers, others should apply to either campus routers or backbone routers, but not both. To
handle this problem, you might create two new property groups, CampusRouter and BackboneRouter.
Each can be a copy of Router to which you add one unique property. For instance, you might add the
property campusRouter to the property group CampusRouter and the property backboneRouter to the

property group BackboneRouter. You could then assign these new property groups to the appropriate
nodes.

There are three methods of creating a property group:

m You can base the new property group on an existing one. In this case, you copy an existing property
group and then add one or more new properties to it. This is the technique used in the hypothetical
example above.

m You can create a property group that contains the names of the base objects in one or more MIB
definitions. This technique is useful when you add new hardware to your network and there is a
special MIB defined for that hardware. Basing the property group on this MIB ensures that you'll
meet one of the prerequisites for making the new device pollable: the base object used in the poll
condition will be in the property group.

m You can create an empty property group and add properties to it one by one. Obviously, this option
gives you the greatest flexibility, but it also is the most time consuming.

For further information on the three methods of creating a property group, see the sections listed below:
m Based on an Existing Property Group on the next page
m Based on the Contents of MIBs on page 135
m Adding Properties Manually on page 138

NerveCenter 6.2 Designing and Managing Behavior 133
Models

Defining Property Groups and Properties

7

Based on an Existing Property Group

Earlier, we mentioned that you could create a property group for campus routers by copying the predefined

property group Router, naming the copy CampusRouter, and adding to the new property group the unique
property campusRouter.

TO CREATE A NEW PROPERTY GROUP BASED ON AN EXISTING ONE

1. From the client's Admin menu, select Property Group List.
The Property Group List window is displayed.

B NERVECENTER:Property Group List

Property Groups Properties
:thDntry Property |
NCDefaultGroup egpMeighEntry
NerveCenter icmp v I
fEntry
interfaces Attributes:
ip
ip&ddiEntry
ipMetToMediaEntry
ipRouteE ntry
nl-ping v
New Property Group New Property
| dd | Delete | | elete | — |
Save I Cancel | Undo | MIB to Gloq:l Help | 0ID To Property Group

2. From the Property Group list, select the property group that you want to copy.
The properties contained in this property group are displayed in the Property list.

3. Type aname for the new property group in the New Property Group text field.

B NERVECENTER:Property Group List

Property Groups Properties
:thDntry Property |
NCDefaultGroup egpMeighEntry
NerveCenter icmp Source I
fEntry
interfaces Attributes:
ip
ip&ddiEntry
ipMetToMediaEntry
ipRouteE ntry
nl-ping v
New Property Group New Property
-|l-restricted I
Save | Cancel | Undo | MIB ta Eluuq Help 0ID To Property Group

134

Designing and Managing Behavior

Models

NerveCenter 6.2

Creating a New Property Group

Note: The maximum length for property group names is 255 characters.

4. Select the Copy button, located below the New Property Group text field.
Your new property group appears in the Property Group list and is highlighted.

5. Use the procedure explained in the section Creating a Property on page 132 to add one or more
new properties to your property group.

6. Select the Save button.

Based on the Contents of MIBs

If you purchase a new device that comes with a new vendor MIB, your NerveCenter administrator should
incorporate the new MIB into NerveCenter's compiled MIB so that you can take advantage of the new
information provided by the vendor. In addition, you should create a new property group that contains
properties for all the base objects in the new MIB. Why? Recall that a node’s property group must contain
properties for each of the MIB base objects you monitor on the node. If you want to poll the new device for
the values of the attributes belonging to the new MIB objects, you need properties for the new base
objects in the device’s property group.

TO CREATE A NEW PROPERTY GROUP BASED ON THE CONTENTS OF ONE OR MORE MIBS

1. From the client’s Admin menu, select Property Group List.
The Property Group List window is displayed.

B NERVECENTER:Property Group List [o] ==

Property Groups Properties
icpStatus

il nkping Property I

NCDefaultGroup

NerveCenter CTRNCE I

Attributes:
New Property Group New Property
| | Delete | | | |
Save I Cancel | Undo | MIB to Gloupl Help | 0ID To Property Group

NerveCenter 6.2 Designing and Managing Behavior 135
Models

7 Defining Property Groups and Properties

2. Select the MIB to Group button at the bottom of the window.
NerveCenter displays the MIB to Property Group window.

MIB to Property Group ? X
MIB Modules [81) Base Objects Attributes

APPLICATION-MIB A
ATM-MIB

ATM-SOFT-FYC-MIB

BGP4-MIE

BRIDGE-MIB

CHARACTER-MIB

DIAL-CONTROL-MIB
DNS-RESOLVER-MIB

DNS-SERVER-MIB

DSA-MIB

ENTITY-MIB

EtherLike-MIB v

Property Group Name

‘ 0K I Cancel | Help |

All of the MIBs in NerveCenter's compiled MIB are displayed in the MIB list. If you select one of

the MIBs in the list, the names of the base objects for that MIB are displayed in the Base Objects
list.

3. Select from the MIB list a MIB whose base objects you want to become properties in your new
property group.

4. Enter aname for your property group in the Property Group Name text field. Or leave there the
default name that NerveCenter has supplied.

MIB to Property Group ? X
MIB Modules [81) Base Objects [15) Attributes
DNS-SERVER-MIB ~ |hiDeviceEntry A
DSaMIB hrDiskStorageEnty
ENTITY-MIB hiFSEntry
EtherLike-MIB b etwork Entry
FDDI-SMT73-MIB hiPartitionE ntry
FRNETSERV-MIB hrPrinterE ntry
HOST-RESDURCES-MIB hrProcessorE ntry
HPOV-NNM-MIB hrStorage
IF-MIB hrStorageEntry
IMa-MIB hiSwinstalled
Mal-MIB hrSwinstalledE ntry
MI0X25-MIB v |hiSWRun v

Property Group Name
|HUST-HE50UHCES-MIB 0K I Cancel Help

5. Select the OK button.

The MIB to Property Group window is dismissed, and the name of your new property group
appears in the Property Group list in the Property Group List window. If you wanted to base your
property group on just one MIB, you're finished. If you want the new property group to contain the
names of the base objects from more than one MIB, continue with Step 6.

6. Inthe Property Group List window, select the MIB to Group button again.
The MIB to Property Group window is displayed.

136 Designing and Managing Behavior NerveCenter 6.2
Models

Creating a New Property Group

7. Inthe MIB to Property Group window, select from the MIB list another MIB whose base objects
you want included in your property group.
[BY NERVECENTER:Propert [=|[=@]=]

Property Groups -~ Properties

HOST-RESOURCES-MIB hiDeviceEnty A

lemp hiDiskStorageE ntry Fropeity |

Mib-l hiFSEntry

NCDefaultGroup hrNetworkEntry Source |

NerveCenter hiPartitionE ntry

J B = PHEY N et P |
MIB to Property Group ? X
MIB Modules [81) Base Objects (B) Attributes
DSA-MIB ~ |entdliasMappingEntry
entityGeneral
EtherLike-MIB entLogicalEntry
New Froperty Grou | £p 1 5MT73 MIB entLPMappingEntiy

HOST-RESOURCE |FRNETSERV-MIE entPhysicalContainsE ntry

HOST-RESOURCES-MIB entPhysicalEntry
Copy Ad |HPOY-NNM-MIB
—— |IF-MIB
L |IMA-MIB
MaU-MIB
Save MIOX25-MIB
Madem-MIB v
Property Group Mame

0ST-RESOURCESMIB | ook | Cancel | Help |

Enter in the Property Group Name field the same name you used in Step 4.
9. Select the OK button.

The Merge or Overwrite Property Group window is displayed.

Merge or Overwrite Property Group X

Group already exists.

Merge I Ovenwrite Cancel

10. Select the Merge button.

11. Repeat Step 6 through Step 10 if necessary.
12. Select the Save button.

NerveCenter 6.2 Designing and Managing Behavior

137
Models

Defining Property Groups and Properties

Adding Properties Manually

If you need a property group that contains only a few properties—maybe a couple of base object names
and one user-defined property—you can create an empty property group and then add properties to it by

hand.

TO CREATE AN EMPTY PROPERTY GROUP AND THEN ADD PROPERTIES TO IT

1. From the client's Admin menu, select Property Group List.
The Property Group List window is displayed.

2. Type the name of your new property group in the New Property Group text field.

B NERVECENTER:Property Group List [=] @ =]

Property Groups Properties

|cmy
:IEIIEDI"".V Property I

NCDefaulGroup egpMeighE ntry

NerveCenter icmp COANCD |
IfEntry
interfaces Altributes:
ip
ipAddrEntry
ipMetToMediaE ntry
ipRouteEntry
nlping v

New Property Group New Property

|S_l,-sten'l |eanhysicaIEnll_l,l

Copy | Add | | add | | |
Save | Cancel | Unda | MIB ta Grnup* Help | 0ID To Property Group

3. Select the Add button under the New Property Group text field.

Your new property group appears in the Property Group list and is highlighted. Note that no
properties are listed in the Property list since the property group is empty.

4. Toadd one or more properties to the new property group, perform the steps covered in the section
Creating a Property on page 132.

5. Select the Save button.

The nl-ping Property
NerveCenter includes a special “nl-ping” property that identifies that an operation utilizes ICMP instead of
SNMP. In the context of polling, nl-ping can be used to indicate either of two types of behavior:
m Toindicate that a poll should use an ICMP Echo (or Ping) request, not an SNMP operation.

m Toview the details of an ICMP response to an SNMP operation. In the context of event monitoring,
nl-ping is used within a Trap Mask to decode ICMP message details.

138 Designing and Managing Behavior NerveCenter 6.2
Models

Filtering Properties

The nl-ping property is defined in NerveCenter's NETLABS-PING-MIB module (nl-ping.asn1). This can be
pulled in with the MIB to Group button on the Property Group List (select NETLABS-PING-MIB in the
left-hand MIB column and nl-ping will appear in the right-hand Base Objects column).

When using the default database included with NerveCenter, “nl-ping” is included in many of the Property
Groups such as “Ilcmp”, “Mib-11” and many of the vendor-based Property Groups. This provides ease of
reference to this ability to access ICMP-related information.

B NERVECENTER:Property Group List [= @]
Property Groups Properties
i ,
ib-.ll o S.l-alus Property |nl-p|ng
NCDefaultGroup
Nervelenter Source INETLABSAF'INGAMIB
Attibutes [B)
nl-ping-originip: |PAddress
nl-ping-response: INTEGER
nl-ping-roundtrip: INTEGER
nl-ping-senderip: IPAddress
nl-pjng-uccnde: INTEGER
New Property Group New Property nl-ping-uctype: INTEGER
IS ystem IentPh},lsicaIE ntry
Copy | Add | | Add | Delete | |

Save | Cancel | Undo | MIB to Elounl Help | 0ID To Property Group

You can find more information in the following sections:

m Use of nl-ping in polling and in poll conditions is presented in The Basic Procedure for Creating a
Poll Condition on page 167.

m Use of nl-ping in Poll response handling is presented in ICMP Responses on page 221.

m Use of nl-ping in Trap Notification handling is presented in How NerveCenter Decodes ICMP
Events on page 195.

Filtering Properties

When polling, NerveCenter steps through every property value to see if it meets the correct conditions to
advance to the next state. Some properties defined by MIBs, such as ifEntry, can consist of hundreds of
entries. In these cases, a single poll can use valuable resources as NerveCenter steps through every
value, looking for the value that meets the condition defined in the poll. If the property has an associated
MIB table index, and you know the specific property value or range of values you want to monitor, you can
use property filters to constrain your poll.

Table 13 describes the property filter values.

NerveCenter 6.2 Designing and Managing Behavior 139
Models

Defining Property Groups and Properties

Table 13: Property Filter Attributes

Attribute Value

Property | Automatically populated by NerveCenter.

Index The MIB attribute that acts as the index of the property’s associated MIB table. This MIB
attribute can only consist of a single attribute; property filters do not support multiple field
indices.

Datatype | Automatically populated by NerveCenter.
The datatype of the Property Index attribute.

Property filters work with the following datatypes: IpAddress, Integer32, INTEGER,
Counter, Gauge, TimeTicks, Counter32, Ulnteger32, and Counter64.

The following datatypes are not supported: NULL, DisplayString, Bits, NetworkAddress,
OctetString, ObjectID, Timeout, and TimeStamp.

Default | Automatically populated by NerveCenter.

Range The allowed values of the Property Index attribute as specified in the MIB.

Filter The Property Index values you want to include. The Filter Range can consist of the
Index following:

Range

m acomma delimited list of individual values
For example: 7,12,19,34

m adash (-) delimited pair of values to indicate the lower and upper bounds of a range

For example: 18-35

m acombination of these values
For example: 2,4,35-38

Property filters have the following limitations:
m the maximum value is 2,147,483,647
®m No negative numbers
m thefilter range can be no more than 200 characters

m the filter can contain no more than 1,000 unique values. For example, 2000-4000 is
not a valid filter index range because it encompasses more than 1,000 values.

Note: Property filters are only applied to the property belonging to the specified property group. The
same property in a different property group will not be filtered.

Caution: Before creating or editing Property Filters, you must turn off all alarms using the property
group you are editing.

140 Designing and Managing Behavior NerveCenter 6.2
Models

Filtering Properties

TO CREATE A PROPERTY FILTER

1. From the client’'s Admin menu, select Property Group List.
The Property Group List window is displayed.

) NERVECENTER:Property Group List ==
Property Groups Properties
| -
:thpnl:ry Property Ileﬂh.U
NCDefaultGroup eapMeighEntry
NerveCenter icm e |IF-M|B
interfaces Altiibutes (22) iTable
1
igAddlE nitry ifdminStatus: INTEGER
ipMetT oMediaE ntry ifD escr; DctetSting
ipRouteE ntry ifindex: INTEGER
nl-ping ifinDiscards: Counter32
snmp ifinErrors: Counter32
system iflnNUcastPkts: Counter32
tcp ifinOctets: Counter32
tepConnE ntry ifinUcastPkts: Counter32
udp ifinUnknownProtos: Counter32
udpEntry ifLastChange: TimeTicks
iMtu: INTEGER
ifOperStatus: INTEGER
if0utDiscards: Counter32
if0utErmors: Counter32
if0utNUcastPkts: Counter32
if0utOctets: Counter32
if0utLen: Gauge
Mew Property Group New Property ifDutlcastPkts: Counter32
- ifPhysAddress: OctetString
|5P8l8l'l1 |entF'hyS|caIE ntry ifSpecific: 01D
- ifSpeed: Gauge
Copy | Add | Dele | Add | Delete | | |iype: INTEGER
Save | Cancel | Undo ‘ MIB to Eroup{ Help | 0ID To Property Group

2. Select a Property Group.

NerveCenter 6.2 Designing and Managing Behavior 141
Models

Defining Property Groups and Properties

3.

Select a Property.

If the property has an associated MIB table index that meets the requirements described in Table
13, the Filter button is active. You must save a new property group or new property before the Filter
button activates.

Click Filter.
The Property Filter window is displayed.

Property Filter X

Property Index Name
[ifindex

Default Index Range Datatype
|1-214?48384? |INTEGEH

Filter Index Range

|| Clear Filter
0K I Cancel | Help |

Enter a Filter Index Range.

See Filter Index Range on page 140 for acceptable values. Click Clear Filter to delete the Filter
Index Range.

Click OK.
You return to the Property Group List dialog box.

Click Save.

The filter is not saved until you save the property group. If you click Cancel in the Property Group
List, all filters will be lost.

Note: Filters are applied when polled by an alarm with a SubObject or Instance scope only.

142

Designing and Managing Behavior NerveCenter 6.2
Models

Assigning a Property Group to a Node

TO EDIT A PROPERTY FILTER

1. From the client’'s Admin menu, select Property Group List.
The Property Group List window is displayed.

Select the Property Group with the property filter.
3. Select the Property with the property filter.
Click Filter.

The Property Filter window is displayed, with the existing filter information.

5. Edit the Filter Index Range.

See Filter Index Range on page 140 for acceptable values. Click Clear Filter to delete the Filter
Index Range.

6. Click OK.
You return to the Property Group List dialog box.

7. Click Save.

Assigning a Property Group to a Node

When a node is created, it is assigned a property group, and this property group determines which
behavior models NerveCenter uses to manage the node. Of course, this property group assignment isn’t
permanent. You can change the assignment manually, or a behavior model being used to manage the
node can change it.

This section discusses a number of ways in which you can assign a property group to a node and explains
when you would use each method. For further information, see the following subsections.

m Using the Node Definition Window on the next page

m Using the Node List Window on page 145

m Using the AssignPropertyGroup() Function on page 147
m Using the Set Attribute Alarm Action on page 155

m Using OID to Property Group Mappings on page 158

NerveCenter 6.2 Designing and Managing Behavior 143
Models

7 Defining Property Groups and Properties

Using the Node Definition Window

One way to change the property group of a node is to open the Node Definition window for that node and
to change the value of the Group field. This method is an appropriate way to change a node’s property
group if:

m You know in advance which node or nodes need the new property group

m Only one node or a few nodes need the change

TO CHANGE A NODE’S PROPERTY GROUP USING THE NODE DEFINITION WINDOW

1. From the client’'s Admin menu, choose Node List.
NerveCenter displays the Node List window.

B NERVECENTER:Node List =N IR~

Node Count : [} I Search

ID | Name | 1P Address Group | Severity | Managed | Sup... | 5. Err... [s...| E] IP Addresses
3 Cisco-WirelessVPNRouter 192.168.1.220 Mib-II Inform Managed No Viwe 192.168.1.242
5 HP-Photosmart-6520 192.168.1.242 Normal Managed

1 LAPTOP-7J6KAICD 192.168.1.184 lcmp Normal Managed No vl

2 Linksys-Router 192.168.1.1 Mib-II Normal Managed No vl Au.

6 nc6200-centosb-g 192.168.1.239 NerveCenter MNormal Ne No vi V3. L. 8

4 nervecenter 192.168.1.191 NerveCenter Normal Managed No vl Au.

< >

Open New Notes Close Export... Help
Format EnginelD [

2. Highlight the name of the node whose property group you want to change.

144 Designing and Managing Behavior NerveCenter 6.2
Models

Assigning a Property Group to a Node

3. Select the Open button.

The Node Definition window appears. This window enables you to edit the properties of the node
you selected.

3 NERVECENTER:Node Definition : HP-Photosmart-6520 =l <"

Node |Alarms| Alarm Instances | MIB Query | Parents | SNMP | ICMP | Tre 4 [»

Node ID: 00005 [v¥ Managed
Name IHPAPhnlasmart‘ESZD [~ Autodelete
Property |Icmp LI ™ Suppressed
Group
2 [Platf
Mibl Nodo
NCDefaultGroup
IP Addres{NerveCenter
IP Address I
| | | 1P Lookup| |

IP Address | 192.168.1.242
List

Save | Cancel | Undo | Notes | Help

4. Select a new property group from the Group drop-down list.
5. Select the Save button.

Repeat this procedure for any additional nodes you want to assign to a new property group.

Using the Node List Window
You can change the property group of a set of nodes from the Node List window, using a popup menu
accessible from that window. It is appropriate to use this method of property group assignment if:
m You need to change the property group for more than a couple of nodes
m You want to assign the same property group to each of the nodes

m You know in advance which nodes you want to modify

NerveCenter 6.2 Designing and Managing Behavior 145
Models

7 Defining Property Groups and Properties

TO CHANGE THE PROPERTY GROUP FOR A SET OF NODES FROM THE NODE LIST WINDOW

1. From the client’'s Admin menu, choose Node List.

NerveCenter displays the Node List window.

a

[

Y NERVECENTER:Node List == EcR
Node Count : [I Search
ID | Name | 1P Address | Group | Severity | Managed | Sup... | S...| Err... | 5...| E] IP Addiesses
3 Cisco-WirelessVPNRouter ~ 192.168.1.220 Mib-II Inform Managed No Vaue 192168.1.242
5 HP-Photosmart-6520 192.168.1.242 lcmp
1 LAPTOP-7J6KA1CD 192.168.1.184 lcmp Managed v
2 Linksys-Router 192.168.1.1 Mib-II Unmanaged vl Au..
6 nc6200-centost-g 192.168.1.239 NerveCen Delete vi V3. L. 8
4 nervecenter 192.168.1.191 NerveCen vl Au.
Property Group
Auto Delete
< >
No Auto Delete
Open I New Notes Close
Suppress
Format EnginelD [Unsuppress
Tracing Off

Test Version

Version >
Authentication

Classify

Security Level
Open

Copy
Reset Alarms

2. Select one node whose property group you want to change. Then hold down the Ctrl key and select
the remainder of the nodes you want to modify.

3. With your cursor positioned over one of the highlighted entries, press the right mouse button to
bring up the node-management popup menu, and select Property Group from the menu.

NerveCenter displays the Property Group Edit dialog box.

Property Group ? X

I -

| Cancel |

146 Designing and Managing Behavior NerveCenter 6.2
Models

Assigning a Property Group to a Node

4. Select a property group from the drop-down list.

Property Group ? X

| =

lcm

NCDefaultGroup
NerveCenter

5. Select the Save button.

Using the AssignPropertyGroup() Function

In addition to being able to assign property groups to nodes manually using the NerveCenter user
interface, you can use the AssignProperty Group() function in a behavior model to change a node’s
property group dynamically. This function can appear in a poll condition, a trap mask trigger function, or a
Perl subroutine.

The syntax for this function is shown below:
AssignPropertyGroup (“PropertyGroupName”)
The property group whose name is passed to the function must already exist.

For further information about how to use this function in a poll condition, a trigger function, or a Perl
subroutine—and for information on when it's appropriate to use the function in each of these contexts—
see the sections listed below:

m InaPoll Condition below
m Ina Trigger Function on page 149

m InaPerl Subroutine on page 151

In a Poll Condition

Suppose you want to change the property group assignment for all of your Cisco routers in Building 6. You
can collect the names or IP addresses of all these nodes and change their property groups manually using
the NerveCenter user interface. However, this can be an error prone process. All you have is your list of
routers to make sure that you assign the new property group to exactly the right set of nodes.
Alternatively, you can create a poll that will detect whether a polled node is a Cisco router located in
Building 6 and will assign the new property group only to nodes that meet these criteria.

Note: The instructions below are not intended to explain in detail how to create this type of poll. Creating
polls is a fairly large topic and is covered in Using Polls on page 161 These instructions cover only the
general procedure for incorporating a call to AssignPropertyGroup() into a poll condition.

This procedure details how to define a poll condition that changes the property group of each Cisco router
in Building 6:

NerveCenter 6.2 Designing and Managing Behavior 147
Models

Defining Property Groups and Properties

7

TO DEFINE A POLL CONDITION THAT CHANGES THE PROPERTY GROUP (SAMPLE)

1. Display the Poll Condition page in the Poll Definition window.

B NERVECENTER:Poll Definition =3 =l T

Pol OnResponse | Trace |

Base Objects (1) Attributes [8)

sysContact: DctetSting A
sysDescr: DctetSting
sysLocation: OctetShing

sysMame: DctetSting

Add Table | AddScalar| Delete | |sysObjectiD: 0D
sysORLastChange: TimeTicks

I(No Selection Tl sysServices: INTEGER v
Called for each received response:

if ((system.sysLocation eq "Building 6") &&
(system.sysCbjectID = 1.3.6.1.4.1.9.1))
{

AssignPropertyGroup("Ciscoé"™);

Clear | Edi. |

Save | Cancel | Undo | Notes | Help |

2. Create the condition that determines whether you want to call AssignProperty Group():
if ((system.sysLocation eg “Building 6") &&
(system.sysObjectID == 1.3.6.1.4.1.9.1))

3. Add ablock including a call to AssignProperty Group() to the preceding condition:
if ((system.sysLocation eq “Building 6") &&
(system.sysObjectID == 1.3.6.1.4.1.9.1)) {

AssignPropertyGroup (“Cisco6”) ;}

This example assumes that the new property group is named Cisco6.

Note: Your poll condition must also include a call to FireTrigger(); otherwise, you won’t be able to save
the poll.

4. Select the Save button to save your poll.
Before NerveCenter will use this poll, there must be an enabled alarm in which the poll can cause a
state transition.

Caution: When a poll changes a node’s property group, any alarm instances that have been created for
that node are deleted.

148 Designing and Managing Behavior NerveCenter 6.2
Models

Assigning a Property Group to a Node

In a Trigger Function

Here’s a simple example of when you might use the AssignProperty Group() function in a trap mask trigger
function. Suppose that you want to use NerveCenter's Authentication behavior model to monitor your
network for excessive SNMP authentication failures. This model includes a trap mask and two polls and
looks for three authentication failures on a single node within ten minutes.

You could enable the behavior model by assigning to the nodes you want to monitor a property group that
contains the property snmp and turning on the Authentication alarm. But let’s say that you don’t want to
monitor nodes that have never experienced an authentication failure, because the model does involve
some polling. To monitor only nodes whose agents have sent authentication failure traps, you can initially
assign your nodes a property group that doesn’t contain the property snmp. You can then define a trap
mask that looks for authentication failure traps and changes the property group of the nodes from which it
receives these traps. Let’'s assume that the new property group is called Mib-I1 and contains the property
snmp.

Note: The instructions below are not intended to explain in detail how to create this type of trap mask.
Creating masks is a fairly large topic and is covered in "Using Trap Masks" on page 193 These
instructions cover only the general procedure for incorporating a call to AssignProperty Group() into a
trigger function.

NerveCenter 6.2 Designing and Managing Behavior 149
Models

7 Defining Property Groups and Properties

TO DEFINE A TRAP MASK
This procedure defines a trap mask that changes the property group of each node that issues an
authentication failure trap, you would:
1. Create atrap mask that looks for a generic trap 4.

2. Indicate that the trap mask will use a trigger function instead of a simple trigger.
3. Display the Trigger Function page in the Mask Definition window.

2V NERVECENTER:Mask Definition (o][& sl

Mask Trigger Function

AssignPropertyGroup("Mib-II"):|

Clear | Edit... | Iv Execute Perl in Global Space

Save | Cancel | Undo | Notes Help

4. Type inyour call to AssignProperty Group():
AssignPropertyGroup (“Mib-I1") ;

You can make this property-group assignment conditional, based on the value of a variable binding
if you need to. In the present case, such a condition isn’t necessary.

150 Designing and Managing Behavior NerveCenter 6.2
Models

Assigning a Property Group to a Node

5. Alsotype in a call to FireTrigger();

FireTrigger (“TrigggerName”) ;

Remember that before NerveCenter will use this mask, there must be an enabled alarm in which
the mask can cause a state transition.

6. Save your trap mask.

Caution: When a mask changes a node’s property group, any alarm instances that have been created
for that node are deleted.

In a Perl Subroutine

Another place from which you can call the AssignPropertyGroup() function is a Perl Subroutine alarm-
transition action. This is the appropriate context for using this function if you want to perform your
property-group assignment conditionally, based on information that is available from with a Perl
subroutine, but not elsewhere. For example, a Perl subroutine associated with an alarm transition has
access to the name of the property group of the node that triggered the transition. You could use this
information to change a node’s property group only if:

m An alarm transition containing the appropriate Perl Subroutine action is caused by a trigger
associated with the node

m The node currently has a particular property group

For a complete list of the information that is available to a Perl subroutine, see the section NerveCenter
Variables on page 301.

Note: The instructions below do not explain in detail how to create a Perl subroutine or how to create an
entire alarm. They explain only how to add to an alarm transition a Perl Subroutine action that will
change the property group of a node. For complete information about creating Perl subroutines, see the
section Perl Subroutine on page 294, and for complete information about creating alarms, see Using
Alarms on page 237

NerveCenter 6.2 Designing and Managing Behavior 151
Models

7 Defining Property Groups and Properties

TO ADD A PERL SUBROUTINE TO AN ALARM TRANSITION

The procedure below explains how to add to an alarm transition a Perl Subroutine action that assigns the
property group Gateway to the node associated with the trigger that caused the transition. The property
group is assigned only if the node’s current property group is Mib-I1.

1. Use the Perl Subroutine Definition window to create your Perl subroutine.

The subroutine should look something like this:

B NERVECENTER:Perl Subroutine Definition [E=REcR ™

Name: | S etPropGrop-hibl|-to-Glateway

Subroutine:

if (SNodePropertyGrp eq "Mib-II") {
AssignPropertyGroup("Gateway")

More ”
v Edit... | W Execute Perlin Global Space

Save I Close | Unda Notes Help

152 Designing and Managing Behavior NerveCenter 6.2
Models

Assigning a Property Group to a Node

2. Inthe Alarm Definition window, open the Transition Definition dialog by double-clicking on the

transition to which you want to add the Perl Subroutine action.

Transition Definition

Transition

From Trigger To

Ground ﬂ I agentUp Ll | Ground Ll

Actions

Type Argument

New Action vl e Act | Ielete Act |
m Cancel | Help

3. Select the New Action list.

A list of available actions is displayed.

Transition Definition

Transition

From Trigger To
Ground ﬂ IagenlUp LI | Ground Ll

Actions

Type I Argument

New Action vl e Act | Jelete Act |

Inform OpC A

Infarm Platform

Log to File m Cancel | Help
New Action
Notes

Faging
Send SMS
Send Trap
Set Attribute
SMTP Mail
SNMP Set v

NerveCenter 6.2 Designing and Managing Behavior 153

Models

7 Defining Property Groups and Properties

4. Select the Perl Subroutine action.

NerveCenter displays the Perl Subroutine Action dialog box.

Perl Subroutine Action ? X
Hame SetPropGrop-Mibll-to-Gatewjid
0K I Cancel | Help |

5. Select the name of the subroutine you created in Step 1 from the Name list box.
6. Select the OK button in the Perl Subroutine Action dialog.

Transition Definition ? x

Transition
From Trigger

To
Ground ﬂ IagenlLlp Ll | Ground Ll

Actions

Type I Argument
Call Perl Subroutine SetPropGrop-Mibll-to-Gateway

Perl Subroutine - I | |
ok | cancel | Help |

The dialog is dismissed, and the newly defined action appears in the Actions list in the Transition
Definition dialog.

7. Select the OK button in the Transition Definition dialog.
Select the Save button in the Alarm Definition window.

Caution: When a Perl subroutine changes a node’s property group, any alarm instances that have been
created for that node are deleted.

154 Designing and Managing Behavior NerveCenter 6.2
Models

Assigning a Property Group to a Node

Using the Set Attribute Alarm Action

There are two ways to change a node’s property group using alarm-transition actions: using the Perl
Subroutine action and using the Set Attribute action. For information on changing a node’s property group
using the Perl Subroutine action, see the section In a Perl Subroutine on page 151. Using a Perl
Subroutine action to change a property group is appropriate when you want to use Perl to do something
more complex than simply change the property group of the node associated with the trigger that causes
the alarm transition (or the property group of any other node, for that matter). If the only action you would
take from a Perl subroutine is to change a property group, you should use the Set Attribute action instead.
This approach will save you the trouble of having to write and compile a Perl subroutine.

Note: The instructions below do not explain how to create an entire alarm. They explain only how to add
to an alarm transition a Set Attribute action that will change the property group of a node. For complete
information about creating alarms, see "Using Alarms" on page 237.

TO ADD TO AN ALARM TRANSITION A SET ATTRIBUTE ACTION THAT CHANGES A NODE’S PROPERTY GROUP

1. Open the Transition Definition dialog by double-clicking on the transition to which you want to
add the Set Attribute action.

Transition Definition ? X

Transition
From Trigger

To
Ground Ll \agenlUp Ll |El0und Ll

Actions

Type | Argument

New Action - | |
0K I Cancel | Help

NerveCenter 6.2 Designing and Managing Behavior 155
Models

7 Defining Property Groups and Properties

2. Select the New Action list.

A list of available actions is displayed.

Transition Definition ? X

Transition
From Trigger

To
Ground Ll IagenIUp j | Ground Ll

Actions

Type Argument

New Action - I | |

Inform OpC ~

Inform Platform I

Log to File 0K Cancel | Help
New Action
Nates

Paging

Perl Subroutine
Send SMS

Send Tra
SMTP Mail
SNMP Set v

3. Select the Set Attribute action.
NerveCenter displays the Set Attribute Action dialog.

Set Attribute Action ?

X

Obiect Type:
Mame: |$NODE

Attribute: |5 uppress

Lol Lo Lo L

Yalue: [On

oK I Cancel | Help |

4. Leave the Object Type value set to Node since you want to set an attribute of a node.
5. Usually you'll leave the Name value set to SNODE.

$NODE stands for the name of the node associated with the trigger that caused the alarm
transition. However, you can change the value to the name of any node in the NerveCenter
database if you know in advance the name of the node whose property group you want to change.

156 Designing and Managing Behavior NerveCenter 6.2
Models

Assigning a Property Group to a Node

6. Select Property Group from the Attribute drop-down list.

Set Attribute Action ad
Object Type: |Nade ﬂ
MName: |$N 0ODE ﬂ
Attribute: |S uppress v
~ [ICMP Ping TTL P
Value: | hianage

Property Grou
SNMP Allow GetBulk
SMNMP Community
SNMP Part
SNMP Retries
SNMP Timeaut
SNMP Yersion
0K [SNMPv3 Authentication

SNMPv3 Authentication Passwe ¥

7. Select a property-group name using the Value drop-down list.

The property group you choose will become the new property group for the node you chose in Step
5 whenever this alarm transition takes place.

Set Attribute Action ? X
Object Type: |Nude j
MName: |$N 0ODE ﬂ
Attribute: |Pr0pert_l,l Group ﬂ
Walue: | ﬂ

NCDefaultGroup
NerveCenter

0K I Cancel Help

NerveCenter 6.2 Designing and Managing Behavior 157
Models

Defining Property Groups and Properties

8. Select the OK button in the Set Attribute Action dialog.

The dialog is dismissed, and the newly defined action appears in the Actions list in the Transition
Definition dialog.

Transition Definition ? X

Transition
From Trigger To

Ground Ll ‘agenlUp Ll |Groun-:| Ll

Actions

Type I Argument
Set Attribute Node, SNODE, Property Group, Mib-Il

Set Attribute | Update Action Delete Action |

Cancel | Help |

9. Select the OK button in the Transition Definition dialog.

10. Select the Save button in the Alarm Definition window.

Caution: When a Set Attribute alarm action changes a node’s property group, any alarm instances that
have been created for that node are deleted.

Using OID to Property Group Mappings

When a node is first written to the NerveCenter database, it is assigned a property group based on the
object ID of the node. For example, a Cisco router with an OID of 1.3.6.1.4.1.9.1 is, by default, assigned a
property group of CISCO-ROUTER-9.x-MIB. The assignments are based on a table of mappings

between OIDs and property groups. If no mapping exists for a particular device, that device is assigned
the default property group NCDefaultGroup.

Using the NerveCenter client, you can add entries to, or change entries in, this OID-to-property-group

table. The new mappings will affect any nodes that are added to the NerveCenter database after you
make your changes.

158 Designing and Managing Behavior NerveCenter 6.2
Models

Tips for Using Property Groups and Properties

To ADD A NEW OID-TO-PROPERTY-GROUP MAPPING

1. From the client's Admin menu, choose OID to Group.
The OID to Property Group dialog is displayed.

B | NERVECENTER:OID To Property Group ? X
System Object ID | Property Group ~
1.3.6.1.4.1.0 Mib-1l
1.3.6.14.1.1 Mib-II
1.3.6.1.4.1.10 Mib-Il
1.3.6.1.4.1.100 Mib-II
1.3.6.1.4.1.101 Mib-1l
1.3.6.1.4.1.102 Mib-II
1.3.6.1.4.1.103 Mib-1l
<

System Object 1D "

v
>
[2 |
Property Group | ﬂ
__Dekte |

‘ Cancel ‘ I Help I Export... |

Enter an object identifier in the System Object text field.

Enter the name of a property group in the Property Group text field.
Select the Add button.

Select the Save button.

o~ 0D

Tips for Using Property Groups and Properties

Using property groups and properties is mainly a matter of common sense; however, the sections below
give you a few suggestions for using them effectively.

NerveCenter 6.2 Designing and Managing Behavior 159
Models

Defining Property Groups and Properties

Categorizing Nodes

We've said that property groups enable you to create groups of nodes, each of which is managed by a set
of behavior models. As you create your groups, it’s helpful to list a variety of criteria for categorizing your

nodes and then to use the criteria that make the most sense for your network. For example, some criteria
you could use in classifying your nodes are:

m Type of device (workstation, server, router)

m Location

m Importance (Which nodes need to be managed most closely?)
m Supported MIBs

m Business function

Apply whatever set of criteria is appropriate for your site.

Move from the General to the Specific

Set up property groups that establish general groups of devices first. Then create subcategories of nodes
as necessary.

Forinstance, suppose that you have MIB-Il agents running on all of your computers, including servers.
You want to monitor the servers more closely than the personal computers, so you copy the existing Mib-
Il property group, name the copy Server, and add to the copy the property server. You can now set up
polls and alarms that take one action, such as sending an e-mail message, when any workstation is
unreachable, and another action, such as paging an administrator, when a server is unreachable.

Or maybe you want to refine how you monitor servers so that you can distinguish file servers from print
servers. You can set up two new property groups, each a copy of Server. Name one Fserver and add the
property fserver, and name the other Pserver and add the property pserver. Note that both groups still
contain the property server because each is a copy of the Server property group. You can then set up polls
and alarms to perform one action when any server is unreachable, perform a different action when a file
server is unreachable, and perform a third action when a print server is unreachable.

MIB Objects

The property group for a device should contain a property for every MIB base object that might be used in
a poll condition by a poll designed to contact that node. For further information on building poll conditions,
see Writing a Poll Condition on page 166.

If a base object is not in the node’s property group, polls whose poll conditions refer to that object will not
contact the node.

160

Designing and Managing Behavior NerveCenter 6.2
Models

Using Polls

NerveCenter polls enable you to retrieve information from SNMP agents on devices to determine the
status of those devices. Figure 25 depicts the role that a poll plays in a behavior model

Pall

Response

Behavior model

Figure 25: The Role of a Paoll in a Behavior Model

To function as part of a behavior model, a poll must be tied to one or more alarms by means of one or more
triggers. If the poll does not define a trigger that can affect a pending alarm transition, the poll is never sent
to a device. This behavior is part of NerveCenter's smart polling feature.

Other aspects of this smart polling feature are that NerveCenter doesn’'t send a poll to a node unless the
poll’s property is in the node’s property group and that NerveCenter never sends a suppressible poll to a
suppressed node. Together, these behaviors sharply curtail the amount of network traffic NerveCenter
generates by polling SNMP agents.

The remainder of this chapter explains in detail how to create and work with polls.

NerveCenter 6.2 Designing and Managing Behavior 161
Models

Using Polls

Listing Polls

This section explains how to display a list of the polls currently defined in the NerveCenter database. The
section also explains how to view the definition of a particular poll.

For information on creating a new poll, see Defining a Poll on page 164.

TO DISPLAY A LIST OF POLLS AND THEN DISPLAY A PARTICULAR POLL’S DEFINITION

1. From the client’'s Admin menu, choose Poll List.
NerveCenter displays the Poll List window.

B NERVECENTER:Poll List =N R =
D [Name l Enabled | Suppressible I Property [Base Objects [Trace l A
7 AuthFail On No snmp snmp off
& AuthQuickFail On No snmp snmp off
2 [fErrorRates On No ifEntry ifEntry off
3 IlfLoadRates On No ifEntry ifEntry off
1 ifStatus Cn No NO_PROP ifEntry off
4 IS_lcmpFastPoll COn No nl-ping nl-ping off
5 IS_lcmpPoll On No nl-ping nl-ping off
11 SnmpFastPoll On No system system off
10 SnmpPoll On No system system off v

| New | | Close | Export... | Help |

This window lists all NerveCenter polls and provides a brief definition of each. For each poll, the
window specifies a name and the following information:

o

Whether the poll is currently enabled

o

Whether the poll is suppressible

o

The poll’s property
o The name of the base object used to build the poll condition

2. Select a poll from the poll list.

162 Designing and Managing Behavior NerveCenter 6.2
Models

Listing Polls

3. Select the Open button
NerveCenter displays the Poll Definition window.

| NERVECENTER:Poll Definition = o <"
Poll |DnFIespanse| Trace |
Poll ID: 00007
Name [authFail
Property I snmp J
Port |
Poll Rate
30] - (v ¢
Owverrun Policy | Skip _I
[Handlers
O
-
r
r
Enabled
& 0n C Of I~
Save | Cancel | Undo | Notes | Help |

The poll defined in this figure is named AuthFail. Every thirty minutes, the poll is sent to nodes
whose property group includes the property snmp, and the poll checks for an increase in the value
of snmplnBadCommunityNames or snmplnBadCommunityUses. If the poll finds an increase in
either of these values, it fires the trigger authFail; otherwise, it does not fire a trigger. The poll is

suppressible and is currently not enabled. It must be enabled before NerveCenter will use its
definition to poll any devices.

NerveCenter 6.2 Designing and Managing Behavior 163
Models

Using Polls

Defining a Poll

This section explains the steps required to create a new poll.

TO DEFINE A NEW POLL

1. From the client’'s Admin menu, choose Poll List.
NerveCenter displays the Poll List window.

2 NERVECENTER:Poll List [ola ==
ID] Name I Enabled I Suppressible I Property] Base Objects] Trace I A
7 AuthFail On No snmp snmp off
8 AuthQuickFail On No snmp snmp off
2 [fErrorRates On No ifEntry ifEntry off
3 IfLoadRates On No ifEntry ifEntry off
1 ifStatus On No NO_PROP ifEntry off
4 IS_lempFastPoll On No nl-ping nl-ping off
5 IS_lcmpPoll On No nl-ping nl-ping off
11 SnmpFastPoll On No system system off
10 SnmpPoll On No system system off v

I New Not I Close I Expott... Help

2. Select the New button.
The Poll Definition window is displayed.

B NERVECENTER:Poll Definition =2 E=E
Pall l OnRespanse | Trace |
Poll ID:
Name Il
Property | NO_PROP ;]
Port I
Poll Rate

10 " Daps Hours % Minutes Seconds

Overnun Policy I Skip LJ

Iv Suppressible [Handlers

™ DnEnabled / Disabled
[¥ Esxecute Perl in Global Space

[~ OnScheduled / Unscheduled

[~ OnStart / End Execution

~Enabled
©on @ 0f ¥ OnResponse
Save Cancel Undo Motes Help
164 Designing and Managing Behavior NerveCenter 6.2

Models

Defining a Poll n

3. Make sure that the Off radio button is selected in the Enabled frame.

The poll must remain off until you’ve completed defining the poll and saved your definition. You
must then turn the poll on for it to become part of a functioning behavior model.

4. Inthe Name text field, type a unique name for the poll.

Note: The maximum length for poll names is 255 characters.

5. From the Property list box, select a property, or leave the Property set to NO_PROP.

The property you choose limits which nodes NerveCenter can retrieve data from using this poll
definition. The poll will contact only those nodes whose property group contains this property.
(Note that the property can be a member of multiple property groups.)

If you don’'t want to restrict the poll to any subset of nodes, leave the field set at NO_PROP. The
poll will target all managed nodes.

6. Usually, you'll leave the Port text field blank. However, if you want this poll to communicate with
nodes on a port other than that specified in the nodes’ definitions, enter that port number here.

7. Define the poll rate by entering a number in the Poll Rate text field and selecting either the Hours,
Minutes, or Seconds radio button.

Note: When defining the poll rate, the interval should be equal to or greater than (numberOf Retries + 1)
* retryInterval. Otherwise, NerveCenter can issue a second poll before the first one times out. The
number of retries and the retry interval are defined on the SNMP tab in the NerveCenter Administrator.

Caution: Choosing a frequent poll rate can have a serious impact on network traffic, especially if the
poll applies to numerous nodes.

8. Uncheck the Suppressible checkbox if you want to send this poll to a node even when the node is
suppressed.

A suppressible poll does not poll a node whose state is suppressed. This feature prevents
repeated polling of devices that are not capable of responding. The default value for a poll is
suppressible.

There might be specific polls that you want to send to a node even when it is suppressed. For
example, if you want to check on the status of a suppressed node to determine whether it has
returned to normal, use an insuppressible poll.

9. Select the Poll Condition tab to display the Poll Condition page, and enter your poll condition. For
details on how to construct this poll condition, see Writing a Poll Condition on the next page.

10. Select the Save button to save your poll.

11. If you want to enable you poll now, set the poll’'s Enabled status to On, and then select the Save
button again.

NerveCenter 6.2 Designing and Managing Behavior 165
Models

n Using Polls

Writing a Poll Condition

Every poll must include a poll condition. This poll condition, which you write using Perl, specifies which
MIB variables the poll should read, what conditions the values of those variables must meet, and what
triggers will be fired each time a value makes a condition true. For example, the following poll condition
detects whether a node’s desired and current operational status are both up and, if they are, fires the
trigger ifUp:

if (ifEntry.ifAdminStatus == up and ifEntry.ifOperStatus == up) {

FireTrigger (“1fUp”);
}

Note that both the MIB variables referred to in this condition are children of the same base object (ifEntry).
In a single poll condition, you can only refer to one base object. If the condition that you want to detect
requires that you inquire about variables associated with multiple base objects, you must design multiple
polls.

Another important point about poll conditions is that if a poll causes a trigger to be fired, that trigger's
variable bindings will include a name-value pair for each MIB variable referred to in the poll condition and
read by the poll. If such a trigger causes a logging action, the value of each variable used in the poll
condition is written to the log.

Most poll conditions are very similar in structure. They follow this pattem:

if (conditionl) {
FireTrigger (arguments) ;
}
elsif (conditionZ2) {
FireTrigger (arguments) ;
}
else {
FireTrigger (arguments) ;

}

The conditions can be arbitrarily complex, and the FireTrigger() function fires a trigger, whose name,
subobject, and node you can control.

Note: The maximum length for trigger names is 255 characters.

Because a poll condition is written in Perl, you can use any data types, operators, and functions that Perl
understands in this condition. Also, you can make use of a number of functions and one variable defined
by NerveCenter. The functions and variables available to you are summarized in a pop-up menu for Perl
accessible via a right mouse click from the poll condition editing area. (See the following section, Using
the Pop-Up Menu for Perl on page 182, for more information.)

For all the details about writing a poll condition, see the following sections:
m The Basic Procedure for Creating a Poll Condition on the facing page
m Functions for Use in Poll Conditions on page 168
m NerveCenter Variables on page 301
m Using the Pop-Up Menu for Perl on page 182

m Examples of Poll Conditions on page 184

Designing and Managing Behavior NerveCenter 6.2
Models

Writing a Poll Condition n

The Basic Procedure for Creating a Poll Condition

The section explains how to use the Poll Condition page in the Poll Definition window to create a poll
condition.

TO CREATE A POLL CONDITION

1. Inthe Poll Definition window, select the OnResponse tab.

B NERVECENTER:Poll Definition =n EoN

Pall OnResponse | Trace |

Base Objects (0) Attributes (0)

Add Table | AddScalar| Delete |

I<No Selection> v|
Called for each received response:

Clear | Edi. |

Save | Cancel | Undo | Motes | Help |

2. From the Add Table or Add Scalar buttons, select a base object whose attributes you will use in
the poll condition.
You may add any number of Scalar objects to a poll, and any number of Table objects provided
they have the same indexing. After adding objects to the list, selecting one will displays the
object's attributes in the Attributes list.

Note: Selecting the nl-ping base object causes NerveCenter to poll using an ICMP Echo (aka ping)
instead of SNMP. The attributes of nl-ping, shown in the Attributes list, can be used to examine the
outcome of the ICMP operation. See The nl-ping Property on page 138 for more information.

3. If youwant to use the shared Perl interpreter, select the Execute Perl in Global Space checkbox
on the poll definition's Poll property sheet.

NerveCenter 6.2 Designing and Managing Behavior 167
Models

n Using Polls

Note: If you select Execute Perl in Global Space, the poll condition executes in a shared Perl
interpreter. You can use Global variables in your poll condition to share information between other Perl
routines such as trigger functions or Perl subroutines, however, Perl intensive poll conditions may
impede NerveCenter’s performance.

If you do not select Execute Perl in Global Space, the poll condition executes in a Perl interpreter
dedicated to poll conditions. This will improve NerveCenter’s performance, however you cannot use
global variables in your poll condition to share information between other Perl routines such as trigger
functions or Perl subroutines.

For more information about the various Perl interpreters, see NerveCenter and Perl on page 45.

4. Place your cursorin the Poll Condition text area, and enter the poll condition.

You can enter the poll condition by simply typing the condition in this text area. However, you can
also use several shortcuts to enter text:

> One useful shortcut allows you to enter a MIB base object plus an attribute (connected by a
period) at the point of the cursor. To use this shortcut, position your cursor where you want to
enter the text, and double-click an attribute in the Attribute list. (You must have selected a
base object from the Base Object drop-down list while the poll condition editing area was
empty.)

> You can enter a Perl operator, a call to a NerveCenter function, or a NerveCenter variable using
the poll-condition pop-up menu for Perl. To bring up this menu, click the right mouse button
while your cursor is in the poll-condition editing area.

See the section Using the Pop-Up Menu for Perl on page 182 for further information about
this pop-up menu.

> You can paste text from the clipboard into the text area.

Functions for Use in Poll Conditions

NerveCenter includes a number of functions that you can use in constructing a poll condition. Several of
these functions are designed specifically for use in poll conditions. For example, they enable you to
determine the exact number of seconds between polls or to determine the change in the value of a MIB
variable between one poll and the next. You can also use the functions DefineTrigger(), FireTrigger(),
AssignPropertyGroup(), and in() and a set of string-matching functions. These functions can be used not
only in defining poll conditions, but in defining other objects as well.

The Perl functions and variables available to you for use in poll conditions are accessible via a right
mouse click from the poll condition editing area in the Poll Condition page of the Poll Definition window.
(See the section, Using the Pop-Up Menu for Perl on page 182, for more information.)

Designing and Managing Behavior NerveCenter 6.2
Models

Writing a Poll Condition

| NERVECENTER:Poll Definition : SystemSort =] -=- |
Poll OnResponse I Trace I
Base Objects [1) Attributes (8]
system sysContact: OctetSting A

sysDescr: OctetSting

sysLocation: OctetShing

sysName: OctetSting
4dd Table | AddScalar| Delete | [sysObjectiD: 0ID

sysORLastChange: TimeTicks
|<ND Selection> v] sysServices: INTEGER v
Called for each received response:

FireTrigger("DeviceAssessment”);
if ((system.sysLocation eg "Building 6") &&
(system.sysCbjectID eg "1.3.6.1.4.1.9.1"))
{
As: Cut B")
} Copy
Paste
Arithmetic operators >
Legical operators b
Relational operators >
Clear
Boolean functions >
AddVarBind API >
Save Trigger functions > Motes Help
Node functions > |
Node variables >
Poll functions >
Poll variables >
Other variables >

For detailed information about all of these functions, see the following sections:
m NerveCenter Functions for Poll Conditions on the next page
m AddNode() Function on page 174
m AssignPropertyGroup() Function on page 175
m DefineTrigger() Function on page 175
m FireTrigger() Function on page 177
m in() Function on page 179
m NC::AlarmCounters on page 179
m String-Matching Functions on page 181

NerveCenter 6.2 Designing and Managing Behavior 169
Models

n Using Polls

NerveCenter Functions for Poll Conditions

The functions discussed below are designed specifically for use in poll conditions.

Usage: OnResponse
Syntax: delta(baseObject.attribute)

Arguments: baseObject. attribute - The name of a baseObject as found in the poll’s list of Base
Objects, and an attribute of that baseObject, as listed in the poll’s list of Attributes for the selected
baseObject. For example: ifEntry.ifType or system.sysDescr.

Description: Returns the difference between the present value of the object and its prior value, as
retrieved by the previous run of this poll. For example, if ifEntry.iflnOctets is currently 10 but
previously was 6, then delta(ifEntry.ifInOctets) will return 4.

Example: This statement fires a trigger if the number of SNMP messages sent to a node without
an acceptable community name has increased:

if (delta(snmp.snmpInBadCommunityNames) >= 1) {
FireTrigger (“authFail”);

elapsed

Usage: OnResponse
Syntax: elapsed
Arguments:None — also omit the typical () characters that follow the function name.

Description: Returns the number of seconds that elapsed between the previous poll and the
current poll.

Example: This statement fires a trigger if the poll detects interface traffic levels exceeding 80
percent of capacity:

if (((delta(ifEntry.ifInOctets) + delta(ifEntry.ifOutOctets))
* 8) / (ifEntry.ifSpeed * elapsed) >= 0.801) {
FireTrigger (“highLoad”) ;}

170

Designing and Managing Behavior NerveCenter 6.2
Models

Writing a Poll Condition n

end_poll()

Usage: OnStart, OnResponse
Syntax: end_poll()
Arguments:None.

Description: For polls that are examining a table, you can skip reading the remainder of the table
by calling end_poll(). Processing proceeds directly to the OnEnd expression, if one has been
defined. Note this can be called from either the OnStart or OnResponse expression. If called from
OnStart, then the agent will not be polled and processing will proceed next directly to the OnEnd
expression, if it has been provided.

Example: This statement, as for a OnResponse function, causes the table polling to stop upon the
first discovery of an interface that is in the ‘down’ state.

if (ifEntry.ifOperStatus == down) {
FireTrigger (“atLeastOneDownInterface”);
end poll();

jump_to()
Usage: OnResponse

Syntax: jump_to(indexexpression)
Arguments:The value of a possible index into a table baseObject of this poll.

Description: For polls that are examining a table, you can cause the OnResponse to jump forward
to the given index. For example: when reading from ifTable, if you are presently at index 3 and you
want to skip processing any more rows with OnResponse until at least index 900 is reached, call “
jump to(900); “Note: you can only jump to a higher indexexpression. Meaning, that if you are
currently inifTable at index 100, “ jump to(50);” will be ignored. (Tables in SNMP are always
returned in ascending sequence, based on the value range of the table’s index expression.)

NerveCenter 6.2 Designing and Managing Behavior 171
Models

Using Polls

not_present()
Usage: OnResponse

Syntax: not_present(baseObject.attribute)

Arguments:baseObject.attribute - The name of a baseObject as found in the poll’s list of Base
Objects, and an attribute of that baseObject, as listed in the poll’s list of Attributes for the selected
baseObject. For example: ifEntry.ifType or system.sysDescr.

Description: Returns 1 (true) or 0 (false), indicating the inverse of present(). A return of 1 (true)
indicates the poll was not able to retrieve the given baseObject.attribute expression.

Example: This statement checks whether the attempt to read sysDescr from the agent has failed.

if not present(system.sysDescr) {
FireTrigger (“noAgent”);

}

Note: The previous form of this function stated the baseObject.attribute expression first, followed by
the function name. This is still supported, but is not recommended.

if (system.sysDescr not present) {
FireTrigger (“noAgent”) ;

172 Designing and Managing Behavior NerveCenter 6.2
Models

Writing a Poll Condition n

present()

Usage: OnResponse
Syntax: present(baseObject.attribute)

Arguments:baseObject.attribute - The name of a baseObject as found in the poll’s list of Base
Objects, and an attribute of that baseObject, as listed in the poll’s list of Attributes for the selected
baseObject. For example: ifEntry.ifType or system.sysDescr.

Description: Returns 1 (true) or 0 (false), indicating whether the polled SNMP agent returns a
value for this baseObject.attribute expression.

Example: This statement fires a trigger if the poll is able to retrieve the value of ifinUcastPkts from
the agent.

if (present(ifEntry.ifInUcastPkts)) {
FireTrigger (“gotInUcastPkts”);

}

Note: The previous form of this function stated the baseObject.attribute expression first, followed by
the function name. This is still supported, but is not recommended.

if (ifEntry.ifInUcastPkts present) {
FireTrigger (“gotInUcastPkts”);

}

previous()
Usage: OnResponse

Syntax: previous(baseObject.attribute)

Arguments:baseObject.attribute - The name of a baseObject as found in the poll’s list of Base
Objects, and an attribute of that baseObject, as listed in the poll’s list of Attributes for the selected
baseObject. For example: ifEntry.ifType or system.sysDescr.

Description: Returns the prior value of the given baseObject.attribute expression. For example, if
ifEntry.ifInOctets is currently 10 and the previous value was 6, then previous(ifEntry.iflnOctets)
returns 6.

NerveCenter 6.2 Designing and Managing Behavior 173
Models

n Using Polls

start_at()
Usage: OnStart

Syntax: start_at(indexexpression)
Arguments:The value of a possible index into a table baseObject of this poll.

Description: For polls that examine a table object, using this function in the poll's OnStart
expression allows polling to start at the expressed index (instead of at the beginning of the table).
For example, ifTable uses a single integer as its index; if you want the poll to always start at index
100, then in the OnStart property sheet for the poll state “ start at(100); “. Should there not
be at that moment an exact match for the expression, then polling starts at the first available index.
For example, if a device’s ifTable were to have only index values that were multiples of 8, then “
start _at(20) “would cause the poll to attempt to start at index 20 but would actually start at
index 24.

AddNode() Function

The AddNode() function adds a node to the NerveCenter managed node list. This function can be called
from a poll condition, trap mask trigger function, or a Perl Subroutine alarm action.

Syntax: AddNode(“node name”);

Arguments: node name is the IP address of the node to add to the managed node list and must be
avalid IP address enclosed in quotes, for example, “123.123.123.123".

Description: Adds a node to the NerveCenter managed node list, with the following attributes:

o The address assigned to the node will be the address specified for the node name.
o The node property group will be assigned to the “NCDefaultGroup”

o The node community string will be assigned the community string of the node for which the poll
condition was executed.

o The node will be marked as 'managed' and 'not suppressed'

o The SNMP version of the node will be assigned the version of the node for which the poll
condition was executed.

o No action is taken if a node of the same name already exists in the node list. No validation that
the node name doesn't already exist is performed at compile time.

174 Designing and Managing Behavior NerveCenter 6.2
Models

Writing a Poll Condition n

AssignPropertyGroup() Function

You use the AssignProperty Group() function to assign a property group to a node. The function can be
called from a poll condition, a trap mask trigger function, or a Perl Subroutine alarm action. The node
affected is the node being polled, the node from which a trap arrived, or the node associated with the
trigger that caused an alarm transition (in the case of a Perl Subroutine action).

The syntax of the AssignPropertyGroup() function is shown below:
AssignPropertyGroup()
Syntax: AssignProperty Group(“property Group”)

Arguments:

property Group - The name of an existing property group.

Description: The function assigns a property group to a node.

Example: The example below shows the AssignPropertyGroup() function being used in a Perl
Subroutine alarm action. If the variable $DestStateSev (which holds the name of the NerveCenter
severity of the destination state) contains the string “Critical,” the property group of the node
associated with the trigger that caused the alarm transition is changed to CriticalGrp. The node will
now be managed by a new set of behavior models.

if ($DestStateSev eq “Critical”) {
AssignPropertyGroup (“CriticalGrp”)

DefineTrigger() Function

The DefineTrigger() function enables you to create triggers which you can assign to variables and fire
using FireTrigger() in NerveCenter Perl expressions. (In the scope of a subroutine, Perl requires you to
define a variable before you can use it.)

You can use DefineTrigger() in NerveCenter anywhere that you write Perl expressions (except for Action
Router rule conditions):

m Poll conditions

m Perl Subroutine alarm actions
m Mask trigger functions

m OpC mask trigger functions

As with triggers created with FireTrigger(), the triggers you create with DefineTrigger() are available in the
trigger lists NerveCenter displays when you are defining alarm transitions, Perl subroutines, and Action
Router rule conditions.

NerveCenter 6.2 Designing and Managing Behavior 175
Models

Using Polls

The syntax for the DefineTrigger() function is shown below:

DefineTrigger()
Syntax: DefineTrigger(“name”)

Arguments:

name - The name of the trigger in quotation marks.

Note: Trigger names can contain the following types of characters: alphanumeric, underscore, and
hyphen. No other characters are allowed. The maximum length for trigger names is 255 characters.

Description: DefineTrigger() creates a trigger which you can assign to a variable and fire using
FireTrigger().

Example one: The expression creates a trigger named “hello” which is assigned to a Perl variable
“$trig” and is then fired:

$STrig = DefineTrigger (“hello”)
FireTrigger ($Strig)

Example two: The following code excerpt is from a Perl subroutine (TestParentSetNode)
associated with the downstream alarm suppression behavior models shipped with NerveCenter.

$TriggerFlag stores the name of the trigger to be fired which depends on the status of the parent
node:

DefineTrigger ('UnReachable’) ;
DefineTrigger ('Down') ;
DefineTrigger ('Testing');

if((SParentStatus eq “Down” || $ParentStatus eq “UnReachable”) &&
S$TriggerFlag eg “NotSet”)
{
STriggerFlag = “UnReachable”;
}
elsif(SParentStatus eq “Up”)
{
$STriggerFlag = “Down”;
}
elsif (SParentStatus eq “Testing” && $TriggerFlag ne “Down”)
{
STriggerFlag = “Testing”;

FireTrigger ($TriggerFlag);

176 Designing and Managing Behavior NerveCenter 6.2
Models

Writing a Poll Condition n

FireTrigger() Function

The FireTrigger() function enables you to fire a trigger from anywhere in NerveCenter that you write Perl
expressions:

m Poll conditions

m Perl Subroutine alarm actions
m Mask trigger functions

m OpC mask trigger functions
m Action Router rule conditions

You specify the name of the trigger and optionally its subobject attribute and node attribute.

Caution: In a poll condition FireTrigger function, the subobject and node values are supplied by the poll
and can’t be overridden. For this reason, you should not attempt to provide the subobject or node
parameter when calling the FireTrigger function from a poll condition.

As with triggers created with DefineTrigger(), the triggers you create with FireTrigger() are available in the
trigger lists NerveCenter displays when you are defining alarm transitions, Perl subroutines, and Action
Router rule conditions.

The syntax for the FireTrigger() function is shown below:

FireTrigger()
Syntax: FireTrigger(“name”, [subobject], [node], [delay time])

Arguments:

name - The name of the trigger in quotation marks. Name can also be a Perl variable that is
assigned a trigger using the DefineTrigger() function. For example:

Svar=DefineTrigger (“myTrigger”) ;

FireTrigger ($var) ;

Note: Trigger names can contain alphanumerics, underscores, and hyphens. No other characters are
allowed. The maximum length for trigger names is 255 characters.

subobject - You can pass a subobject to FireTrigger() in one of two ways.
You can use a string literal, for example, “ifEntry.2”".

Second, if you called FireTrigger() from a trigger function or a Perl subroutine, you can use
the function VbObject(n). This function returns the subobject associated with the nth variable
binding in a trap or trigger.

Note: When firing a trigger from a mask trigger function, you can pass a subobject using the variable
$DefaultSubobject, which contains the subobject associated with the first variable binding in the trap.
$DefaultSubobject works only from a trap mask trigger function.

NerveCenter 6.2 Designing and Managing Behavior 177
Models

n Using Polls

node - You can pass a node to FireTrigger in one of three ways.

First, you can use the variable $NodeName, which is the default for this argument. The
variable value depends on the context in which it is used, as shown in Table 14.

Table 14: The Value of $NodeName

If SNodeName is used in a ... Its valueis ...

Poll condition The name of the node that was polled.

Trap mask trigger function The node name associated with the agent address in an SNMP trap.
Perl subroutine The trigger’'s node attribute.

Second, include the name of the node in quotation marks, for example, “MyBestRouter” or
“192.168.197.110". This string must match the name of the node as it’s listed in the
NerveCenter Node List window.

Finally, if the node name you want to pass to FireTrigger() is in a trap’s or a trigger’s variable
bindings, you can use the function VbValue(n) to retrieve that name. This function returns the
value of the nth variable binding.

delay time - the number of seconds to wait prior to firing the indicated trigger. The delay time
can vary between 0 and 2,147,483,647.

To specify a delay time without a subobject or noade name, use default value placeholders
as follows:

FireTrigger(“myTrigger’, $DefaultSubobject, $NodeName, delay time)

Description: FireTrigger() creates a trigger with the name, subobject, and node values that you
supply.

Example: The following call generates a trigger with the name “trigger” and the default subobject
and node:

FireTrigger (“trigger”);

178

Designing and Managing Behavior NerveCenter 6.2
Models

Writing a Poll Condition

in() Function

The in() function is available for use in poll conditions, trap mask trigger functions, Perl subroutines, and
Action Router rule conditions.

in()

Syntax: in(scalar, scalar, ...)
Arguments:

scalar - An scalar value in a set of scalar values (often integers representing interface types).

Description: Returns true if the value of the attribute that precedes the function is found in the set
of scalars in parentheses.

Example: This statement fires a trigger if a particular interface is part of a broadcast network:

if (ifEntry.ifType in (6,7,8,9,11,12,13,15,26,27)) {
FireTrigger (“broadcast”);

NC::AlarmCounters

This is available for use in all Perl subroutines, trap masks, action router, and poll conditions.

Name
NC::AlarmCounters
Synopsis
NC::AlarmCounters->method (key => string, type => local|global,
value => integer)
Description
A Perl based counter object. NC::AlarmCounters enables you to do the following in any Perl code in
NerveCenter:

m Increment Alarm Counters by a number other than one
m Decrement Alarm Counters by a number other than one
m Create Alarm Counters

m Set Alarm Counters

m Retrieve Alarm Counters

NerveCenter 6.2 Designing and Managing Behavior 179
Models

Using Polls

Method
new Creates/initializes the counter.
If no initial value is present, then the counter is set to zero.
If the counter is global and it already exists, 'new' creates another view into the same
counter
Returns a reference to the new object
incr Increments the counter.
If no value is present, then increment the counter by one.
Returns the new value of the counter.
decr Decrements the counter.
If no value is present, then Decrement the counter by one.
Returns the new value of the counter.
get Retrieve the specified counter.
set Assigns a value to a counter.
If no value is present, then the counter is set to zero.
Returns the new value of the counter.
clear Deletes counter and frees up memory
Arguments

Parameter Values Description

key string Optional parameter; If not specified, defaults to $AlarminstancelD
type local or m If'local' is specified, the $AlarminstancelD is appended to the key, thus
global making it 'local’ to the Alarm Instance.

m If'global' is specified, no modification is made to the key so that it may
be easily accessed via other Alarm Instances.

The default setting is 'local'.

value integer | The value to update the counter with

m If the counter already exists (and this is another view) and no value is
present, the existing value is retained.

m If novalue is specified and the counter is new, then it is initialized with
zero.

180 Designing and Managing Behavior NerveCenter 6.2
Models

Writing a Poll Condition

Examples
To use the counter functionality in NerveCenter Perl components, include the following:
use NC::AlarmCounters;

To create alocalized counter with the value of 5. This counter is only available in the alarm instance it was
created in.

my $local counter = NC::AlarmCounters->new(value => 5);

To create a global counter named errors. Default value is zero. This counter is available through any Perl
component.

my $global counter = NC::AlarmCounters->new(key => 'errors', type
=> 'global');

To create another view at the global counter errors. Modifying $alternate_counter also affects $global
counter.

my Salternate counter = NC::AlarmCounters->new(key => 'errors',
type => 'global');

To increment the global counter named error. Store new value in $current_value. Note that no key is
necessary because $global_counter is already defined with a key upon creation.

my Scurrent value = $global counter->incr();

To decrement the local counter by 5. Note that the counter's locality and key are not necessary, as they
were determined at the time of creation.

$local counter->decr(value => 5);
To clear out counter when not needed.
$local counter->clear();

$global counter->clear();

String-Matching Functions

NerveCenter provides four string-matching functions (Perl subroutines), which can be used in poll
conditions, trap mask trigger functions, OpC trigger functions, Perl subroutines, and Action Router rules.
These functions enable you to determine whether a string contains a substring or a word.

For example, you could use the following poll condition to test a system attribute.

if (ContainsWord (system.sysDescr, “Description”))

{

FireTrigger (“TriggerName”)

}

Note that the substring is enclosed in quotation marks to denote that this is a literal string, whereas the
system attribute system.sysDescr does not require quotation marks.

You can precede any of the functions with a ! to negate the value.

NerveCenter 6.2 Designing and Managing Behavior 181
Models

n Using Polls

Following is a description of each string-matching function:
CaseContainsString()

Syntax: CaseContainsString(string, substring)
Description: Retumns true if string contains substring. The match is case sensitive.

CaseContainsWord()

Syntax: CaseContainsWord(string, word)

Description: Returns true if string contains word, and word begins and ends on a word boundary.
The match is case sensitive.

ContainsString()

Syntax: ContainsString(string, substring)
Description: Returns true if string contains substring. The match is case insensitive.

ContainsWord()
Syntax: ContainsWord(string, word)

Description: Returns true if string contains word, and word begins and ends on a word boundary.
The match is case insensitive.

Using the Pop-Up Menu for Perl

There are various tasks in NerveCenter that require you to write Perl code:
m Creating a poll condition
m Creating a trap mask trigger function
m Creating an OpC mask trigger function
m Creating a Perl subroutine that will be executed by the Perl Subroutine alarm action
m Creating an Action Router rule condition

For each of these tasks, you can use not only Perl 5, but some NerveCenter functions and variables that
are appropriate to the task. Forinstance, if you’re writing a trap mask trigger function, you can use
NerveCenter functions to retrieve information about the variable bindings in the trap that caused the
trigger function to be called. You can also use NerveCenter variables that contain information about the
contents of the trap.

Designing and Managing Behavior NerveCenter 6.2
Models

Writing a Poll Condition

What functions and variables are available to you depends on the task you're performing. Therefore,
NerveCenter provides a pop-up menu in the editing area for each task that indicates which functions and
variables are applicable in that situation. Figure 26 shows the pop-up menu as it appears in the editing
area used to create a trap mask trigger function.

| NERVECENTER:Mask Definition : LinkDown o[BS
Mask Trigger Function
SNMPv2 Trap: linkDown
Source: IF-MIB
Varbinds (3)
= ifIndex
ifhidminStatus
¥ ifCperStatus
my $ifIndex = VbValue(0);
my SifAdminStatus = VbValue(1);
my S$ifCperStatus = VbValue(2):
ut
Copy
Paste
Arithmetic operators b
Legical operators b
Relational operators >
Boolean functions >
e VarBind functions > VbAttribute
Clear AddVarBind API > VbNum
Trigger functions > VbObject
Trap variables > Viialue
I Other variables > PNBS l Hebp]

Figure 26: Pop-Up Menu for Perl

The submenu being displayed lists all the variable-binding functions.

Note: In addition to listing NerveCenter functions and variables, the pop-up menus also list Perl’s
arithmetic, logical, and relational operators.

Besides serving as documentation, these pop-up menus enable you to enter text in an editing area at the
point of the cursor. For example, if you were working in the trigger-function window shown above,
selecting the menu entry VbValue would cause the characters “VbValue(“ to be written to the editing area.

To make this discussion more concrete, let’s look at an example. Let’s say that you want to write the
following trigger function:

if (SNodeName ne “troublemaker”) {
FireTrigger (“gotIt”);

NerveCenter 6.2 Designing and Managing Behavior 183
Models

n Using Polls

TO WRITE THIS TRIGGER FUNCTION, YOU WOULD

Open the Mask Definition window, and go tho the Trigger Function page.
Left-click in the Trigger Function editing area, and type if (.

Press the right mouse button, select the Trap variables submenu, and select $NodeName from
that submenu.

4. Press the right mouse, select the Relational operators submenu, and select ne from that
submenu.

Type “troublemaker”) {; then, enter a new line and four spaces.

Press the right mouse button, select the Other functions submenu, and select FireTrigger from
that submenu.

7. Typein the remainder of the trigger function.

Examples of Poll Conditions

This section presents a number of sample poll conditions and explains how the poll conditions work.

Example 1

if (system.sysLocation eq “Building 6" and
system.sysObjectID == 1.3.6.1.4.1.9.1) {
AssignPropertyGroup (“Cisco6”) ;

}

This poll condition checks to see whether a device is located in Building 6 and whether it is a Cisco
product. If the device meets these conditions, it is assigned the property group Ciscob.

184 Designing and Managing Behavior NerveCenter 6.2
Models

Writing a Poll Condition

Example 2

if (ifEntry.ifType present and
ifEntry.ifSpeed present and
ifEntry.ifInOctets present and
ifEntry.ifInUcastPkts present and
ifEntry.ifInNUcastPkts present and
ifEntry.ifInDiscards present and
ifEntry.ifInErrors present and
ifEntry.ifOutOctets present and
ifEntry.ifOutUcastPkts present and
ifEntry.ifOutNUcastPkts present and
ifEntry.ifOutDiscards present and
ifEntry.ifOutErrors present) {
FireTrigger (“ifData”);

}

This poll condition is true as long as the poll is able to read the values of these interface variables from an
agent’s MIB.

This type of poll condition is useful if you want to gather MIB data that you'll use later in generating a
report. For example, if a poll fires an ifData trigger after this poll condition is evaluated, that trigger will
contain a list of variable bindings that contains the name and value of each of these attributes. If that
trigger causes an alarm transition that has associated with it a Log to File action, these names and values
will be written to a log file. That log file can then be used as input to a reporting tool.

Example 3

if ((delta(ifEntry.ifInErrors) + delta(ifEntry.ifInDiscards) +
delta (ifEntry.ifOutErrors) + delta(ifEntry.ifOutDiscards) - 0.05 *
(delta(ifEntry.ifInErrors) + delta(ifEntry.ifInDiscards) +
delta (ifEntry.ifOutErrors) + delta(ifEntry.ifOutDiscards) + delta
(1fEntry.ifInUcastPkts)+ delta(ifEntry.ifInNUcastPkts) +
delta (ifEntry.ifOutUcastPkts) + delta(ifEntry.ifOutNUcastPkts))
> 0) == 1) {

FireTrigger (“*highErrorRate”);
}

This poll condition is true if the percentage of discarded packets on an interface is greater than five
percent during a given polling interval. This is a good example of how to use the delta function.

NerveCenter 6.2 Designing and Managing Behavior 185
Models

Using Polls

Example 4

if (ifEntry.ifType in (37)) {
FireTrigger (“typeATM”) ;
}

This poll condition evaluates to true if an interface’s if Type attribute equals 37. In other words, the
condition is true if the interface is an ATM interface. Obviously, this type of poll condition is useful for
classifying interfaces.

Example 5
if (((delta(ifEntry.ifInOctets) + delta(ifEntry.ifOutOctets) -
0.00125 * elapsed * ifEntry.ifSpeed > 0) &&
(ifEntry.ifType in (6,7,8,9,11,12,13,15,26,27))) == 1 or

((delta(ifEntry.ifInOctets) + delta(ifEntry.ifOutOctets) -

0.09375 * elapsed * ifEntry.ifSpeed > 0) &&

'(ifEntry.ifType in (6,7,8,9,11,12,13,15,24,26,27))) == 1) {
FireTrigger (“highLoad”) ;

}

This poll condition uses the delta, elapsed, and in functions. It determines whether, during the last poll
interval, the traffic on an interface on a broadcast network was greater than 1 percent or whether the traffic
on an interface on a point-to-point network was greater than 75 percent.

Documenting a Poll

This section explains how to add documentation (notes) to a poll and what should be covered in that
documentation.

186 Designing and Managing Behavior NerveCenter 6.2
Models

Documenting a Poll

How to Create Notes for a Poll

You can add notes to a poll by following the procedure outlined in this subsection.

TO ADD NOTES TO A POLL

1. From the client’'s Admin menu, choose Poll List.

NerveCenter displays the Poll List window.

B NERVECENTER:Poll List [o &)
ID] Name | Enabled I Suppressible | Property | Base Objects] Trace | A
7 AuthFail On No snmp snmp off
8 AuthQuickFail On No snmp snmp off
2 fErrorRates On No ifEntry ifEntry off
3 [IfLoadRates On No ifEntry ifEntry off
1 ifStatus On No NO_PROP ifEntry off
4 IS_lempFastPoll On No nl-ping nl-ping off
5 IS_lcmpPoll COn No nl-ping nl-ping off
11 SnmpFastPoll On No system system off
10 SnmpPoll On No system system off v

| New | Not | Clase | Export... Help

2. Select the poll you want to add a note to from the list.
3. Make sure that your poll is not enabled.

NerveCenter 6.2 Designing and Managing Behavior 187
Models

Using Polls

4. Select the Open button.
The Poll Definition window is displayed.

Poll DnHespnnseI Trace |
Pall 1D: 00002

Name IIfEuchIates
Froperty IifE ntry ;]
Part f

Poll Rate
’7|5 " Days " Hours & Minutes " Seconds
Overrun Policy |‘3kip ;I
r Suppressible Handlers

[T OnEnabled / Disabled
' Execute Perl in Global Space

I~ On Scheduled / Unscheduled

I~ On Start / End Execution

Enabled
& On o 0ff ‘ ¥ On Response
Save I Cancel | Undo Notes Help
188 Designing and Managing Behavior NerveCenter 6.2

Models

Documenting a Poll

5. Inthe Poll Definition window select the Notes button.
The Poll Notes and Associations dialog is displayed.

IfErrorRates: Poll Notes And Associations ? X

TRIGGERS FIRED ~
HighEnorR ate
MediumE rarR ate
LowErmorR ate

ALARMS TRANSITIONED BY TRIGGERS

Alarm Name Trigger Name
IfErrorStatus HighEnorRate
IfEmorStatus MediumE rorR ate
IfErrorStatus LowEmroiR ate
v
DESCRIPTION A

Detects enor rates on interfaces:
Greater than 5% fires “HighErorR ate” trigger.

Between 1% and 5% fires "MediumEnorRate' trigger.
Less than 1% fires "LowErorRate" trigger.
RELATED POLLS

| Cancel | Help |

6. Enteryour documentation for the poll by typing in this dialog. See the section What to Include in
Notes for a Poll on the next page for information on what type of information you should enter here.

7. Select the OK button at the bottom of the Poll Notes and Associations dialog.

The Poll Notes and Associations dialog is dismissed.

8. Select the Save button in the Poll Definition window.

Your notes are saved to the NerveCenter database. They can now be read by anyone who opens
the definition for your alarm and selects the Notes button.

NerveCenter 6.2 Designing and Managing Behavior 189
Models

n Using Polls

What to Include in Notes for a Poll

The top pane of the Notes and Associations dialog box contains read-only information about the poll. This
data is retrieved from the NerveCenter database and, therefore, may change from time to time when the
poll’s definition is modified in the database.

This information includes:
m Triggers that are fired by the poll.
m Which alarms are transitioned by these triggers.
m What other NerveCenter objects fire the same triggers.

The bottom pane contains a general description of the poll and any useful information. Users with
administrator rights can add or edit this field when creating or customizing polls. Comments should
include anything other users might find helpful to know about NerveCenter polls. Following are some
suggestions:

m Purpose of the poll
m Associated alarms
m Description of the poll condition
m The poll’s property

For example, let’s consider the poll definition shown in Figure 27.

B NERVECENTER:Poll Definition o] -E| =]
Poll IDnHesponseI Trace |
Pall 1D:

MName |EsEpuB usy

Property | lsystem Ll

Port ||

Poll Rate
5 " Days Hous & Minwtes Seconds

Ovenun Policy | Skip =l

v Suppressible Handlers
" OnEnabled / Disabled

¥ Execute Per in Global Space
™ OnScheduled / Unscheduled
™ OnStart / End Execution

Enabled
Con & 0K ~
Save | Cancel | Unda | MNotes | Help
Figure 27: CsCpuBusy Poll
190 Designing and Managing Behavior NerveCenter 6.2

Models

Enabling a Poll

The notes for this poll should look something like this:
Purpose: Detects a busy CPU on a Cisco device

Related alarms: CsCpuUtilization. This alarm tracks CPU
utilization on a Cisco device and characterizes it as normal,
high, or very high. This poll’s trigger, CsCpuBusy, causes a
transition from Ground to High.

Poll Condition: If the value of lsystem.avgBusy5 is between 76 and
90, the poll fires its true trigger. The variable avgBusyb5
contains an average percentage of CPU utilization. This average is
a five-minute exponentially decayed moving average.

Property: lsystem

Enabling a Poll

For a poll to become functional, several conditions must be met:
m The poll must be enabled.

m The poll's property must be in the property group associated with one or more nodes, and if those
nodes are suppressed, the poll must not be suppressible.

m There must be an enabled alarm with a pending state transition that can be affected by the poll.

This section explains how to enable a poll.

TO ENABLE A POLL

1. From the client’'s Admin menu, choose Poll List.
NerveCenter displays the Poll List window.

B NERVECENTER:Poll List [E=2[E=R "2
D [Name l Enabled | Suppressible I Property [Base Objects [Trace l A
7 AuthFail On No snmp snmp off
8 AuthQuickFail On No snmp snmp off
2 KfErrorRates On No ifEntry ifEntry off
3 IfLoadRates Cn No ifEntry ifEntry off
1 ifStatus COn No NO_PROP ifEntry off
4 IS_lcmpFastPoll On No nl-ping nl-ping off
5 IS_lcmpPoll On No nl-ping nl-ping off
11 SnmpFastPoll On No system system off
10 SnmpPoll On No system system off h

| New | | Close Export... Help

2. Select the poll you want to enable from the list.
The Open button becomes enabled.

NerveCenter 6.2 Designing and Managing Behavior 191
Models

n Using Polls

3. Select the Open button.

The Poll Definition window is displayed and shows the definition of the poll you selected.

B NERVECENTER:Poll Definition oG-S
Poll | OrResponse | Trace |
Poll ID: 00007
Name l.-‘iu,w'uFaM
Property I snmp j
Port |
Poll Rate

[0 Coms €Hous & Miues €

Owerrun Policy | Skip ;I
[Suppre : Handlers
O
vV Ex
r
-
Enabled
& 0n C Of I~
Save | Cancel | Undo | Notes Help

4. Select the On radio button in the Enabled frame.
5. Select the Save button.

The poll is now enabled.

Note: You can also enable a poll by selecting the poll in the Poll List window, pressing the right mouse
button while your cursor is over the entry for the poll, and choosing On from the popup menu.

192 Designing and Managing Behavior NerveCenter 6.2

Models

Using Trap Masks

Trap masks give you the ability to screen SNMP traps sent by managed nodes and received by
NerveCenter for traps of interest. This chapter explains in detail how to define and use trap masks.

About Trap Masks

Figure 28 depicts the role that a trap mask plays in a behavior model.

review - image?

M
Figure 28: Role of a Trap Mask in a Behavior Model

Note that a trap mask is like a poll in that it is tied to one or more alarms by the triggers it can fire. If there
are no pending alarm transitions that the mask can affect, the mask is disabled in the sense that it will not
be applied to any incoming SNMP traps.

Assuming that the mask can affect an alarm transition, the mask is applied to SNMP traps as they arrive
and determines whether it should fire a trigger in response to the trap. A mask can fire a trigger in one of
two ways:

m A trap mask can fire a simple trigger. A mask designed to fire this type of trigger looks only at the
Enterprise, Generic trap, and Specific trap fields in a trap’s Protocol Data Unit (PDU). If these fields
meet predefined conditions, the mask fires a trigger. All the triggers that this mask ever fires will
have the same name.

m A mask can also fire a trigger from a trigger function by calling the FireTrigger() function. This type
of mask looks at the fields mentioned above to determine whether it should call its trigger function.
If called, this trigger function generally looks at the trap’s variable bindings and may fire one of
several triggers depending on the contents of the variable bindings.

If a mask fires atrigger, that trigger interacts with the alarm system just as a trigger fired by a poll does. If
the necessary attributes of the trigger match the corresponding attributes of a pending alarm transition, a
state transition occurs.

NerveCenter 6.2 Designing and Managing Behavior 193
Models

Using Trap Masks

How NerveCenter Decodes SNMPv2c/v3 Traps

Because SNMPv2c/v3 traps use a different architecture that extends security and administration, the
mechanics of how NerveCenter receives an SNMPv2c/v3 trap is different than how it receives an
SNMPv1 trap.

When an SNMPV3 trap is received by the NerveCenter Server, it attempts to decode the trap. If the
SNMP engine sending the trap is not registered, then NerveCenter installs the engine.

If the user name that is listed in the received trap’s header does not match that for the matching node’s
User Name field, then the trap is not processed and a ‘Configuration Mismatch’ error is written the V3
Operations Log.

Next, if the user name matches and the security level of the received trap is other than NoAuthNoPriv,
NerveCenter tries to match the authentication value against the selection and key given for the matching
node. If the authentication cannot be matched, then the trap is not processed and a ‘Configuration
Mismatch’ error is written to the V3 Operations Log.

Finally, if the authorization portion of the received trap is successful, then NerveCenter checks the trap’s
v3 Context value. If this does not match the Context setting in the node, then NerveCenter does not
process the trap and writes a ‘Configuration Mismatch’ to the V3 Error Log.

B NERVECENTER:Node Definition : nc6200-centosé-g o[3]

Node | Alarms | Alarm Instances | MIB Query | Parents SNMP | ICMP | Trace ¢

SNMPv3 - Classify Polling

Use Defaults ¥
Port 161 Judp Use GetBulk W Relry

Interval

SHNMP v1/v2e [seconds)
Attempts

Read Community | public

Wirite Community |public Timeout
| [seconds)

SNMP v3

Select User |Local User « | Security Level |AuthPriv -
Local User
Lser Name Inewecentm

Authentication | 5HA-1 - Set Auth Key
Privacy AESAB v

Context |

Engine ID |BD:UU:DU:4e:Dd:Ee:53‘.35:32:30:30:2-:1:53:55:59:?# Parse | Fetch

Status |

Save I Cancel | Undo | Notes | Help |

For more information about SNMPV3 in NerveCenter, see "Configuring SNMP Settings for Nodes" on
page 99.

194 Designing and Managing Behavior NerveCenter 6.2
Models

How NerveCenter Decodes ICMP Events n

How NerveCenter Decodes ICMP Events

When ICMP event processing is enabled, each ICMP message received is transposed to an SNMPv1
trap and made available for processing. Such traps are built with a defined set of attributes, and the
varbinds are prepared using the attributes of the nl-ping base object. This trap, nl-icmp-event, is defined in
the NETLABS-PING-MIB file (nl-ping.asn1).

nl-icmp-event TRAP-TYPE
ENTERPRISE openservice -- “1.3.6.1.4.1.78
VARIABLES { nl-ping-response, nl-ping-uctype, nl-ping-uccode,
nl-ping-roundtrip, nl-ping-senderip, nl-ping-originig
DESCRIPTION “ICMP event parameters formatted as SNMPvl Trap”
::= 1000

The definition of nl-icmp-event can be used to construct a trap mask, as per any other defined SNMP
notification. Handling and processing proceeds identically to the manner given for SNMP Trap events.

Note: A recommended trap mask definition for handling nl-icmp-event trap occurrences can be found in
the importable model ICMP-Event-Processing. This model loads the NC-ICMP-Event trap mask as well
as a sample alarm, NC-PingMonitor.

NerveCenter 6.2 Designing and Managing Behavior 195
Models

Using Trap Masks

Listing Trap Masks

This section explains how to display a list of the trap masks currently defined in the NerveCenter
database. The section also explains how to view the definition of a particular trap mask.

For information on creating a new trap mask, see Defining a Trap Mask on page 198.

TO DISPLAY A LIST OF TRAP MASKS AND THEN DISPLAY A PARTICULAR MASK’S DEFINITION

1. From the client’'s Admin menu, choose Mask List.
The Mask List window is displayed.

B NERVECENTER: Mask List [o] o=
D I Name I Enabled | Trap I From I Enterprise ~
14 AllTraps On AllTraps
15 AllTraps-v1 On AllTraps
12 AuthFail Off authenticationFailure (v2) SNMPv2-MIB
13 AuthFail-v1 Off AuthenticationFailure (v1) RFC-1215
10 ColdStart Off coldStart (v2) SNMPv2-MIB
1" ColdStart-v1 Off ColdStart (v1) RFC-1215
8 LinkDown Off linkDown (v2) IF-MIB
9 LinkDown-v1 Off LinkDown (v1) RFC-1215
6 LinkUp Off linkUp (v2) IF-MIB
7 LinkUp-v1 Off LinkUp (v1) RFC-1215 v
< >

Mew | MNotes | Cloze | Export... | All Traps... | Help |

This window lists all NerveCenter masks and provides a brief definition of each. For each mask,
the window specifies a name and the following information:

o

Whether the mask is currently enabled

o The generic trap the mask is looking for

o

The enterprise from which the trap must come before the mask will fire a trigger
o The name of the mask’s simple trigger or an indication that the mask uses a trigger function

2. Select a mask from the mask list.

196 Designing and Managing Behavior NerveCenter 6.2
Models

Listing Trap Masks

3. Select the Open button.
NerveCenter displays the Mask Definition window.

B NERVECENTER:Mask Definition : LinkDown-v1 =3 E=n ™
Mask l Trigger Function]
~Enabled———
Name |IEISIE] MaskID: 00009 ¢ gn & QOf
Definition [LirkDown [v1) FFC-1215 ~|
[~ Enterprise
. Filter OnEnterprise scope I~ € From € Fron
Enterprise
~ SNMP Version Trigger Type
41 " v2Civ3 " Trigger Function
Generic @ Simple Trigger
|LinkDown = 2 ~| Simple Trigger:
linkDown
Specific I ;J
I'1 [Translate toV2//3 Format
Trap OID ~ Mode Selection [+1 only)
I — o _| & Agent Address [default)
enterprse_ono b
I ‘ " |IP Source Addiess
Save | Cancel | Undo | Mates | Help |

The mask defined in this figure is named LinkDown. It is looking for a generic trap 2 from any
managed node and will fire the simple trigger linkDown if it finds one.

NerveCenter 6.2 Designing and Managing Behavior 197
Models

Using Trap Masks

Defining a Trap Mask

This section outlines the procedure for creating a trap mask.

TO DEFINE A NEW TRAP MASK

1. From the client’'s Admin menu, choose Mask List.
The Mask List window is displayed.

B NERVECENTER:Mask List =N <
ID I Name I Enabled | Trap | From | Enterprise ~
14 AllTraps On AllTraps
15 AllTraps-v1 On AllTraps
12 AuthFail Off authenticationFailure (v2) SNMPv2-MIB
13 AuthFail-v1 Off AuthenticationFailure (v1) RFC-1215
10 ColdStart Off coldStart (v2) SNMPv2-MIB
1 ColdStart-v1 Off ColdStart (v1) RFC-1215
8 LinkDown Off linkDown (v2) IF-MIB
9 LinkDown-v1 Off LinkDown (v1) RFC-1215
6 LinkUp Off linkUp (v2) IF-MIB
7 LinkUp-v1 Off LinkUp (v1) RFC-1215 v
R4 >
New Notes Close Export... All Traps... Help
198 Designing and Managing Behavior NerveCenter 6.2

Models

Defining a Trap Mask

2. Select the New button.
The Mask Definition window appears.

B NERVECENTER:Mask Definition = EoR =™
Mask l Trigger Function |
- Enabled
Name || Mask ID: New " On & 0ff
Definition | l]
Enterprise
F E D F @
Enterprise
SNMP Version ~ Trigger Type
e 1 C v2C/H3 &7 gger Functior
Generic € Simple Trigge
| ;J Simple Trigger:
Specific | ;I
|_ : [7 Translate toW2/¢3 Format
Trap OID [Node Selection [v1 only]
I _] ' Agent Addiess [default)
" IP Source Address
Save | Cancel | Undo | Notes | Help

3. Inthe Name text field, type a unique name for the trap mask.

Note: The maximum length for trap mask names is 255 characters. A trap mask name should describe
the type of trap the mask is looking for, for example, “ColdStart.”

4. From the Generic list box, select a generic trap type.

Before a trap mask can fire a trigger, the value of this field must match the value of a trap’s Generic
trap field, which may contain any of the enumeration constants shown in the following table:

Constant Meaning

coldStart (0) Signifies that the sending protocol entity is re-initializing itself such that the
agent'’s configuration or the protocol entity implementation must be altered.

warmStart (1) Signifies that the sending protocol entity is re-initializing itself such that neither
the agent configuration nor the protocol entity implementation is altered.

NerveCenter 6.2 Designing and Managing Behavior 199
Models

n Using Trap Masks

Constant Meaning

linkDown (2) Signifies that the sending protocol entity recognizes a failure in one of the

communication links represented in the agent’s configuration.

The trap PDU of type linkDown contains as the first element of its variable
bindings the name and value of the ifindex instance for the affected interface.

linkUp (3) Signifies that the sending protocol entity recognizes that one of the

communication links represented in the agent’s configuration has come up.

The trap PDU of type linkUp contains as the first element of its variable bindings
the name and value of the ifiIndex instance for the affected interface.

(4)

authenticationFailure | Signifies that the sending protocol entity is the addressee of a protocol message

that is not properly authenticated.

egpNeighborLoss (5) | Signifies that an EGP neighbor for whom the sending protocol entity was an

EGP peer has been marked down and that the peer relationship no longer exists.

The trap PDU of type egpNeighborLoss contains as the first element of its
variable bindings the name and value of the egpNeighAddr instance for the
affected neighbor.

(6)

enterpriseSpecific Signifies that the sending protocol entity recognizes that an enterprise-specific

event has occurred. The Specific trap field identifies the particular trap that
occurred.

Note: The above definitions are taken from RFC1157.

If you select EntSpecific = 6 (an enterprise specific trap), the Specific text field is enabled, and you
must enter a vendor-specific trap number in that field.

If you select AllTraps = -1, the mask will disregard the contents of each trap’s Generic trap field
when looking for traps of interest. That is, any generic trap type in the trap meets the trap mask’s
requirement.

If you want the trap mask to examine the contents of a trap’s Enterprise field, follow these
directions:

a. Select the Filter on Enterprise scope checkbox.
Controls in the Enterprise group box become enabled.
b. Select one of the following radio buttons:

o From—specify that the trap’s Enterprise field must contain an OID that either matches
the OID in your mask’s Enterprise field, or is subordinate to it.

o From Only—indicate that the trap’s enterprise must match the mask’s enterprise
exactly.

c. Inthe Enterprise text field, enter an OID, or a name that maps to an OID.

If the trap NerveCenter will process is an SNMP version 2c or 3 trap, select the v2C/v3 radio
button.

For SNMPV1 traps, if your mask’s generic trap type is 6 (enterprise specific), entera
vendor-specific trap number in the Specific text field.

200

Designing and Managing Behavior NerveCenter 6.2
Models

Defining a Trap Mask n

Before the mask can fire a trigger, the number you enter in the Specific field must match the value
of a trap’s Specific trap field.

Note: To determine what enterprise specific traps an SNMP agent can produce, consult the vendor’s
ASN. 1 files or other documentation.

8. For SNMPv2c or v3 traps, enter the trap OID.

You can select one of the OID values, choose All Traps, or type the value for a particular
enterprise trap OID. SNMPv3 trap OID values map to generic traps as shown below.

Trap Generic Value SnmpTrapOID.0
coldStart 0 1.3.6.1.6.3.1.1.5.1
warmStart 1 1.3.6.1.6.3.1.1.5.2
LinkDown 2 1.3.6.1.6.3.1.1.5.3
linkUp 3 1.3.6.1.6.3.1.1.5.4
AuthFail 4 1.3.6.1.6.3.1.1.5.5
EgpNeighLoss 5 1.3.6.1.6.3.1.1.5.6

9. Select one of the Trigger Type radio buttons:

o Simple Trigger—if the values in your mask’s Generic, Enterprise, and Specific fields are
sufficient to define the trap you are looking for.

> Trigger Function—if you need to specify additional information: for example, the values of
variable bindings.

If you select the Simple Trigger radio button, the Simple Trigger combo box is enabled.

10. InStep 9, if you selected:

o Simple Trigger—enter a trigger name in the Simple Trigger field. You can either type in the
name of a new trigger or choose a trigger from the list of existing triggers.

o Trigger Function—perform the following:

a. Select the Trigger function tab, and enter a trigger function on the Trigger Function page.

This trigger function is a Perl subroutine that you can use to check the values of variable
bindings or examine other pertinent information and to fire appropriate triggers. For complete
information on writing trigger functions, see the section Writing a Trigger Function on the next

page.
b. If youwant to use the shared Perl interpreter, select the Execute Perl in Global Space
checkbox.
NerveCenter 6.2 Designing and Managing Behavior 201

Models

n Using Trap Masks

Note: If you select Execute Perl in Global Space, the poll condition executes in a shared Perl
interpreter. You can use Global variables in your poll condition to share information between other Perl
routines such as trigger functions or Perl subroutines, however, Perl intensive poll conditions may
impede NerveCenter’s performance.

If you do not select Execute Perl in Global Space, the poll condition executes in a Perl interpreter
dedicated to poll conditions. This will improve NerveCenter’s performance, however you cannot use
global variables in your poll condition to share information between other Perl routines such as trigger
functions or Perl subroutines.

For more information about the various Perl interpreters, see NerveCenter and Perl on page 45.

11. Select the Save button at the bottom of the Mask Definition window to save your mask.

Note: Remember that you must enable the trap mask (by setting Enabled to On) before usingitina
behavior model. While the mask is disabled, it is not used in the examination of any incoming traps. This
means that any behavior models that use this trap mask as the sole source of triggers are also disabled.

Writing a Trigger Function

If a mask cannot describe the type of trap it is looking for by specifying the Generic trap contents,
Enterprise, and Specific trap fields, it must use a trigger function. This Perl function can include additional
conditions that the trap must meet, and it can fire different triggers as appropriate.

Most trigger functions are very similar in structure. They follow this pattern:

if (conditionl) {
FireTrigger (arguments) ;
}
elsif (conditionZ2) {
FireTrigger (arguments) ;
}
else {
FireTrigger (arguments) ;

}

The conditions, which can be arbitrarily complex, generally test the contents of a trap’s variable bindings.
However, they can test other information as well; for example, a condition can determine whether a trap
came from a particular node. The FireTrigger() function fires a trigger, whose name, subobject, and node
you can control.

Note: The maximum length for trigger names is 255 characters.

202

Designing and Managing Behavior NerveCenter 6.2
Models

Writing a Trigger Function n

To assist you in writing trigger functions, NerveCenter provides:

m A set of functions that enable you to examine the contents of a trap’s variable bindings and to fire
triggers, among other things

m A set of predefined variables that give you access to information about the trap you're examining,
such as the community string in the trap’s SNMP message

m A pop-up help menu in the trigger function editing area that lists all the NerveCenter functions and
variables available for use in a trigger function.

For further information about these predefined functions and variables and the pop-up help menu, see the
following sections:

m Functions for Use in Trigger Functions below
m Variables for Use in Trigger Functions on page 207
m Using the Pop-Up Menu for Perl on page 182

Also, see the section Examples of Trigger Functions on page 208. This section presents several sample
trigger functions that show a number of the functions and variables being used in context.

Functions for Use in Trigger Functions

NerveCenter provides a number of functions (actually Perl subroutines) that facilitate the writing of trigger
functions. The list below indicates what types of functions are available and where you can find detailed
information about each function:

m Variable-binding functions. These functions enable you to determine the number of variable
bindings in a trap’s variable-binding list and to obtain information about each variable binding. For
instance, you can retrieve the subobject and attribute associated with a variable-binding object and
the value of a variable-binding object.

For reference information about these functions, see the section Variable-Binding Functions on the
next page.

m AddNode(). This function enables you to add a node to the NerveCenter managed node list from a
NerveCenter Perl expression.

For reference information about this function, see the section AddNode() Function on page 206.

NerveCenter 6.2 Designing and Managing Behavior 203
Models

n Using Trap Masks

String-matching functions. These functions enable you to determine whether a string contains
another string or a particular word. The functions are useful in conditions that test the value of a
variable binding for a substring.

For reference information about these functions, see the section String-Matching Functions on

page 181.

DefineTrigger(). This function enables you to create triggers which you can assign to variables and
fire using FireTrigger() in NerveCenter Perl expressions.

For reference information about this function, see the section DefineTrigger() Function on

page 175.

FireTrigger(). This function enables you to fire a trigger from your trigger function. You can specify
the name, subobject, and node attributes of the trigger.

For reference information about this function, see the section FireTrigger() Function on page 177.
AssignPropertyGroup(). This function enables you to assign the node that sent atrapto a
property group.

For reference information about this function, see the section AssignProperty Group() Function on

page 175.

NC::AlarmCounters. This function enables you to do any of the following: increment alarm
counters by a number other than one, decrement alarm counters by a number other than one, create
alarm counters, set alarm counters, and retrieve alarm counters. For reference information about
this function, see the section NC::AlarmCounters on page 179.

NC::AlarmCounters are independent of and not related to the alarm action Alarm Counter. See
Alarm Counter on page 271 for details.
in(). This function enables you to determine whether one scalar value is in a set of scalar values.

For reference information about this function, see the section in() Function on page 179.

Variable-Binding Functions

Before looking at the variable-binding functions, let’s make sure that we're using the same terminology.

When a trap arrives, NerveCenter looks at the trap’s variable bindings and, for each variable binding, it
sees an object and a value.

Object Value

1.3.6.1.2.1.1.1.0 “Windows Workstation”

Figure 29: Variable Binding

In this case, the object is the OID encoding of the object type (sysDescr) plus an instance, and the value
is a string that describes the system.

204

Designing and Managing Behavior NerveCenter 6.2
Models

Writing a Trigger Function n

When NerveCenter sees this variable binding, it stores the following information. The portion of the OID
that corresponds to the system group is stored as the binding’s base object, and the instance (0) is stored
as the binding’s instance. When concatenated, the base object and the instance form what NerveCenter
calls a subobject.

Object Value

1.3.6.1.2.1.1. .OD “Windows Workstation”

Base object + Instance = Subobject (system.0)

Figure 30: Base Objects, Instances, and Subobjects
The variable sysDescr is stored as the binding’s attribute.

Object Value

1.36.1.21.1.1.0 “Windows Workstation”

Attribute (sysDescr)

Figure 31: Attributes

Finally, the value “Windows Workstation” is stored as the binding's value.

The variable-binding functions give you access to a binding’s subobject, attribute, and value. There’s also
a function that returns the number of variable bindings in a trap or trigger.

Each of the variable-binding functions is explained below:

VbAttribute()
Syntax: VbAttribute(index)

Description: Returns the attribute from the variable binding with an index of index. The first
variable binding has an index of 0.

VbNum()
Syntax: VbNum()

Description: Returns the number of variable bindings in the trap’s variable-binding list.

NerveCenter 6.2 Designing and Managing Behavior 205
Models

n Using Trap Masks

VbObject()
Syntax: VbObject(index)

Description: Returns the subobject from the variable binding with an index of index. The first
variable binding has an index of 0.

VbValue()
Syntax: VbValue(index)

Description: Returns the value from the variable binding with an index of index. The first variable
binding has an index of 0.

AddNode() Function

The AddNode() function adds a node to the NerveCenter managed node list. This function can be called
from a poll condition, trap mask trigger function, or a Perl Subroutine alarm action.

Syntax: AddNode(“node name”);

Arguments: node name is the IP address of the node to add to the managed node list and must be
avalid IP address enclosed in quotes, for example, “123.123.123.123".

Description: Adds a node to the NerveCenter managed node list, with the following attributes:

o Node name must be a valid IP address enclosed in quotes (for example “192.168.1.1").

o The address assigned to the node will be the address specified for the node name.

o The node property group will be assigned based on the enterprise ID indicated by the trap.
o The node community string will be assigned based on the community indicated by the trap.
o The node will be marked as 'managed' and 'not suppressed'

o The SNMP version of the node will be assigned based on the version of the trap received. A
version 1 trap will create a version 1 node, a V2C trap will create a V2C node.

o No action is taken if a node of the same name already exists in the node list. No validation that
the node name doesn't already exist is performed at compile time.

206

Designing and Managing Behavior NerveCenter 6.2
Models

Writing a Trigger Function

Variables for Use in Trigger Functions

NerveCenter defines several variables for use in trap mask trigger functions. For the most part, these
variables contains the values of the fields in a trap’s Protocol Data Unit (PDU), with the exception of the
variable bindings.

B NERVECENTER:Mask Definition oo]
Mask Trigger Function
Cut
Copy
Paste
Arithmetic operators >
Legical operators >
Relational operators >
Boolean functions >
VarBind functions ’
AddVarBind API >
Trigger functions >
Trap variables > SNodeName (SNODE)
Other variables > $TrapPduSourceAddress
$TrapPduAgentAddress
Clear | Edit | W Exe $TrapPduCommunity (§TCS)
$TrapPduEnterprise (STEN)
$TrapPduGenericNumber (STGN)
Save | Cancel | Undo $TrapPduSpecificNumber (STSN)
$TrapPduTime (STTN)
$TrapType
$TrapOid (STVN)
$TrapVersion
NerveCenter 6.2 Designing and Managing Behavior 207

Models

n Using Trap Masks

The complete list of variables that you can use in a trap mask trigger function is shown in Table 15

Table 15: Variables Used in Trigger Functions

AVETE o] [2) Description

$NodeName The name of the node that was the source of the trap
$TrapOid The TrapOID value of a SNMPv2c/v3 Trap or Inform.
$TrapPduAgentAddress | The IP address of the SNMP agent that sent the trap
$TrapPduCommunity The community name included in the SNMP message
$TrapPduEnterprise An OID representing the object that generated the trap
$TrapPduGenericNumber | The generic trap type

$TrapPduSourceAddress

The IP Address given in the received trap messages IP Header.

$TrapPduSpecificNumber | A specific trap code

$TrapPduTime The time, in hundredths of a second, between the last initialization of the
network entity and the generation of the trap

$TrapType Will be either “Trap” or “Inform”, depending on the received trap’s type.

$TrapVersion Will be one of “17, “2” or “3” depending on the version of SNMP found in

received trap.

Examples of Trigger Functions

This section presents several trigger functions and explains what the functions do.

Example 1

if (SNodeName ne “troublemaker”) {
FireTrigger (“gotIt”);
}

If the node that sent the trap is any node except troublemaker, issue a trigger named gotlt. This example
would be useful if you had a device sending inappropriate traps. The trigger function would allow you to
pay attention to a trap only when it came from other, more dependable, devices.

Example 2

if (system.sysContact eqg “Tom Jones”) {
FireTrigger (“jonesJob”) ;

} else {
FireTrigger (“otherAdmin”) ;

}

If the first variable binding containing the sysContact attribute has the value “Tom Jones,” a jonesJob
trigger is issued. Otherwise, an otherAdmin trigger is issued.

208

Designing and Managing Behavior NerveCenter 6.2

Models

Writing a Trigger Function

Example 3

if (snmp.snmpInBadCommunityNames > 25) {
FireTrigger (“tooManyIntrusions”, VbObject(2));
}
If the snmplnBadCommunityNames attribute is found in one of the variable bindings, its value is checked.
If there were at least 26 attempts to communicate with the trap’s node without the proper community

string before the trap was issued, a tooManylIntrusions trigger is issued. The subobject assigned to the
trigger is the subobject associated with the third variable binding.

This would be an effective way to ignore authorization traps until they became significant.

Example 4

if (ContainsString(VbValue(2)), “crucial message”) {
FireTrigger (“trig”);
}
If the third variable binding, assumed here to be defined as a DisplayString, contains the string “crucial

message,” the trigger trig is generated. This type of trigger function is useful when text messages are sent
to NerveCenter via traps.

Example 5
if ((VbNum() == 5) && (.8 * VbValue(3) < VbValue(4))) {
FireTrigger (“diskSpaceLow”, VbObject (1)) :;
} elsif ((VbNum() == 4) && (VbValue(3) > 400000000)) {

FireTrigger (“diskSpacelLow”, VbObject(l));
}

This example assumes that there is an enterprise-specific trap that contains information about disk space
use. An older version of the vendor’s agent sent a trap with four variable bindings, the last variable binding
containing the amount of disk space used (VbValue(3) > 400000000)). A newer version of the agent sends
traps with five variable bindings: the last binding contains disk space used, and the next to last contains
the disk space capacity. If a trap arrives from a newer agent, you want to fire a trigger only if available disk
space is less than 20 percent. This trigger function not only enables you to ignore noncritical situations,
but handles all releases of your vendor’s device.

NerveCenter 6.2 Designing and Managing Behavior 209
Models

n Using Trap Masks

Example 6

if (Vbvalue (0) == 1) {

FireTrigger (“thisProblem”, VbObject(2), VbValue(l));
} elsif (VbValue (0) == 2) {

FireTrigger (“thatProblem”, VbObject (2), VbValue(l));
} elsif (VbValue(0) == 3) {

FireTrigger (“otherProblem”, VbObject(2), VbValue(l));
} else {

FireTrigger (“huhProblem”, VbObject (2), VbValue(l));
}

This example is illustrates how to deal with a class of traps sent by some vendors in which the trap’s
source and specific number are constant. These vendor's agents insert a problem identifier and the
source of the problem into the trap’s variable bindings. This example assumes that the problem identifier
is in the first variable binding, the source node is in the second, and any other associated data follows in
successive positions.

Documenting a Trap Mask

This section explains how to add documentation (notes) to a trap mask and what should be covered in
that documentation.

m How to Create Notes for a Trap Mask on the facing page

m What to Include in Notes for a Trap Mask on page 214

210

Designing and Managing Behavior NerveCenter 6.2
Models

Documenting a Trap Mask

How to Create Notes for a Trap Mask

You can add notes to a trap mask by following the procedure outlined in this subsection.

TO ADD NOTES TO A TRAP MASK

1. Fromthe client’s Admin menu, choose Mask List.
NerveCenter displays the Mask List window.

3 NERVECENTER:Mask List =R
ID I Name Enabled | Trap I From I Enterprise ~
14 AllTraps On AllTraps
15 AllTraps-vi On AllTraps
12 AuthFail Off authenticationFailure (v2) SNMPv2-MIB
13 AuthFail-v1 Off AuthenticationFailure (v1) RFC-1215
10 ColdStart Off coldStart (v2) SNMPv2-MIB
1 ColdStart-v1 Off ColdStart (v1) RFC-1215
8 LinkDown Off linkDown (v2) IF-MIB
9 LinkDown-v1 Off LinkDown (v1) RFC-1215
6 LinkUp Off linkUp (v2) IF-MIB
7 LinkUp-v1 Off LinkUp (v1) RFC-1215 v
< >
New Notes Close Export... &ll Traps... Help
NerveCenter 6.2 Designing and Managing Behavior 211

Models

Using Trap Masks

2. Select the Open button.
The Mask Definition window appears.

B NERVECENTER:Mask Definition : LinkDown-v1 ===
Mask I Trigger Function |
~Enabled———
Name MaskID: 00009 ¢ gn & QOf
Definition [LirkDown [v1) FFC-1215 ~|
[~ Enterprise
_ Filer On Enterprise scope | € From € Fom On
Enterprise
~ SNMP Version Trigger Type
41 O v2Civ3 " Trigger Function
Generic @ Simple Trigger
|LinkDown = 2 ~| Simple Trigger:
linkDown
Specific I ;I
I_.I [Translate toV2//3 Format
Trap OID ~ Node Selection (v1 only]
[evtermn - e & Agert Address (default)
enterprse_ono v
I ‘ " |IP Source Addiess
Save | Cancel | Undo Mates Help

3. Make sure that your mask is not enabled.

212 Designing and Managing Behavior NerveCenter 6.2
Models

Documenting a Trap Mask

4. Inthe Mask Definition window, select the Notes button.

The Mask Notes window is displayed.

LinkDown-v1: Mask Notes And Associations ? X
TRIGGERS FIRED
linkD own
ALARMS TRANSITIONED BY TRIGGERS
Alarm Name Trigger Name
[fLinkUpD own linkD own
OTHER OBJECTS THAT FIRE SAME TRIGGERS
Object Mame Object Type Trigger Name
LinkDown Mask link D own
LinkDown-1 Mask link D own

oK | Cancel Help

5. Enter your documentation for the trap mask by typing in this window. See the section What to
Include in Notes for a Trap Mask on the next page for information on what type of information you
should enter here.

6. Select the OK button at the bottom of the Mask Notes window.
The Mask Notes window is dismissed.

7. Select the Save button in the Mask Definition window.

Your notes are saved to the NerveCenter database. They can now be read by anyone who opens
the definition for your mask and selects the Notes button.

NerveCenter 6.2 Designing and Managing Behavior 213
Models

n Using Trap Masks

What to Include in Notes for a Trap Mask

The top pane of the Notes and Associations dialog box contains read-only information about the mask.
This data is retrieved from the NerveCenter database and, therefore, will change when the mask’s
definition is modified in the database.

This information includes:
m Triggers that are fired by the mask.
m Which alarms are transitioned by these triggers.
m What other NerveCenter objects fire the same triggers.

The bottom pane contains a general description of the mask and any useful information. Users with
administrator rights can add or edit this field when creating or customizing masks. Comments should
include anything other users might find helpful to know about NerveCenter masks. Following are some
suggestions:

m Provide a brief description of the mask, including its purpose and function.
m List vendor-specific information, if applicable.

m State the conditions under which the trigger will fire an alarm instance. If a trigger function is
defined, provide a brief description of the function.

We recommend that you include the following information in the notes for your trap mask:
m Purpose of the mask
m Associated alarms

m Vendor-specific information (if appropriate)

Description of the trigger function (if appropriate)

214

Designing and Managing Behavior NerveCenter 6.2

Models

Documenting a Trap Mask

For example, let’s consider the trap mask shown in Figure 32 and Figure 33

Mask I Trigger Function]

Name |If-FrameF’VEUpD own

Enabled

Definition |

=

Enterprise

Enterprise

Filter On Enterprise scope ¥ From

" From Only

|1.3,s.1.2.1.1u32|

— SNMP Yersion
[

Generic

 v2CA3

~— Trigger Type
' Trigger Function

" Simple Trigger

|EntSpecific = &

Specific

Simple Trigger:

I

=l

[Translate to¥2A¢3 Format

|
Trap OID

| =]

~ Mode Selection [+1 only)
' pAgent Address (default)

 IP Source Address

Save | Cancel | Undo | Notes | Help

Figure 32: Basic Definition

Mask Trigger Function

if (VbValue(Z) == 2)

‘ FireTrigger("If-FramePVC-UP", $DefaultSubObject, S$DefaultNode):
ilsif (VbValue(2) == 3)

‘ FireTrigger("If—FrameP'VC—DOWN[", $DefaultSubObject, SDefaultNode)

}

¥ Execute Perl in Global Space

Clear Edit...

Save I Cancel | Undo | Motes | Help |

Figure 33: Trigger Function

Designing and Managing Behavior 215

Models

NerveCenter 6.2

Using Trap Masks

The notes for this trap mask should look something like this:

Purpose: Detects a trap indicating that a Frame Relay virtual
circuit has changed states.

Related alarms: IF-ifFramePVCStatus. This alarm tracks whether the
Frame Relay Permanent Virtual Circuit interface is active or
inactive.

Vendor information: The trap of interest has an Enterprise of
1.3.6.1.2.1.10.32 (the Frame Relay group) and a Specific trap
number of 1. The second variable binding contains the value of
frCircuitState, which indicates whether a virtual circuit is
invalid (1), active (2), or inactive (3).

Trigger function: If frCircuitState equals 2, the function fires
the trigger If-FramePVCUp, and if frCircuitState equals 3, it
fires If-FramePVCDown.

Enabling a Trap Mask

For a trap mask to become functional, two conditions must be met:
m The trap mask must be enabled.
m There must be an enabled alarm with a pending state transition that can be affected by the mask.

This section explains how to enable a trap mask.

TO ENABLE A TRAP MASK

1. From the client’'s Admin menu, choose Mask List.
The Mask List window is displayed.

B NERVECENTER:Mask List (o] @]
D I Name Enabled | Trap I From I Enterprise A
14 AllTraps On AllTraps
15 AllTraps-v1 On AllTraps
12 AuthFail Off authenticationFailure (v2) SNMPv2-MIB
13 AuthFail-v1 Off AuthenticationFailure (v1) RFC-1215
10 ColdStart Off coldStart (v2) SNMPv2-MIB
1 ColdStart-v1 Off ColdStart (v1) RFC-1215
8 LinkDown Off linkDown (v2) IF-MIB
9 LinkDown-v1 Off LinkDown (v1) RFC-1215
6 LinkUp Off linkUp (v2) IF-MIB
7 LinkUp-v1 Off LinkUp (v1) RFC-1215 v
< >

New | Notes | Close I Export... &ll Traps... Help

2. Select the mask you want to enable from the list.
The Open button becomes enabled.

216 Designing and Managing Behavior NerveCenter 6.2
Models

Enabling a Trap Mask

3. Select the Open button.

The Mask Definition window is displayed and shows the definition of the mask you selected.

B NERVECENTER:Mask Definition : LinkDown =R =R
Mask |Trigger Funl:liun]
Enabled
Name |LinkDown Mask ID: 00008 ¢ Qp
Definition IIlr'ﬁ-.D own [v2] IF-MIB
 Enterprise
) Filter On Enterprise scope |~ © From 7 Fie
Enterprise
~ SNMP Version — Trigger Type
(oY) | & y2CAv3 " Trigger Function
Genetic * Simple Trigger
|&Traps = -1 | Simple Trigger:
link D own -
Specific I —I
I'T [T Translate to =
Trap OID I;lfde Selection [v1 ?nhl]
136163115 - i
[1.36.16.31.153 =l |~
Save | Cancel Undo Notes Help

4. Select the On radio button.
5. Select the Save button.
The trap mask is now enabled.

Note: You can also enable a trap mask by selecting a mask in the Mask List window, pressing the right
mouse button while your cursor is over the entry for the mask, and choosing On from the popup menu.

NerveCenter 6.2

Models

Designing and Managing Behavior

217

n Using Trap Masks

218 Designing and Managing Behavior NerveCenter 6.2
Models

Using Other Data Sources

For the most part, NerveCenter behavior models detect network and system conditions by using polls and
trap masks to poll SNMP agents and respond to SNMP traps, respectively. Thus, a behavior model’s
main source of information is devices running SNMP agents. However, NerveCenter behavior models
can obtain data from other sources as well.

For example, a behavior model on one NerveCenter server can receive information from a second
NerveCenter server. The second server uses an Inform alarm action to notify the behavior model on the
first server of a condition it has detected. This Inform action involves sending what appears to be an
SNMP trap to the first server. Actually, the message is not an SNMP trap—it is sent via TCP rather than
UDP—but the behavior model receiving it treats it as if it were a trap.

Finally, NerveCenter behavior models can obtain information about network conditions from NerveCenter
itself. In particular, when NerveCenter sends an SNMP or ICMP message to a device and the message
results in an error (perhaps because the node is unreachable), NerveCenter can notify a behavior model of
this condition. NerveCenter does this by using what are called built-in triggers, such as NODE _
UNREACHABLE, which can cause state transitions in an alarm just as other triggers do. These triggers
are necessary because devices that are down or unreachable cannot respond normally to NerveCenter
polls, or send SNMP traps to NerveCenter.

NerveCenter 6.2 Designing and Managing Behavior 219
Models

m Using Other Data Sources

Built-In Triggers

When NerveCenter requests a poll, the SNMP GetRequest or the ping that the poll initiates is placed on
either NerveCenter's pending SNMP requests list or pending ICMP requests list. NerveCenter waits for a
reply from the node or the node’s SNMP agent (or from an intervening router). If the node or its SNMP
agent sends a non-error reply, then NerveCenter evaluates the poll condition and fires the appropriate
trigger.

However, if the node orits SNMP agent does not respond or returns an erro—depending upon the
circumstances—NerveCenter either retries the request or fires a built-in trigger. Conditions that cause
NerveCenter to fire its built-in triggers can be broken down into five categories:

m SNMP Requests below

m |ICMP Requests on the facing page

m |ICMP Responses on the facing page

m Matching Errors with Pending SNMP and Ping Requests on page 224
m Multi-homed Nodes on page 224

Note: NerveCenter uses all uppercase letters to designate built-in trigger names.

For particular information about NerveCenter's built-in triggers, see Built-In Triggers on page 225. For
information about the order in which NerveCenter fires built-in triggers, see Built-in Trigger Firing
Sequence on page 223.

SNMP Requests

NerveCenter retries SNMP requests as many times as configured or until a reply arrives on the SNMP or
ICMP socket that NerveCenter can match to a pending request. (NerveCenter uses the number of retries
and retry interval specified on the SNMP tab in the NerveCenter Administrator. Refer to Specifying
SNMP Poll Intervals for NerveCenter in Managing NerveCenterfor details.)

If the reply is an SNMP error, NerveCenter does not retry the request but returns three built-in triggers with
the poll: an ERROR trigger, followed by an SNMP_ERROR trigger, and then the appropriate SNMP built-
in error trigger. (See Built-In Triggers on page 225, for more information.)

If NerveCenter receives no response after the configured number of retries, then NerveCenter fires two
built-in triggers: ERROR, followed by SNMP_TIMEOUT. For more information about the order in which
NerveCenter fires built-in triggers, see Built-in Trigger Firing Sequence on page 223.

220 Designing and Managing Behavior NerveCenter 6.2
Models

Built-In Triggers m

ICMP Requests

NerveCenter retries ICMP requests as many times as configured or until NerveCenter receives a good,
non-error response that it can match to a pending ICMP request. (NerveCenter uses the number of retries
and retry interval specified on the SNMP tab in the NerveCenter Administrator. Refer to Specifying
SNMP Poll Intervals for NerveCenter in Managing NerveCenter for details.) If NerveCenter receives no
response after the configured number of retries, then NerveCenter fires two built-in triggers: ERROR,
followed by ICMP_TIMEOUT. For more information about the order in which NerveCenter fires built-in
triggers, see Built-in Trigger Firing Sequence on page 223.

After the configured number of retries is exceeded, NerveCenter examines the error list, determines
which of the matching errors occurred most often, and selects the last packet received from that set. If
there is a tie between two or more types of errors, NerveCenter selects the last error packet received.
(NerveCenter does not accumulate timeouts. One or more timeouts is counted as only one timeout.)

ICMP Responses

Devices on the network, including the intended device of an SNMP or ICMP request, can respond with an
ICMP message. Such messages typically serve to notify of an existing network or configuration issue
which prevents normal passage or processing of the initial request. For example, a router within the
network may respond with an ICMP message that the intended destination is not reachable per its
configuration. Or, a destination host may respond with an ICMP message that the SNMP Agent is not
running.

Error details are stored in the attributes of the nl-ping Base Object that NerveCenter includes with each
instance of ICMP_ERROR that it fires. Using a Perl subroutine or a NerveCenter poll expression, you
can extract this data (Type, Code, Destination Address and Source Address) to learn more specific
information about the ICMP error that occurred.

NerveCenter fires a slightly different sequence of built-in triggers when reporting an ICMP error response
as when reporting the timeout of an ICMP request. For ICMP error responses, such as for a net, host or
port unreachable condition (where the ICMP fields Type=3 and Code=0, 1 or 3). In this situation,
NerveCenter fires an ERROR built-in trigger first, followed by an ICMP_ERROR trigger, and then finally
eitheraNET_UNREACHABLE, NODE_UNREACHABLE, or PORT_UNREACHABLE built-in trigger.

If the poll times out, NerveCenter fires two built-in triggers: ERROR, followed by either an ICMP_
TIMEOUT or SNMP_TIMEOUT trigger.

NerveCenter 6.2 Designing and Managing Behavior 221
Models

m Using Other Data Sources

Multiple Errors Examples

For example, you poll a node with addresses A1, A2, A3, A4 and A5 with the number of retries set to three
in the NerveCenter Administrator. The replies are as follows:

Original response = ICMP error E1 from address A1

Response from First retry = ICMP error E1 from address A2

Response from Second retry = no reply within retry interval from address A3
Response from Third retry = ICMP error E2 from address A4

Even though error E2 (third retry) was the last error received, NerveCenter discards it and uses error E1 to
produce a response, because it occurred most often. The actual data packet that NerveCenter returns
with error E1 is from the first retry, because NerveCenter retains only the last packet for each error code.
(The packet from the first retry overwrote the packet from the original response because their error codes
matched.)

In this example if any of the ICMP errors contain values for a net, host, or port unreachable condition
(where the ICMP fields Type = 3 and Code = 0, 1, or 3), NerveCenter fires an ERROR built-in trigger
first, followed by an ICMP_ERROR trigger, and then finally eithera NET_UNREACHABLE, NODE_
UNREACHABLE, or PORT_UNREACHABLE built-in trigger. If error E1 is any other ICMP etrror, then
NerveCenter fires two triggers: first, an ERROR built-in trigger, followed by an ICMP_ERROR built-in
trigger that contains data from the first retry packet. For more information about the order in which
NerveCenter fires built-in triggers, see Built-in Trigger Firing Sequence on the facing page.

Consider a second example in which the replies are as follows:

Original response = ICMP error E1 from address A1

Response from First retry = ICMP error E2 from address A2

Response from Second retry = ICMP error E3 from address A3
Response from Third retry = no reply within retry interval from address A4

NerveCenter uses error E3 to produce a response because it was the last error received, and no error type
occurred more than once. Even though a timeout occurred on the last response, NerveCenter discards it
because an error takes precedence over a timeout.

222

Designing and Managing Behavior NerveCenter 6.2
Models

Built-In Triggers

Built-in Trigger Firing Sequence

Table 16 shows the order in which NerveCenter fires built-in triggers.

If the First Trigger

Fired is an...

Table 16: NerveCenter Built-in Trigger Firing Sequence

Then the Second
Trigger Fired Can Be
an...

And the Third Trigger Fired Can Be a...

ERROR SNMP_ERROR Specific SNMP built-in trigger
ERROR ICMP_ERROR None or, NET_UNREACHABLE, or NODE_
UNREACHABLE, or PORT_UNREACHABLE
ERROR SNMP_TIMEOUT None
ERROR ICMP_TIMEOUT None
ERROR CANNOT_SEND None
RESPONSE Specific non-built-in trigger | None
or None
INFORM _ None None
CONNECTION_
DOWN
INFORM_ None None
CONNECTION _
UP
INFORMS _LOST | None None
UNKNOWN _ None None
ERROR

NerveCenter 6.2

Designing and Managing Behavior

Models

223

m Using Other Data Sources

Matching Errors with Pending SNMP and Ping Requests

Each poll packet that NerveCenter sends on a socket includes a unique identifier (the IP field Sequence
Number). When a poll returns ICMP errors within its configured number of retries, NerveCenter collects
the error messages that are returned. Each error message includes the sequence number as well as the
destination address of the associated node. Certain fields in the ICMP error packet enable NerveCenter
to attempt to match SNMP/ICMP error messages with a poll's pending SNMP/ping requests as follows:

m NerveCenter compares a reply on the SNMP socket to its list of pending SNMP requests and
attempts to match the reply with the sequence number of an SNMP request. If a match cannot be
found with a pending SNMP request, then NerveCenter discards the reply.

m NerveCenter compares a reply on the ICMP socket toits list of pending ICMP requests and
attempts to match the reply with the sequence number of an ICMP request. Table 17 summarizes
how NerveCenter attempts to match ICMP replies to ICMP pending requests:

Table 17: Matching ICMP Replies with ICMP Requests

Sequence Number Destination Address

Match? In DB? Action

Yes Yes NerveCenter fires the appropriate built-in trigger for the
poll.

No Yes NerveCenter saves reply to attempt to match with a
pending SNMP request.

No No NerveCenter discards the reply.

If NerveCenter cannot match the sequence number of an ICMP reply with any pending ICMP requests,
but NerveCenter recognizes the destination address, the reply is saved because it might be an error
response to an SNMP request for that node; therefore, at regular intervals, NerveCenter compares the
destination address of saved ICMP error replies with pending SNMP requests. NerveCenter attempts to
match each ICMP reply with the destination address of the oldest pending SNMP request. Only after
attempting to match ICMP replies with both pending ICMP and SNMP requests does NerveCenter finally
discard the reply when it finds no matches.

Multi-homed Nodes

Polling multi-homed nodes will cause NerveCenter to rotate through the address list for that node in the
following manner. If the first address returns an ICMP error response, then NerveCenter flags that
address as “down” and will not retry the address until NerveCenter has tried all other addresses for this
node.

Upon each retry of a poll, NerveCenter chooses the next IP address to poll. If a node has more addresses
than the number of allowable retries, then second or subsequent polls of that node will use the current
address if it is “up” or the next un-tried address in the list. If all addresses have been tried, then the “down”
addresses will be used again. For an SNMP error, NerveCenter flags the address as “up” because
NerveCenter did receive a response from the node’s agent.

224

Designing and Managing Behavior NerveCenter 6.2
Models

Built-In Triggers m

Built-In Triggers

Table 18 lists all the built-in triggers that NerveCenter can fire.

Note: NerveCenter uses all uppercase letters to designate built-in trigger names.

Table 18: Built-In Triggers

Trigger Name Meaning

CANNOT_SEND A local error occurred while NerveCenter was trying to send an SNMP
message.
ERROR An SNMP or ICMP request did not result in a valid response. After firing the

ERROR trigger, NerveCenter fires a second trigger that indicates the
specific nature of the error.

ICMP_ERROR Indicates an ICMP error. The ICMP_ERROR trigger contains the ICMP/IP
fields from the error message.

ICMP_TIMEOUT NerveCenter sent an ICMP ping to a node and did not receive a response.
This trigger generally indicates that the node in question is down.

NerveCenter uses the number of retries and retry interval specified on the
SNMP tab in the Administrator. Refer to Specifying SNMP Poll Intervals for
NerveCenter in Managing NerveCenterfor details.

ICMP_UNKNOWN _ NerveCenter sent an ICMP ping to a node and received an invalid response.
ERROR This trigger is no longer used except for the purpose of backward
compatibility with version 3.5. We recommend you use it sparingly in the
current version.

INFORM_ A NerveCenter Inform host connection with paserver is down.
CONNECTION_

DOWN

INFORM _ A NerveCenter Inform host connection with paserver was down but is now

CONNECTION_UP | back up.

INFORMS_LOST The number of NerveCenter Informs that were unacknowledged and lost,
usually while the inform host connection was down.

NET_UNREACHABLE | Indicates that the IP routing layer could not find a route to the network
containing the polled node, usually because at least one router was down.
This trigger indicates nothing about the status of the node.

This trigger can be issued only if you have a router between the workstation
running NerveCenter and the polled node.

NerveCenter 6.2 Designing and Managing Behavior 225
Models

m Using Other Data Sources
Trigger Name Meaning

NODE_ Indicates that the IP routing layer could not find a route to the destination
UNREACHABLE node. This trigger indicates nothing about the status of the node.
This trigger can be issued only if you have a router between the workstation
running NerveCenter and the polled node.
PORT _ NerveCenter sent a message to a node, and there was no response from the
UNREACHABLE port to which the message was sent.
RESPONSE NerveCenter sent an SNMP message and received a valid response from
the agent on the destination node.
SNMP_ An SNMPv3 authorization error caused because there is a mismatch
AUTHORIZATIONERR | between one or all of the rows of vacmAccessTable and the packet.

Reasons include: context name mismatch (vacmAccessContextPrefix);
security model is not used (vacmAccessSecurityModel); incorrect security
level (vacmAccessSecurityLevel); unauthorized to read the MIB view for
the SNMP context (vacmAccessReadViewName); unauthorized to write to
the MIB view for the SNMP context (vacmAccessWriteViewName);
unauthorized to notify the MIB view for the SNMP context
(vacmAccessNotifyViewName)

SNMP_BADVALUE

NerveCenter tried to set the value of an attribute in a MIB, but the value it
supplied was inappropriate for the attribute. The value may have been of the
wrong type, of the wrong length, or invalid for some other reason.

SNMP_
DECRYPTION_
ERROR

The SNMPv3 engine dropped packets because they could not be decrypted.
The 32-bit counter, usmStatsDecryptionErrors, is greater than zero.

SNMP_ENDOFTABLE

NerveCenter fires SNMP_ENDOFTABLE when it finds no more rows while
performing an SNMP walk of a MIB table. For example, you could walk
IfTable to determine the number of DSO interfaces a node contains.

SNMP_GENERR

A GetRequest, GetNextRequest, or SetRequest failed for some unknown
reason (general error).

SNMP_
NOSUCHNAME

NerveCenter sent to an SNMP agent a GetRequest, a GetNextRequest, or a
SetRequest, and the agent that was contacted was unable to perform the
requested operation because:

m The name of the attribute to be read did not match exactly the name of
an attribute available for get operations in the relevant MIB view

m The name of the attribute to be read did not lexicographically precede
the name of an attribute available for get operations in the relevant MIB
view

m The attribute to be set was not available for set operations in the
relevant MIB view

226

Designing and Managing Behavior NerveCenter 6.2

Models

Built-In Triggers

Trigger Name Meaning

SNMP_NOT_IN_
TIME_WINDOW

The SNMPv3 engine dropped packets because the boots and timeticks sent
in the PDU appeared outside of the authoritative SNMP agent's time
window. The 32-bit counter, usmStatsNotinTimeWindows, is greater than
zero.

SNMP_READONLY

The error readOnly is not defined in RFC 1157. However, some vendors’
agents do use this error-status code. As the name implies, the error usually
indicates that an agent has received a SetRequest (from NerveCenter, in
this case) for an attribute whose access type is read only.

SNMP_TIMEOUT

NerveCenter sent an SNMP message to an agent and did not receive a
response. This trigger indicates either that a node’s SNMP agent is down or
that the node itself is down.

NerveCenter uses the number of retries and retry interval specified on the
SNMP tab in the Administrator. Refer to Specifying SNMP Poll Intervals for
NerveCenter in Managing NerveCenterfor details.

SNMP_TOOBIG An SNMP agent did not respond normally to a GetRequest,
GetNextRequest, or SetRequest from NerveCenter because the size of the
required GetResponse would have exceeded a local limitation.

SNMP_ The SNMPv3 engine dropped packets because the context contained in the

UNAVAILABLE _ message was unavailable. The 32-bit counter, snmpUnavailableContexts,

CONTEXT is greater than zero.

SNMP_UNKNOWN _ The SNMPvV3 engine dropped packets because the context contained in the

CONTEXT message was unknown. The 32-bit counter, snmpUnknownContexts, is

greater than zero.

SNMP_UNKNOWN_
ENGINEID

The SNMPv3 engine dropped packets because they referenced an
snmpEnginelD that was not known to the SNMPv3 engine. The 32-bit
counter, usmStatsUnknownEnginelDs, is greater than zero.

SNMP_UNKNOWN _

The SNMPv3 engine dropped packets because they referenced a user that

USERNAME was not known to the SNMPv3 engine. The 32-bit counter,
usmStatsUnknownUserNames, is greater than zero.

SNMP_ The SNMPv3 engine dropped packets because the requested security level

UNSUPPORTED_ is unknown or unavailable. The 32-bit counter,

SEC_LEVEL usmStatsUnsupportedSecLevels, is greater than zero.

SNMP_WRONG _ The SNMPv3 engine dropped packets because they didn't contain the

DIGEST expected digest value. The 32-bit counter, usmStatsWrongDigests, is
greater than zero.

UNKNOWN_ERROR | Some other error occurred.

NerveCenter 6.2 Designing and Managing Behavior 227

Models

m Using Other Data Sources

One additional trigger, USER_RESET, is not available from the list of built-in triggers in NerveCenter.
NerveCenter fires USER_RESET to trigger another state for an existing alarm instance when you reset
the alarm instance using the right-click pop-up menu in the Alarm Summary or Aggregate Alarm Summary
windows.

An Example Using Built-In Triggers
This section looks at how some of the built-in triggers are used in one of NerveCenter’s predefined

alarms: IcmpStatus. The behavior model of which this alarm is a part repeatedly pings a node to
determine its status.

Note: To make the ICMP status behavior model functional, you must turn on the polls IS_IcmpPoll and
IS_IcmpFastPoll and the alarm IcmpStatus.

ISnodeUpFast

- 1 IS IcmpError

ICHP TIMEOUT |

ICMP TIMEOUT

IS IcmpError I

Figure 34: IcmpStatus Alarm

We won't look at every transition in this alarm, but let’s look at the alarm’s basic design. While the alarm
is in the Ground state, NerveCenter is looking for a:

m Anerror response
(Not an nl-ping-response nor a port unreachable—both indicate that the node is up)

m Noresponse
(ICMP timeout indicated by the built-in trigger ICMP_TIMEOUT)

If NerveCenter receives an error response or a timeout, the alarm transitions to the Error state. From the
Error state, several things can happen:

m [f the node responds to a ping (in which case, either the ISnodeUp or ISnodeUpFast trigger will be
fired by a poll), the alarm transitions back to Ground.

m [f the alarm receives another error response, it transitions to the Unreachable state. When the alarm
transitions to this state, it puts the node being monitored in a suppressed state.

m [f the alarm receives another ICMP_TIMEOQOUT trigger, it transitions to the Down state. On this
transition, the alarm puts the node in a suppressed state and sends a message about the problem
to a network management platform.

This is only a cursory look at the IcmpStatus alarm, but it should give you an idea of how alarms can
make use of NerveCenter's built-in triggers.

228 Designing and Managing Behavior NerveCenter 6.2
Models

Another NerveCenter m

Another NerveCenter

The section Using Multiple NerveCenter Servers on page 24 introduced the idea of using NerveCenter
servers at the various sites within an enterprise to monitor the network conditions at those sites and then
to forward important events on to a central NerveCenter server. In this situation, the central server can
correlate the events it receives from the remote servers, take appropriate corrective actions, and notify a
network management platform of any serious problems it discovers.

Remote servers communicate with the central server using an alarm action called Inform—the same
action used to communicate with a network management platform. (For complete information about the
Inform alarm action, see the section Inform on page 286.) When a remote server performs this type of
Inform action, it sends to the central server what looks like an SNMP trap. This trap’s specific trap
number is determined by the person who sets up the alarm that initiates the Inform action. The trap also
contains a set of variable bindings that include information about the alarm transition that led to the Inform
being sent.

Note: These Inform “traps” are not true SNMP traps. Because their receipt by the central server must be
guaranteed, they are sent via TCP, not UDP. However, the receiving server processes them as if they
were SNMP traps.

The central server handles the traps sent from remote servers just as it handles other traps: by using a
trap mask. The only things special about the trap masks you use to receive traps from other NerveCenter
servers are that:

m Forthe trap’s enterprise OID, you must supply the OID of the NerveCenter MIB

m Forthe trap mask’s specific trap number, you must supply the specific trap number used in the
Inform action

For further information about receiving traps from other NerveCenter servers, see the following sections:
m Creating a Trap Mask on the next page
m Variable Bindings for NerveCenter Informs on page 234

m An Example Trigger Function on page 235

NerveCenter 6.2 Designing and Managing Behavior 229
Models

Using Other Data Sources

Creating a Trap Mask

This section explains specifically how to create a trap mask designed to receive an Inform trap sent by a
remote NerveCenter server. For general information about creating trap masks, see the section Defining a
Trap Mask on page 198.

TO CREATE A TRAP MASK FOR AN INFORM TRAP

1. From the client’'s Admin menu, choose Mask List.
The Mask List window is displayed.

B NERVECENTER:Mask List (=] B =S
ID | Name | Enabled | Trap I From I Enterprise A
14 AllTraps On AllTraps
15 AllTraps-v1 On AllTraps
12 AuthFail Off authenticationFailure (v2) SNMPv2-MIB
13 AuthFail-v1 Off AuthenticationFailure (v1) RFC-1215
10 ColdStart Off coldStart (v2) SNMPv2-MIB
1 ColdStart-v1 Off ColdStart (v1) RFC-1215
8 LinkDown Off linkDown (v2) IF-MIB
9 LinkDown-v1 Off LinkDown (v1) RFC-1215
6 LinkUp Off linkUp (v2) IF-MIB
7 LinkUp-v1 Off LinkUp (v1) RFC-1215 v
< >
New Notes Close Export... &ll Traps... Help
230 Designing and Managing Behavior NerveCenter 6.2

Models

Another NerveCenter

2. Select the New button.
The Mask Definition window is displayed.

B NERVECENTER:Mask Definition [|-
Mask l Trigger Function
Enabled
Name [| Mask ID: New ™ On & 0ff
Definition I Zl
Enterprise
r o c
Enterprise
SNMP Version Trigger Type
[[@) O
Generic &
| J Simple Trigger:
Specific I _l
|_] [Translate to%¥2/V3 Format
Trap OID Node Selection [+1 only)
| _| & Agent Address [default)
" IP Source Address
Save | Cancel | Undo | Notes | Help

3. Type a unique name for your trap mask in the Name field.

Note: The maximum length for trap mask names is 255 characters.

4. Select EntSpecific = 6 from the Generic drop-down list.
All traps you receive from remote NerveCenter servers are enterprise-specific traps.

Select the From Only radio button.
In the Enterprise field, type 1.3.6.1.4.1.78.

This value will match the value in the Enterprises field of all Inform traps sent from remote
NerveCenter servers.

NerveCenter 6.2 Designing and Managing Behavior 231
Models

Using Other Data Sources

7. Type a specific trap number in the Specific field. This value must match the Specific Number used
by the remote server's Inform action.

If you want to fire a single trigger if the Generic, Enterprise, and Specific values in the Inform trap
match the corresponding values in your trap mask, proceed with Step 8. Otherwise, skip to Step
11.

Select the Simple Trigger radio button.

Type a trigger name in the Simple Trigger field, or select a trigger from the Simple Trigger drop-
down list.

10. Select the Save button.

This is the end of the procedure for trap masks that will fire a simple trigger. Be sure to enable your
mask when you’re ready to use it.

B NERVECENTER:Mask Definition =0 Ech <=
Mask | Trigget Function
Enabled
Name INerveCentevlnfmm"l 0041 Mask ID: New On & Off
Definition I LI
Enterprise
. Filter On Enterprise scope ¥ ¢ From From Only
Enterprise
1.3.6.1.4.178
SNMP Version Trigger Type
* 4 " w2C/v3 " Trigger Function
Generic * Simple Trigger
IEntSpecific =6 j Simple Trigger:
= infoim-10041) =
Specific
|1EIEI41 [Iranslate to ¥2/3 Format
Trap OID Node Selection [+1 only]
| J + Agent Address [default)
" IP Source Address
Save | Cancel | Undo Notes Help
11. Select the Trigger Function radio button.
232 Designing and Managing Behavior NerveCenter 6.2

Models

Another NerveCenter

12. Select the Trigger Function tab.
The Trigger Function tab is displayed.

B NERVECENTER:Mask Definition == ol =<~

Mask Trigger Function

Clear | Edit... | Iv Execute Perl in Global Space

Save | Cancel | Undo | Notes | Help |

13. Enter your trigger function in the text area on the Trigger Function page.

For instructions on writing a trigger function, see the section Writing a Trigger Function on
page 202.

14. Select the Save button.
Be sure to enable your mask when you're ready to use it.

NerveCenter 6.2 Designing and Managing Behavior 233
Models

m Using Other Data Sources

Variable Bindings for NerveCenter Informs

Depending on how its behavior models are designed, a NerveCenter detecting particular network
conditions can send Inform packets to a network management platform or even another NerveCenter
Server. Although these Inform packets use TCP/IP, they are similar in content to an SNMP trap,
containing trap numbers (generic and specific), an enterprise OID, and a variable-binding list. The lengthy
varbinds contains information about the alarm that performed the Inform action, such as the name of
alarm, the object the alarm was monitoring, and the names of the origin and destination alarm states.

The network management platform or NerveCenter Server receiving the trap can make use of the
information in the variable bindings much the same way it would use variable bindings found in an SNMP
trap. For example, the section An Example Trigger Function on the facing page shows how a
NerveCenter server might use some of this information in a trap mask trigger function.

Table 19 explains the contents of this variable-binding list.

Table 19: Inform Trap Variable Bindings

Variable Value

Binding

0 The name of the domain where NerveCenter is running

1 The name of the host machine running the NerveCenter Server

2 The name of the managed node associated with the alarm

3 The base object associated with the alarm (for example, ifEntry for a monitored
interface)

4 The base object instance associated with the alarm (for example, 4 for the fourth
interface)

5 The name of the subobject. This would include the null string if the alarm is not
associated with an alarm.

6 The property group assigned to the node or the subobject

7 The name of the alarm

8 The alarm’s property

9 The name of the trigger that caused the alarm transition

10 The state of the alarm before the transition

11 The severity of the state of the alarm prior to the transition

12 The state of the alarm after the transition

13 The severity of the state of the alarm after the transition

14 The maximum severity of all active alarms for the managed node before this alarm
transition

15 The maximum severity of all active alarms for the managed node after this alarm
transition

234 Designing and Managing Behavior NerveCenter 6.2

Models

Another NerveCenter m

AVETE o] [2) Value
Binding
16 The variable bindings in the poll or trap that caused the transition. These variable
bindings are formatted as follows:
Attribute ncTransitionVarBinds = attribute.instance=value;attribute=value;...
17 The identification number of the alarm instance

An Example Trigger Function

This section explains how you might use an Inform trap’s variable bindings in a trigger function. Consider
this example: A poll (HighLoad) at a remote site discovers high traffic on an interface and fires the trigger
highLoad. This trigger prompts a transition from the medium state to the high state in the alarm ifLoad. (All
the objects referred to are actually shipped with NerveCenter.) As shipped, the alarm ifLoad does not
perform any actions when the transition from medium to high occurs, but let’s say you've added an Inform
action that uses the specific number 100005.

The ifLoad alarm (minus the Inform action) also exists at your central site. Therefore, when the Inform trap
arrives, you want a trap mask to fire a trigger identical to the one fired at the remote site. In this way, the
ifLoad alarm at your central site will stay in sync with the alarm at your remote site.

Here’s the trigger function you would have to use in the trap mask at your central site:
FireTrigger (“*“highLoad”, VbVvalue(3).’.’.VbValue(4), VbValue(2));
If you recall, the arguments to FireTrigger() are:
m The name of the trigger
m The trigger's subobject (base object plus attribute)
m The trigger's node

The second and third arguments are being retrieved from the list of variable bindings in the Inform trap. For
a complete list of the variable bindings included in an Inform trap, see the section Variable Bindings for
NerveCenter Informs on the previous page.

NerveCenter 6.2 Designing and Managing Behavior 235
Models

m Using Other Data Sources

236 Designing and Managing Behavior NerveCenter 6.2
Models

Using Alarms

Alarms enable you to monitor the state of objects such as interfaces and devices. Figure 35 depicts the
role that an alarm typically plays in a behavior model.

Responsa

» Trigger

Behavior model

Figure 35: The Role of an Alarm in a Behavior Model

The alarm contains a state transition diagram, and transitions are caused by triggers that are usually
generated by polls and trap masks. (Triggers can also be generated by alarms.) When the alarm manager
sees a trigger whose key attributes—such as name, subobject, and node—match those of a pending
transition in an alarm, the manager causes this transition to take place. Any actions associated with the
transition are performed when the transition occurs.

NerveCenter 6.2 Designing and Managing Behavior 237
Models

Using Alarms

Listing Alarms

This section explains how to display a list of the alarms currently defined in the NerveCenter database.
The section also explains how to view the definition of a particular alarm.

For information on creating a new alarm, see Defining an Alarm on page 241.

TO DISPLAY A LIST OF ALARMS AND THEN DISPLAY A PARTICULAR ALARM’S DEFINITION

1. From the client’'s Admin menu, choose Alarm Definition List.
The Alarm Definition List window is displayed.

-

B NERVECENTER:Alarm Definition List (=@
ID | Name Enabled | Property | Scope ~
9 AllTraps_LogToFile Off NO_PROP Node
10 Authentication Off NO_PROP Subobject
2 Forward-AllTraps On NO_PROP Node
5 lempStatus Off icmpStatus Nede
8 IfErrorStatus Off ifEntry Subobject
7 IfLinkUpDown Off ifEntry Subobject
1 ifStatus On ifEntry Subobject
f IfllnDownStatus Off ifFntrv Subnhiect ¥
< >

| | | Close | Export... | Help |

This window lists all the currently defined NerveCenter alarms and provides a brief definition of
each. For each alarm, the window specifies a name and the following information:

o Whether the alarm is currently enabled

o The alarm’s property

o The alarm’s scope

2. Select an alarm from the alarm list.

238 Designing and Managing Behavior NerveCenter 6.2
Models

Listing Alarms

3. Select the Open button
NerveCenter displays the Alarm Definition window.

& NERVECENTER:Alarm Definition : IfLinkUpDown =N E=R =™

.lf’*

linkDown il

¥ linkUp | lj.n.k'['uner I

[LinkDown -

Ground

Name |lfLinkUpD own Property |ifEnlu,- LI Scope |SubObject LI

Enabled
C on & Of [™ Clear Triggers for Reset To Ground or OFf
State List Transition List
State | Severity A From State To State Trigger ~
EnkDgwn I:Iajor . ~ EownIrap :S_roll.::md !m!c_l;lp -
< > < >
Save | Cancel | Undo | Notes | Help |

The alarm defined in this figure is named ifLinkUpDown. Each instance of it monitors a single
interface (subobject scope) on a device whose property group contains the property ifEntry. If
NerveCenter receives a generic trap 2 for an interface, an alarm instance is instantiated, and the
current state becomes DownTrap. If a linkUp trap for the same interface arrives within three
minutes, the state returns to Ground; otherwise, the state becomes LinkDown. The state color
indicates that LinkDown is a state of Major severity.

NerveCenter 6.2 Designing and Managing Behavior 239
Models

n Using Alarms

With a little investigation, you can find out much more about this alarm. For instance, if you right-click a
transition, you'll see a pop-up menu that enables you to find out what masks, polls, and alarms can

produce the trigger that causes the transition. Table 20 shows what objects can fire the triggers that affect
this alarm.

Table 20: Trigger Sources

Transition Related Trigger Generator
linkDown Mask: LinkDown

linkUp Mask: LinkUp

linkTimer Alarm: IfLinkUpDown

You can also determine what actions will occur on a particular transition. Simply double-click the
transition to bring up the Transition Definition dialog. If you perform this task for each transition in this
alarm, you'll find that the transition actions in Table 21 have been defined.

Table 21: Transition Actions

Transition Actions

linkDown (Ground to DownTrap) Fire the trigger link Timer on a three minute delay.

linkUp (DownTrap to Ground) Clear the trigger link Timer.

linkUp (LinkDown to Ground) None.

linkTimer (DownTrap to LinkDown) | Inform a network management platform that the interface is down.

240 Designing and Managing Behavior NerveCenter 6.2
Models

Defining an Alarm

Defining an Alarm

This section provides a high level overview of how to create a new alarm. Because creating an alarm is a
fairly involved process, you'll need to consult some additional sections to get all the information you need.

TO DEFINE A NEW ALARM

1. From the client's Admin menu, choose Alarm Definition List.
The Alarm Definition List window is displayed.

-

Y NERVECENTER:Alarm Definition List [E=R R =™

D | Name | Enabled | Property | Scope ~

9 AllTraps_LogToFile Off NO_PROP Node

10 Authentication Off NO_PROP Subobject

2 Forward-AllTraps On NO_PROP Node

5 lempStatus Off icmpStatus Node

8 IfErrorStatus Off ifEntry Subobject

7 IfLinkUpDown Off ifEntry Subobject

1 ifStatus On ifEntry Subobject

f IflInDownStatis Off ifFntrv Subnhiect ¥

< >
’—-I New Mote Close Expoart... Help

NerveCenter 6.2 Designing and Managing Behavior 241

Models

Using Alarms

2. Select the New button.

3.

The Alarm Definition window appears.

& NERVECENTER:Alarm Definition o |[+E

@ |

@&

Name Property |NO_PROP | Scope |Node v

Enabled

Con & Of [Clear Triggers for Reset To Ground or OFff
State List Transition List
State | Severity From State To State Trigger
Ground Normal
Save | Cancel ‘ Undo | Motes | Help

Type a unique name for the alarm in the Name text field.

Note: The maximum length for alarm names is 255 characters.

4.

Select a property from the Property list box. Or leave the Property set to NO_PROP.

The property you choose helps determine whether a particular trigger can cause an alarm instance
to be instantiated or cause a transition in an existing alarm instance. Generally, the alarm’s
property must match one of the properties in the property group of the node associated with the
trigger. The property NO_PROP matches any property.

For complete information regarding the matching rules that determine whether a trigger causes an
alarm transition, see the section, Enabling a Behavior Model's Components on page 371.

Select a scope from the Scope list box.

The options are Enterprise, Instance, Node, and Subobject. An alarm instance with Enterprise
scope monitors all nodes managed by the NerveCenter server. An alarm instance with Node
scope monitors a single node. A subobject scope alarm monitors a node subcomponent such as
an interface (subobject). Instance scope lets you monitor different base objects in a single alarm
instance.

For further information on alarm scope, see the section Alarm Scope on page 244.

242

Designing and Managing Behavior NerveCenter 6.2
Models

Defining an Alarm n

6. Select the Clear Triggers for Reset To Ground or Off checkbox if you want NerveCenter to
clear any pending triggers fired by this alarm when the alarm is tumed off or manually reset to
ground. The alarm might have pending triggers if you associated a Fire Trigger alarm action with
this alarm.

7. Create the alarm’s state diagram in the drawing area at the top of the Alarm Definition window.

This can be a big step. Before you actually draw the state diagram, you must designit. Your
resources for learning how to design an alarms are:
o This book.

o How to Use Alarms in Learning to Create Behavior Models, which includes a tutorial on
creating alarms.

o The predefined alarms that ship with NerveCenter. Looking at these alarms and reading the
notes that accompany them should give you some ideas for creating your own alarms.

Then, there are the mechanics of creating the state diagram. This subject is covered in the
following places:

> Defining States on page 245

> Defining Transitions on page 249

o Alarm Actions on page 269 for information about adding actions to alarm transitions

Select the Save button to save your alarm.

If you want to enable you alarm now, set the alarm’s Enabled status to On, and then select the
Save button again.

NerveCenter 6.2 Designing and Managing Behavior 243
Models

m Using Alarms

Alarm Scope

NerveCenter alarms can have one of four scopes: subobject, instance, node, or enterprise. A subobject
scope alarm monitors a subcomponent of a node, usually an interface (subobject). Instance scope lets
you monitor different base objects in a single alarm instance. Node scope monitors activity on a single
node, and enterprise scope monitors all managed nodes for a particular behavior.

This is fairly straightforward, but let’s look at an example of how alarm scope might affect a particular
behavior model. Let’s say that you have a model that manages three workstations, each of which has four
interfaces.

Node 1 Node 2 Node 3
Four interfaces Four interfaces Four interfaces

Figure 36: Managed Nodes and Their Interfaces

One component of this behavior model is a poll that checks variables in each workstation’s ifEntry table to
find interfaces that are experiencing high traffic. This poll can fire a trigger up to twelve times on any poll
interval, as shown in Table 22.

Table 22: Triggers Fired by High-Traffic Poll

Node Subobject

Node 1 ifEntry.1
Node 1 ifEntry.2
Node 1 ifEntry.3
Node 1 ifEntry.4
Node 2 ifEntry.1
Node 2 ifEntry.2
Node 2 ifEntry.3
Node 2 ifEntry.4
Node 3 ifEntry.1
Node 3 ifEntry.2
Node 3 ifEntry.3
Node 3 ifEntry.4
244 Designing and Managing Behavior NerveCenter 6.2

Models

Defining States n

The behavior model also includes the alarm whose state diagram is shown in Figure 37:
U Ground HighTraffic

Figure 37: High-Traffic Alarm

A beep action is associated with the highLoad transition.

Assuming that you've set the alarm’s property properly, you've enabled both the poll and the alarm, and all
interfaces are experiencing high traffic, how many beeps will you hear?

The answer depends on your alarm’s scope. If the alarm has subobject scope, twelve alarm instances will
be created, and you'll hear twelve beeps, one per interface. Similarly, for instance scope, twelve
instances will occur and beep. The main difference between subobject and instance scope is that, with
instance scope, you could add another transition to the alarm to monitor some base object other than
ifEntry.

If the alarm has node scope, three alarm instances will be created, and you'll hear three beeps. Once an
alarm instance for a node transitions out of the Ground state—upon receipt of the first highLoad trigger for
that node—any subsequent highLoad triggers that refer to that node have no effect. Finally, if the alarm
has enterprise scope, only one alarm instance is created, and you'll hear just one beep.

For behavior models that contain just one alarm, choosing an alarm scope is usually simple. Just state
the condition you want to be able to detect:

m ‘I want to be able to detect high traffic on any interface.” (Subobject scope)
m ‘I want to detect several conditions on any interface.” (Instance scope)
m ‘I want to monitor each node on which a particular condition occurs.” (Node scope)

m ‘I want to be notified the first time that high traffic occurs on any interface.” (Enterprise scope)

Defining States

When you first open the Alarm Definition window, the state-diagram drawing area contains one state. This
state is named Ground and is dark green (by default), indicating that the severity of the state is “Normal.”
This state is unique not only because every alarm must contain it, but because no active alarm is everin
this state. The alarm manager instantiates an alarm when it receives a trigger corresponding to a
transition from Ground to some other state, and if an alarm instance transitions back to Ground, that
instance is deleted.

NerveCenter 6.2 Designing and Managing Behavior 245
Models

Using Alarms

All of the other states that you want your alarm to track you must create yourself. For example, the author
of the predefined alarm IfLoad (interface load) created two nonground states: medium and high.

| EERTREE MediumLoad

-/

HiLoadPersists

J

Figure 38: IfLoad Alarm

The medium state is of Medium severity, and the high state is of High severity.

Note: In the alarm in Figure 38, the author has renamed the Ground state “Lowload.” The Ground state
can be renamed and its severity can be changed, but it cannot be deleted.

For instruction on creating new states, resizing state icons, and deleting states, see the following
sections:

m Defining a State on the facing page
m Changing the Size of the State Icons on page 248
m Deleting a State on page 249

246 Designing and Managing Behavior NerveCenter 6.2
Models

Defining States n

Defining a State

When you add a new state to a state diagram, you must provide two pieces of information about the state:
its name and its severity. The name, of course, should indicate the role the state plays in the state
diagram. For instance, if a state will indicate that a device is down, you should name it “DeviceDown,” or
something similar. The alarm’s severity indicates whether the state represents a fault condition or a traffic
condition and how serious the problem is.

TO ADD A STATE TO A STATE DIAGRAM

1. Select the Add State button at the top of the Alarm Definition dialog.
The State Definition dialog appears.

State Definition ? X
Name: ||
& Severty ~
=2 Fault
B Critical
B Major
O Minor
B ‘Waming
B nform
B Special
B Normal
562 Traffic
B Saturated
O VeryHigh
O High v

0K | Cancel | Help

2. Type the name of the state in the Name text field.

Note: The maximum length for state names is 255 characters.

3. Select a severity from the Fault folder or the Traffic folder.
4. Select the OK button.

The new state appears in the diagram area. Drag the state icon to the spot you want it to occupy in
the diagram.

Note: If you don't move the newly create state, subsequently created states won’t be displayed.

If the state icon’s label won't fit on the icon, you should resize the state icons in your diagram. For
information on how to resize these icons, see the section Changing the Size of the State Icons on
the next page.

NerveCenter 6.2 Designing and Managing Behavior 247
Models

n Using Alarms

Changing the Size of the State Icons

The default size of state icons is fairly small. As a result, the name of a state may not fit on the octagon
that represents it. If you encounter this problem, you can change the size of the state icons in your state
diagram.

Note: You can’t change the size of a single state icon. A resize operation affects all the state icons in
the current state diagram.

TO CHANGE THE SIZE OF THE STATE ICONS IN A DIAGRAM

1. Right-click one of the state icons in the diagram, and select Size from the pop-up menu that’s
displayed.

The State/Transition Size window appears.

State/Transition Size X

Transition Size:
S
State Size:

[P opssisirsrm
3
7

7
L7

7
[000t ol |

oK I Cancel | Help |

The rectangle beneath the State Size label indicates the current size of the state icons.

2. Dragthe handles on the State Size rectangle to change the width or height of the rectangle.
To accommodate state names that won't fit on icons of the default size, make the rectangle wider.

3. Select the OK button.

The width and height of the state icons in your diagram are resized to match the size of the State
Size rectangle.

Note: Your state diagram will look better if the names of your states are short.

248 Designing and Managing Behavior NerveCenter 6.2
Models

Defining Transitions n

Deleting a State

If you need to change the name or severity of a state, there’s no need to delete the state and create a new
one. You can double-click on the icon for the state to bring up the State Definition window and change the
state’s name or severity there. However, if you've created a state that you no longer need, it's a simple
matter to delete it.

TO DELETE A STATE

1. Select the state’s icon in your state diagram.
The Remove State button is enabled.

2. Select the Remove State button at the top of the Alarm Definition window.

A pop-up dialog asks you whether you're sure you want to remove the state and explains that if you
remove a state you also remove all the transitions associated with that state.

3. Select the Yes button in the dialog.
The state icon is removed for the state diagram.

Note: You can'’t delete the Ground state.

Defining Transitions

Once you've created the states for an alarm, you must define the transitions between them. Each
transition has these components:

m A origin state.
m A destination state.
m Atrigger. This is the trigger that will cause the transition.

m Alist of actions that will be performed when the transition occurs. For a full description of each
action that can take place upon a transition, see "Alarm Actions" on page 269

The sections below will lead you through the mechanics of creating a new transition in a state diagram,
changing the size of the transition icons in a state diagram, and deleting a transition:

m Defining a Transition on the next page

m Associating an Action with a Transition on page 251
m Changing the Size of Transition Icons on page 252
m Changing the Color of Transition Lines on page 253

m Deleting a Transition on page 254

NerveCenter 6.2 Designing and Managing Behavior 249
Models

n Using Alarms

Defining a Transition

When you add a transition to a state diagram, you must supply three pieces of information: an origin state,
a trigger name, and a destination state. Both of the states must already have been created in the state
diagram, and the trigger must already exist as well.

TO CREATE A NEW TRANSITION

1. Select the Add Transition button at the top of the Alarm Definition window.
The Transition Definition dialog is displayed.

Transition Definition ? X
Transition
From Trigger To
I | | =l =l
Actions
Type l Argument
New Action - | |

2. Select an origin state from the From drop-down list.

This list contains the names of all the states currently defined in the state diagram, including
Ground. If an alarm is in the origin state when the appropriate trigger arrives, it may transition to the
destination state.

3. Select atrigger from the Trigger drop-down list.

This list contains the names of all the triggers defined in the NerveCenter database. Only a trigger
with the name you specify here will be able to cause this transition.

Select a destination state from the To drop-down list.
5. Select the OK button.

A transition is drawn between the source and destination states. This transition consists of a line
connecting the source and destination states with arrows pointing in the direction of the destination state,
and a rectangular icon on the line labeled with the trigger name. You can drag the rectangular icon, and the
line will move with it.

250 Designing and Managing Behavior NerveCenter 6.2
Models

Defining Transitions n

Associating an Action with a Transition

A transition may or may not have alarm actions associated with it. If it has one or more actions associated
with it, these actions are performed each time the transition occurs.

You can add actions to an existing transition, or adding the actions can be part of the initial definition of the
transition.

TO ADD AN ACTION TO A TRANSITION

1. Ifyou'rein the process of creating a new transition, the Transition Definition dialog should already
be open. If you want to add an action to an existing transition, double -click the transition’s icon.
The Transition Definition dialog appears.

Transition Definition ? X

Transition
From Trigger To

Ground | |HighLoad | |High Traffic -]

Actions

Type l Argument
Set Attribute Node, SNODE, Suppress, Off

Set Attribute - | |
ok | cencel | Help

2. Select the New Action list.
A list of available actions is displayed. See "Alarm Actions" on page 269 for descriptions.

3. Select an action from the pop-up menu.

If you select the Action Router, Delete Node, or Notes action, the action is added immediately to
the Actions list in the Transition Definition window. However, because most actions require you to
supply parameters, NerveCenter generally displays an action dialog at this point. The dialog varies
from action to action.

4. Fillin the fields in the action dialog.

This step is very dependent on the action you've selected. For details on how to complete this
step, see the appropriate section in "Alarm Actions" on page 269

Repeat Step 2 through Step 4 for any additional actions you want to add to the transition.

Select the OK button in the Transition Definition window.

NerveCenter 6.2 Designing and Managing Behavior 251
Models

n Using Alarms

Changing the Size of Transition Icons

The default size of transition icons is fairly small. As a result, the name of a transition may well not fit on
the rectangle that represents the transition. If you encounter this problem, you can change the size of the
transition icons in your state diagram.

Note: You can’t change the size of a single transition icon. A resize operation affects all the transition
icons in the current state diagram.

TO CHANGE THE SIZE OF THE TRANSITION ICONS IN A DIAGRAM

1. Right-click one of the transition icons in the diagram, and select Size from the pop-up menu that is
displayed.

The State/Transition Size dialog appears.

State/Transition Size X

Transition Size:
S
State Size:

[P opssisirsrm
3
7

7
L7

7
[000t ol |

oK I Cancel | Help |

The rectangle beneath the Transition Size label indicates the current size of the transition icons.

Drag the handles on the Transition Size rectangle to change the width or height of the rectangle.
Select the OK button.

The width and height of the transition icons in your diagram are resized to match the size of the
Transition Size rectangle.

Note: Your state diagram will look better if the names of your transitions (triggers) are short.

252 Designing and Managing Behavior NerveCenter 6.2
Models

Defining Transitions n

Changing the Color of Transition Lines

Following transition paths with numerous states and transitions can be complicated. Changing the color
of the lines connecting states to transitions to make it easier to understand your alarm.

TO CHANGE THE COLOR OF THE TRANSITION LINES IN A DIAGRAM

1. Right-click one of the transition icons in the diagram, and select Color from the pop-up menu that
is displayed.

The Color Transition dialog appears.

Transition Color X

Calor Selection

" FROM State Color
" TO State Color

@ Default Color

Change Default Color |

0K | Cancel | Help

2. Selectacolor.
> FROM State Color is the color of the state you transition from.
o TO State Color is the color of the state you transition to.
o Default Color is the color you define default to be.

You can define the Default color to any color you want.

a. Select Change Default Color.
The Color window is displayed.

b. Select the color box containing the color you want to assign to the transition line.

c. Select the OK button in the Color window.
You return to the Transition Color window.

3. Select the OK button.

NerveCenter 6.2 Designing and Managing Behavior 253
Models

m Using Alarms

Deleting a Transition

This section explains how to delete a transition from an existing state diagram or one that you're currently
drawing.

TO DELETE A TRANSITION

Select the transition you want to delete.
2. Select the Remove Transition button from the Alarm Definition window.

A dialog appears that asks if you're sure you want to delete the transition.

3. Select the Yes button in the dialog.
The transition is deleted from your state diagram.

Bear in mind that an alarm’s definition does not actually change until you save the alarm.

Documenting an Alarm

This section explains how to add documentation (notes) to an alarm and what should be covered in that
documentation.

m How to Create Notes for an Alarm on the facing page

m What to Include in Notes for an Alarm on page 257

254 Designing and Managing Behavior NerveCenter 6.2
Models

Documenting an Alarm

How to Create Notes for an Alarm

You can add notes to an alarm by following the procedure outlined in this subsection.

TO ADD NOTES TO AN ALARM

1. From the client’'s Admin menu, choose Alarm Definition List.

The Alarm Definition List window is displayed.

-

B NERVECENTER:Alarm Definition List =N =R~
ID | Name | Enabled | Property | Scope ~
9 AllTraps_LogToFile Off NO_PROP Node
10 Authentication Off NO_PROP Subobject
2 Forward-AllTraps On NO_PROP Node
5 lempStatus Off icmpStatus Node
8 IfErrorStatus Off ifEntry Subobject
7 IfLinkUpDown Off ifEntry Subobject
1 ifStatus On ifEntry Subobject
f IflInDawnStatus Off ifFntry Subnhisct ¥
< >
| MNote | Close Export... Help
2. Select an alarm to which you want to add a note.
3. Make sure that your alarm is not enabled.
NerveCenter 6.2 Designing and Managing Behavior 255

Models

Using Alarms

4. Select the Open button.
The Alarm Definition window

is displayed.

o NERVECENTER:Alarm Definition : lfLinkUpDown

Ground

Name IIILinkUpDown

Property IifEnlw

| Scope [SubDbject |

Enabled 1
C on & Of [Clear Triggers for Reset To Ground or Off
State List Transition List
State I Severity A From State To State Trigger ~
'I_.‘inth:wn [\:Iajor . ~ EownIrap IG'rolur:!d !lnt:LJp -
< > < >
Save I Cancel Undo I Notes | Help

NerveCenter 6.2

256

Designing and Managing Behavior

Models

Documenting an Alarm

5. Inthe Alarm Definition window, select the Notes button.

The Alarm Notes and Associations dialog is displayed.

IfLlinkUpDown: Alarm Notes And Associations ? X
STATES AND SEVERITIES ~
State Name Severity
LinkDown Maijor
DownTrap Normal
Ground Normal
OBJECTS THAT TRIGGER TRANSITIONS
linkDown
LinkDown-v1 Mask
LinkDowin Mask
linkUp
v
DESCRIPTION ~

Monitors when an interface on a node goes down and remains in that
condition for a configurable period of time. Retumns to Ground if the interface
comes back up. Nodes must be associated with a property group that
contains the property ifEntny.
If the interface is determined to be down an inform of 7004 is sent to the
platfarm.
STATES
Ground
Mo traps have been received to indicate that any of a node's interfaces
have gone down. v

0K | Cancel | Help |

6. Enter your documentation for the alarm by typing in this dialog. See the section What to Include in
Notes for an Alarm below for information on what type of information you should enter here.

7. Select the OK button at the bottom of the Alarm Notes and Associations dialog to close it.
Select the Save button in the Alarm Definition window.

Your notes are saved to the NerveCenter database. They can be read by anyone who opens the
definition for your alarm and selects the Notes button.

What to Include in Notes for an Alarm

The top pane of the Notes and Associations dialog box contains read-only information about the alarm.
This data is retrieved from the NerveCenter database and, therefore, may change from time to time when
the alarm’s definition is modified in the database.

This information includes:
m Thealarm’s states and severities.
m Objects that trigger the alarm’s transitions.

m Thealarm’s transitions and their associated actions.

NerveCenter 6.2 Designing and Managing Behavior 257
Models

Using Alarms

The bottom pane contains a general description of the alarm and any useful information. Users with
administrator rights can add or edit this field when creating or customizing alarms. Comments should
include anything other users might find helpful to know about NerveCenter alarms. Following are some
suggestions:

m Define the purpose of the alarm.
m List any reports run against the data logged by the alarm.

m List the property groups that are affected by this alarm-that is, groups that contain the property
assigned to the alarm-and include any pertinent information about the nodes assigned to those
groups.

m Name any associated behavior model and mention whether customization is required to work with
the behavior model.

We recommend that you include the following information in the notes for your alarm:
m Purpose of the alarm
m Brief description of the alarm’s states
m Brief description of the alarm’s transitions
m List of the objects (polls, masks, and alarms) that fire triggers that affect this alarm

m Description of the actions specified for transitions, especially Fire Trigger and Perl Subroutine
actions

m Documentation for any program or script called from a Command action
m Names of any reports run against data logged by the alarm
m Information about other alarms that are part of the same behavior model

For example, let’s consider the alarm definition shown in Figure 39.

& NERVECENTER:Alarm Definition o[- B ESe]

® | m e

<D ogging

MName |IfData_LogToFile Property |NO_PROP ﬂ Scope |SubObject ;I

Enabled
Con G Of I Clear Triggers for Reset To Ground or OFff
State List Transition List
State | Severity From State To State Trigger
Ground Normal Ground Logging ifData
Logging MNormal Logging Logging ifData
Save | Cancel ‘ Undo | Notes ‘ Help

Figure 39: IfData_LogToFile Alarm

258 Designing and Managing Behavior NerveCenter 6.2
Models

Enabling an Alarm

The notes for this alarm should look something like this:

Purpose: Logs interface data to the log file ifdata.log.

States: Ground (Normal), Logging (Normal)

Transitions: ifData (Ground to Logging), ifData (Logging to
Logging)

Associated poll: IfData fires the ifData trigger if it is able to
retrieve information about an interface from a node’s interface

table.

Actions: ifData (Ground to Logging) - Log to File ifdata.log
Enabled Verbose

ifData (Logging to Logging) - Log to File ifdata.log Enabled
Verbose

Enabling an Alarm

For a alarm to become functional, several conditions must be met:
m The alarm must be enabled.

m The alarm must receive a trigger that corresponds to one of the alarm’s transitions out of the Ground
state.

m The alarm’s property must be in the property group of the node associated with the trigger.

This section explains how to enable an alarm.

Note: If you later turn an alarm off or reset the alarm to ground, any pending triggers fired by that alarm
are cleared if the Clear Triggers for Reset To Ground or Off checkbox is checked in the alarm’s
definition window.

NerveCenter 6.2 Designing and Managing Behavior 259
Models

Using Alarms

TO ENABLE AN ALARM

1. From the client's Admin menu, choose Alarm Definition List.
The Alarm Definition List window is displayed.

“

B NERVECENTER:Alarm Definition List oo
ID l Name l Enabled I Property I Scope ~
9 AllTraps_LogToFile Off NO_PROP Node
10 Authentication Off NO_PROP Subobject
2 Forward-AllTraps On NO_PROP Node
5 lempStatus Off icmpStatus Node
8 IfErrorStatus Off ifEntry Subobject
7 IfLinkUpDown Off ifEntry Subobject
1 ifStatus On ifEntry Subobject
f fllnNownStatis Off ifFntrs Subnhiect ¥
< >

’—-I Newl I Nate I Close Export... Help

2. Select the alarm you want to enable from the list.

The Open button becomes enabled.

3. Select the Open button.
The Alarm Definition window is displayed and shows the definition of the alarm you selected.

==)

NERVECENTER:Alarm Definition

L | -

SubObject ~

Name |lfData_LogToFile Property (NO_PROP 'I Scope

E nable-d

ol [Clear Triggers for Reset To Ground or OFf

State List Transition List
State I Severity From State To State Trigger
Ground MNormal Ground Legging ifData
Legging MNormal Logging Legging ifData
Save I Cancel J I Motes | Help
260 Designing and Managing Behavior NerveCenter 6.2

Models

Correlation Expressions

Select the On radio button in the Enabled frame.
5. Select the Save button.
The alarm is now enabled.

Note: You can also enable an alarm by selecting the alarm in the Alarm Definition List window, right-
clicking the entry for the alarm, and choosing On from the popup menu.

Correlation Expressions

NerveCenter provides an additional method for Alarm Definition creation, the Correlation Expression
window. Correlation expressions allow the definition of alarm diagrams based on Boolean expressions.
The correlation expressions do not apply in every situation, but in cases where multiple combinations of
events need to be detected and acted upon, the correlation expressions save tremendous amounts of
time, both in alarm diagram designing and building.

To build a correlation expression, first create the necessary trap masks and poll conditions to fire the
desired triggers. Once the triggers have been created, the Correlation Expression Editor can be used to
create the expression.

There are three main components of the correlation expression. First, the Boolean expression is created
using and, or, parenthesis and triggers that are already existent. Second, the correlation reset period
determines the time limit in which the entire expression must become true once a portion has been
detected. Third, the correlation action must be specified, directing NerveCenter to act when the
expression becomes true.

For example take the sample alarm in Figure 40.

[waitForHighLoad

HighErrorRate

InformNCINVIOY

HighErroxrRate

Ground [WaitForHighError

HighErrPersists

Figure 40: Sample Alarm: Error Rate Alarm Created with the Alarm Definition Window

NerveCenter 6.2 Designing and Managing Behavior 261
Models

Using Alarms

In this alarm, you want an inform to be sent if you receive HighErrorRate and HighLoad triggers or if you
receive a HighErrorPersists trigger. The alarm will reset to Ground if the alarm is not completed within the
time period specified by the transition Reset. Creating this model takes several steps. You need to create
three states and eight transitions. Three of those transitions require you to add the same action, send
inform. The idea behind this model, however, can be expressed simply with a boolean expression:

If (HighLoad AND HighErrorRate) OR HighErrPersists, then Inform IC/NV/OV

Correlation expressions allow you to create simple alarms quickly.

Note: After a correlation expression reaches the final state, the Alarm reverts to Ground.

TO CREATE A CORRELATION EXPRESSION
1. From the client's Admin menu, choose Correlation Expression List.

The Correlation Expression List Window opens.

A NERVECENTER: Correlation Expression List =0 ISR~

Expression Name

262 Designing and Managing Behavior NerveCenter 6.2
Models

Correlation Expressions

2. Select the New button.
The Edit Correlation Expression window opens.

B NERVECENTER: Edit Correlation Expression =N Ech =™
Expression Name: “

Reset Period: | 0 |seconds LI
Correlation Expression

Trigger to Inselt:lagentup j
| o] _of [0] [eef

Correlation &ctions

Name | Argument
Mew Action A I | I |

[
[coe | cancel | | Notes | Heb |

3. Inthe Expression Name field enter a name for the expression.

Note: The maximum length for correlation names is 255 characters.

4. Enterthe Reset Period (must be greater than 0) and select a time unit (seconds, minutes or hours)
from the drop-down menu.

The correlation reset period is the time in which the entire alarm must complete before the alarm
resets. This counter starts when the first trigger occurs. The counter does not restart when a
second trigger occurs.

The time period must be greater than zero. You can choose between seconds, minutes or hours.

5. Enter a correlation expression.
You enter information in the Correlation Expression field by using the buttons below the field.

o Toadd atrigger:
a. Select a trigger from the Trigger to Add drop down list.
b. Select Add Trigger.

o Toadd a Boolean operator, select the AND or OR button.

NerveCenter 6.2 Designing and Managing Behavior 263
Models

n Using Alarms

Note: The AND operator has precedence over the OR operator. For example, x or y and z is the same
as x or (y and z).

o Toadd a parenthesis, select the (or) button.

The close parenthesis) button is not active until there is an open parenthesis (in the
correlation expression.

o To delete the previous element of the correlation expression, select the Del button.
6. Add Correlation Actions.

o Select the New Action list.

A list of available actions is displayed. See "Alarm Actions" on page 269 for
descriptions.

c. Select an action from the pop-up menu.
If you select the Action Router, Delete Node, or Notes action, the action is added
immediately to the Actions list in the Edit Correlation Expression window. However, because
most actions require you to supply parameters, NerveCenter generally displays an action
dialog at this point. The dialog varies from action to action.

d. Fillinthe fields in the action dialog.
This step is dependent on the action you've selected. For details on how to complete this
step, see the appropriate section in "Alarm Actions" on page 269.
You can edit these selections later by selecting the Update Action button.

e. Repeat Step through Step d for any additional actions you want to add to the correlation

expression.
To delete an action, select it from the Correlation Actions list and click Delete Action.

7. Select Save.

Note: The Save and Create Alarm buttons are not enabled until: 1)you give the correlation expression a
name; 2) you set the Reset Period to a number other than zero; 3) the correlation expression is valid (for
example, all open parenthesis are closed); 4) you select at least one Correlation Action

This saves the correlation expression.

After creating a correlation expression, you can use it as a building block to create alarms.

Note: You do not have to save a correlation expression to create an Alarm. As long as the correlation
expression has a name, a reset period, a valid expression and an action, you can create an Alarm from
the expression.

264 Designing and Managing Behavior NerveCenter 6.2
Models

Correlation Expressions

TO COPY A CORRELATION EXPRESSION

1. From the client’'s Admin menu, choose Correlation Expression List.
The Correlation Expression List Window opens.

B NERVECENTER: Correlation Expression List [E=NECR =
Expression Name J

ifEntry-hiError [N

Open
Copy

Open I New | Delete | Close Help

Select a correlation expression and right-click.
Select Copy from the pop-up menu.

The Edit Correlation Expression window opens.

4. Inthe Expression Name field enter a new name for the expression.

Note: The maximum length for correlation names is 255 characters.

5. Select Save.

NerveCenter 6.2 Designing and Managing Behavior 265
Models

Using Alarms

TO CREATE AN ALARM FROM A CORRELATION EXPRESSION

1.

From the Edit Correlation Expression window, click Create Alarm.
The Create Alarm using Correlation Expression window opens.

Create Alarm using Correlation Ex... 7 X

Correlation IfE ntry-hiE rror

Alarm Name: |hiEmorRate
Property: |NO_PROP -

Scope: | Enterprise -

Ciear Triggers for Feset

Enabled
 0n O 0K

Save Alarm | Cancel

In the Alarm Name field, enter a name for the alarm.

Note:

The maximum length for alarm names is 255 characters.

Select a property from the Property list box or leave the Property set to NO_PROP.

The property you choose helps determine whether a particular trigger can cause an alarm instance
to be instantiated or cause a transition in an existing alarm instance. Generally, the alarm’s
property must match one of the properties in the property group of the node associated with the
trigger. The property NO_PROP matches any property.

Select a scope from the Scope list box.

The options are Enterprise, Instance, Node, and Subobject. Briefly, an alarm instance with
Enterprise scope monitors all the nodes managed by the NerveCenter server. An alarm instance
with Node scope monitors a single node. A subobject scope alarm monitors a subcomponent of a
node, usually an interface (subobject). Instance scope lets you monitor different base objects in a
single alarm instance.

For further information on alarm scope, see Alarm Scope on page 244.

Select the Clear Triggers for Reset To Ground or Off checkbox if you want NerveCenter to
clear any pending triggers fired by this alarm when the alarm is tumed off or manually reset to
ground. The alarm might have pending triggers if you associated a Fire Trigger alarm action with
this alarm.

266

Designing and Managing Behavior NerveCenter 6.2
Models

Correlation Expressions

If you want to enable you alarm now, set the alarm’s Enabled status to On.

7. Select Save Alarm.

When you save the alarm, you can now access it through the Alarm Definition List and edit it as
any other alarm. For details on using the Alarm Definition window, see Defining Transitions on

page 249.

Figure 41 shows the correlation expression that creates the alarm shown in Figure 40 on page 261. Figure
42 shows the alarm generated with the Error Rate correlation expression.

Create Alarm using Correlation Ex... 7 X

Correlation |ifEntr5.l-hiE fror

Alarm Name: |hiE norRate
Property: | NO_PROP -
Scope: | Enterprise -

r {Clear Triggers for Reset

Enabled
& 0On O Off

Save Alarm Cancel
| |

Figure 41: Error Rate Correlation Expression

[HighLoad | \\

I HighErrorRate I

xist BrrorBate I | HighErrPersists I
aRst_ErrorRate |
HighErrorRate F@fb’

I xRst ErrorRate I

Figure 42: Error Rate Alarm Generated from the Error Rate Correlation Expression

NerveCenter 6.2 Designing and Managing Behavior 267

Models

Using Alarms

To ADD NOTES TO A CORRELATION EXPRESSION

1. From the Correlation Expression window, select Notes.
The Correlation Expression Notes dialog box displays.

Error Rate: Correlation Expression Notes ? X

Save I Cancel

Enter your comments.
Select Save to close the Notes dialog box.
A dialog box asking Are you sure? displays.

Select Yes.
5. Click Save in the Correlation Expression window to save the notes.

Note: These notes document the correlation expression. They are not copied over to any alarm created
by a correlation expression.

268 Designing and Managing Behavior NerveCenter 6.2
Models

Alarm Actions

When you create an alarm, you can specify that one or more alarm actions take place on any alarm
transition. These actions fall into two categories: those that affect how the alarm works and those that
perform some type of corrective action. An example of the first type of action is the Fire Trigger action.
This action (as its name implies) fires a trigger that can cause a transition in its own or another alarm. An
example of the second type of action is the Command action, which enables you to run any script or
executable when a transition occurs.

Note: NerveCenter alarm actions are asynchronous. Alarm actions do not execute in the order that you
specify them—actions can fire in any order. Therefore, action2 should not be dependant on action1, for
example.

The only exception is the Clear Trigger action; when you include a Clear Trigger action with other alarm
actions, the Clear Trigger action is always performed first. This prevents the possibility of a trigger being
fired and then cleared during the same transition.

Action Router

Normally, when an alarm transition occurs, the actions associated with that transition are performed
automatically. However, it’s possible to specify that one or more actions be performed conditionally. To
define this type of behavior, you must:

m Add the Action Router action to the appropriate alarm transition. (This section explains how to
perform this task.)

m Use the Action Router’s rule composer to define the conditions under which you want the Action
Router to perform one or more actions and the actions to be taken under those conditions. These
conditions can be specified using any Perl expression that evaluates to true or false. However,
NerveCenter provides a large set of variables for use in these conditions. These variables enable
you to set up conditions based (among other things) on:

> The name of the alarm that underwent the transition

o The day of the week

o The name of the node being monitored

o The property group associated with the node being monitored

o The severity of the transition’s destination state

NerveCenter 6.2 Designing and Managing Behavior 269
Models

Alarm Actions

o The time of day
o The name of the trigger that caused the transition

In addition, the actions that can be associated with a set of conditions can be selected from almost
all the actions that can be performed during an alarm transition. For complete information about
using the rule composer, see "Performing Actions Conditionally (Action Router)" on page 315

Once you've done this setup, when the transition with the Action Router action takes place, the Action
Router process will receive information about the transition. The Action Router will then evaluate all of its
rules to determine any of them are satisfied. If a rule is satisfied, the Action Router performs all of the
actions associated with that rule. For example, if you've set up a rule that tells the Action Router to page
an administrator if a transition’s destination state is of Critical severity, the Action Router will check the
transition’s destination state and page an administrator if that state is Critical.

TO ADD THE ACTION ROUTER ACTION TO AN ALARM TRANSITION

1. Inthe Transition Definition window, select the New Action list.
A list of available actions is displayed.

2. Select Action Router from the pop-up menu.
The new action appears in the Actions list in the Transition definition window.

3. Select the OK button in the Transition Definition window.

Select Save in the Alarm Definition window.

270 Designing and Managing Behavior NerveCenter 6.2
Models

Alarm Counter m

Alarm Counter

Suppose that you want to write an alarm to detect more than five authentication-failure traps from a node
within five minutes. A possible state diagram for this problem is shown in Figure 43.

authFail - Alertl

g

‘
:
:
:

hEail

Ground [authClear | FAlert3

£

=

] | D

i

hFail

[ﬁ-llrusim authFail I/J:IEE\

Figure 43: First Solution to Authentication-Failure Problem

Presumably, the trigger authFail is fired by a trap mask that detects generic authentication-failure traps.
Also, on the transition from Ground to Alert1, the trigger authClear is fired on a five minute delay. This
trigger is cleared on the transition from Alert5 to Intrusion.

With seven states, this diagram doesn’t look too bad. But what if you had been asked to write an alarm
that detected more than twenty authentication failures? Clearly, a better approach is needed.

The NerveCenter feature that you can use to simplify this type of state diagram is the Alarm Counter
alarm action. This action enables you to loop in an alert state until you're ready to move to the Intrusion
state. Thus, a revised state diagram might look like Figure 44:

NerveCenter 6.2 Designing and Managing Behavior 271
Models

m Alarm Actions

authFail

[Intrusion

Figure 44: Solution Using the Alarm Counter Action

The firing and clearing of the authClear trigger are handled as they were in the previous example. The new
actions in this state diagram are Alarm Counter actions on both the transition from Alert to Alert and the
transition from Alert to Ground.

The Alarm Counter action associated with the circular transition from Alert to Alert:
m Creates a counter variable if it does not already exist.
m Increments the counter. (The initial value of the counter is zero.)

m Checks to see whether the value of the counter is 5. (The test is for 5 instead of 6 because one
authorization failure has to occur for the alarm to reach the Alert state.)

m Fires the trigger intrusion if the value of the counter is greater than 4.
The Alarm Counter action associated with the transition from Alert to Ground:

m Creates the counter if it does not already exist.

m Sets the value of the counter to 0.

This example shows both of the main uses of the Alarm Counter action: to set up a loop in which a trigger
is fired when the counter reaches a certain value and to set or reset the value of the counter.

Note: You can use the "Counter() Function" on page 299 in a Perl subroutine or Action Router rule to get
the value of a counter associated with a particular transition. For more information, see Counter()
Function on page 299.

You can also use the NC::AlarmCounters Perl object in Perl subroutines. However, the
NC::AlarmCounters object is completely separate from the Counter() function and does not share data
with the Counter () function. For more details about the NC::AlarmCounters, see the NerveCenter
Release Notes.

Designing and Managing Behavior NerveCenter 6.2
Models

Alarm Counter

TO CREATE AN ALARM COUNTER

1. Inthe Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Alarm Counter from the pop-up menu.
The Alarm Counter Action dialog is displayed.

Alarm Counter Action ? X
Counter Name | -
Operation

" Increment Decrement
Trigger Values
Fire Trigger | ﬂ
‘when Counter |equals ~| |0
™ Set Counter Value |i
oK | Cancel | Help |

3. Type acounter name in the Counter Name text field, or select a counter name from the Counter
Name drop-down list.

The drop-down list will contain values only if another transition in the same alarm has already
defined an alarm counter.

The scope of the alarm counter name is the alarm instance in which the counter is created.

4. Tosetupaloop—thatis, you want to fire a trigger after a transition has occurred a certain number
of times—perform these steps:
a. Select either the Increment or Decrement radio button.

Obviously, this choice determines whether the counter will be incremented or decremented
when the Alarm Counter action is performed. Normally, you increment a counter because the
counter is initialized to 0. However, it is possible to set the counter to a nonzero value in one
Alarm Counter action and then to decrement it in another.

The counter is incremented or decremented before it is used in any comparison.
b. Type anintegerin the when counter equals field.
The Alarm Counter action can fire a trigger when the counter equals this value.

c. Typethe name of a new trigger in the Fire Trigger field, or select an existing trigger from
the Fire Trigger drop-down list.

If you do not enter a trigger name, any value you enter in the “when counter equals” field is
lost when you save the alarm.

NerveCenter 6.2 Designing and Managing Behavior 273
Models

m Alarm Actions

5. Toset orreset the value of a counter, perform these steps:

a. Check the Set Counter checkbox.

b. Enteran integerin the Value field.

The counter will be set to this value when the Alarm Counter action occurs.

6. Select the OK button in the Alarm Counter Action dialog.

7.

Select the OK button in the Transition Definition window.

8. Select the Save button in the Alarm Definition window.

Beep

If you add the Beep alarm action to a transition, NerveCenter sends an audible alarm to all of the clients
connected to the server when that transition occurs. This is one method of notifying network
administrators of a condition that requires their attention.

TO ADD A BEEP ALARM ACTION TO A TRANSITION

1.

In the Transition Definition window, select the New Action list.
A list of available actions is displayed.

Select Beep from the pop-up menu.
The Beep Action dialog is displayed.

Beep Action ? X

Frequency (Hz] €

Duration [miliseconds) |50 Cancel
Help

il

Type a value in the Frequency field, or leave the default value of 300.

This value specifies the beep’s frequency in hertz.

Type a value in the Duration field, or leave the default value of 50.
This value specifies the beep’s duration in milliseconds.

Select the OK button in the Beep Action dialog.
Select the OK button in the Transition Definition window.
Select the Save button in the Alarm Definition window.

274

Designing and Managing Behavior
Models

NerveCenter 6.2

Clear Trigger m

Clear Trigger

When you define a Fire Trigger alarm action, you can use a delay to determine when the trigger actually
fires. (For details about the Fire Trigger action, see the section Fire Trigger on page 280.) After a Fire
Trigger action has been initiated, but before the delay has elapsed, you can cancel the firing of the trigger
using the Clear Trigger action. A Clear Trigger action cancels any pending triggers of a specified name
that have been queued by its own alarm instance.

When you include a Clear Trigger action with other alarm actions, the Clear Trigger action is always
performed first. This prevents the possibility of a trigger being fired and then cleared during the same
transition.

A good example of the use of Fire Trigger and Clear Trigger is the predefined alarm IfLinkUpDown.

DownTrap

Figure 45: IfLinkUpDown Alarm

NerveCenter 6.2 Designing and Managing Behavior 275
Models

m Alarm Actions

This alarm is designed to transition from Ground to Down Trap upon the receipt of a linkDown trigger.
When this transition occurs, a Fire Trigger action fires the trigger link Timer on a three-minute delay. If a
linkUp trap arrives within three minutes, the linkUp transition occurs, and a Clear Trigger action clears the
linkTimer trigger. Otherwise, the linkTimer trigger is fired, and the alarm transitions to the LinkDown state.

TO ADD A CLEAR TRIGGER ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select the Clear Trigger action.
The Clear Trigger Action dialog is displayed.

Clear Trigger Action ? X
TigerNome I -

0K | Cancel | Help |

3. Type the name of the trigger you want to clear in the Trigger Name field, or select it from the
Trigger Name drop-down list.

Pending triggers of this name will be cleared only in the alarm instance that invokes the Clear
Trigger action.

Select the OK button in the Clear Trigger Action dialog.
5. Select the OK button in the Transition Definition window.
Select the Save button in the Alarm definition window.

276 Designing and Managing Behavior NerveCenter 6.2
Models

Command

Command

The Command alarm action enables you to execute any command or script when a particular alarm
transition occurs. An example of an alarm that uses this action is the predefined alarm IPSweep.

IPSweep | [Truelrigger |

Figure 46: IPSweep Alarm

When the IPSweep transition occurs, this alarm executes a program called ipsweep. This is the program
that actually discovers the devices on the subnets you’re managing.

To ADD A COMMAND ACTION TO A TRANSITION

1. Inthe Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Command from the pop-up menu.
The Command Action dialog is displayed.

Command Action ? X
Command:
|
Special Symbol: j .fi\.

| |
0K | Cancel ‘ Help ‘

3. Type the command to be executed in the Command field.

On Windows systems, the command can be any .exe, .bat, or .cmd file you can invoke from the
command line. You can omit the command suffix because the operating system will locate the
appropriate file. On UNIX systems, the command can be any executable binary or script file that
you can invoke from a shell.

NerveCenter 6.2 Designing and Managing Behavior 277
Models

m Alarm Actions

4. Enter any parameters that the command requires after the command.

Note: The command plus its parameters can be up to 2020 characters in length. If you exceed this
length, the error “Command line too long” is written to the event or system log.

If the parameters are constants, you can simply type them in the Command field following the
command name. However, if they will vary from alarm instance to alarm instance (and
NerveCenter maintains the information you need in one of its variables), you can use the Special
Symbol drop-down list and the button beside it to enter the parameters. For more information, see
NerveCenter Variables on page 301.

To enter a variable in your command:

a. Place your cursor at the appropriate spot in the Command field.
b. Select a variable from the Special Symbol drop-down list.
c. Select the button to the right of the Special Symbol field.

5. Select the OK button in the Command Action dialog.

6. Select the OK button in the Transition Definition window.

7. Select the Save button in the Alarm Definition window.

Delete Node

The Delete Node action deletes the node being monitored by the current alarm instance from the
NerveCenter database.

An example of using Delete Node might be to remove a node from the NerveCenter database that does
not respond to a ping for five minutes after an alarm transitions to a down state.

To ADD A DELETE NODE ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.
A list of available actions is displayed.

2. Select Delete Node from the pop-up menu.
The Delete Node action is added to the Actions list in the Transition Definition window.

3. Select the OK button in the Transition Definition window.
Select the Save button in the Alarm Definition window.

278 Designing and Managing Behavior NerveCenter 6.2
Models

EventLog m

EventLog

The EventLog alarm action writes information about an alarm transition to the UNIX system log file. On
Solaris the system log file is /var/fadm/messages; on Linux the system log file is /var/log/messages.

To ADD AN EVENTLOG ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select EventLog from the pop-up menu.
The Event Log Action dialog is displayed.

Event Log Action ? X
Source: 0K |
Type: |Informational - Cancel

Evert |3221356553 _ Heb |

This dialog provides default values for the three standard event log parameters—Source, Type,
and Event—and allows you to change them.

3. Leave the default value in the Source text field, or type in a new registered source.
Select one of the standard event log types from the Type drop-down list.

Select the most appropriate option for the situation your alarm transition detects. The options are
Error, Warning, Informational, Audit Success, and Audit Failed.

5. Leave the default event ID in the Event field, or type a new one.
6. Select the OK button in the Event Log Action dialog.
7. Select the OK button in the Transition Definition window.
8. Select the Save button in the Alarm Definition window.
NerveCenter 6.2 Designing and Managing Behavior 279

Models

Alarm Actions

Fire Trigger

In NerveCenter, you have several ways of generating a trigger. For instance, you can use a poll, a mask,
or the FireTrigger() function to fire the trigger. You can also use the Fire Trigger alarm action to produce a
trigger. This action is useful when you need one alarm to send a trigger to itself or to another alarm.

Here are some examples of when you might need to use the Fire Trigger alarm action:

m Youwant an alarm transition to fire a trigger on a delayed basis so that your alarm will know when a
certain amount of time has passed.
This strategy is used in the predefined alarm IfLinkUpDown, shown in Figure 47.

Ground T D

Figure 47: IfLinkUpDown Alarm

On the linkDown transition, this alarm fires the link Timer trigger on a three-minute delay. If a linkUp
trigger does not cause a transition to Ground within three minutes, the link Timer trigger is fired, and

the alarm transitions to the LinkDown state.

Using the action for its timing capabilities is the most common use of the Fire Trigger action.

m You want to send information to an alarm instance about an event that is outside its scope.

As an example, let’s look at the predefined alarm BetterNode, which tracks the status of a node on
a different subnet from the NerveCenter server.

T iempFall

routerlp I

L d

ICMP TIMEOUT il

oResponse

I [routerDown I

routerDovm | > RouterDown
Figure 48: BetterNode Alarm
280 Designing and Managing Behavior NerveCenter 6.2

Models

Fire Trigger

If NerveCenter is unable to ping a node, the node’s alarm instance transitions to the IcmpFail
state. What happens next, however, depends on a trigger fired by an alarm instance monitoring the
router that sits between the NerveCenter server and the node being monitored with BetterNode. If
the alarm instance monitoring the router generates the routerUp trigger, the BetterNode alarm
transitions to the critical NoResponse state, but if the router's alarm generates the routerDown
trigger, the BetterNode alarm transitions to the normal RouterDown state.

m A behavior model requires alarms of different scopes to detect a condition.

For example, suppose you want to create a behavior model that detects high interface traffic at the
node level. You'll need to create a subobject scope alarm that detects high traffic on a single
interface and fires a trigger that notifies a node scope alarm that the interface is busy. You'll also
need a node scope alarm that tracks the triggers being fired by the subobject scope alarms.
Behavior models of this type are called multi-alarm behavior models.

Note: If you later turn an alarm off or reset the alarm to ground, any pending triggers fired by that alarm
are cleared if the Clear Triggers for Reset To Ground or Off checkbox is checked in the alarm’s
definition window.

TO ADD A FIRE TRIGGER ACTION TO AN ALARM TRANSITION

1. From the Transition Definition window, select the New Action list.
A list of available actions is displayed.

2. Select Fire Trigger from the pop-up menu.
The Fire Trigger Action dialog is displayed.

Fire Trigger Action ? X
Trigger Name “
SubObject hSD Cancel |
Node |$NODE Help
Property ‘ $PROPERTY

Delay

 Days Hows |0

" Minutes ¢ Seconds

NerveCenter 6.2 Designing and Managing Behavior 281
Models

m Alarm Actions

3. Inthe Trigger Name field, specify the name of the trigger to be fired when the transition occurs.

You can either type in the name of a new or existing trigger or select the name of an existing trigger
from the Trigger Name drop-down list.

4. Eitherleave the default values in the SubObject, Node, and Property fields, or enter new values
using the keyboard or the associated drop-down lists.

If you want your Fire Trigger action to simply provide a timer for its own alarm instance, the default
values are fine. The defaults ensure that the resulting trigger affects only alarm instances
concerning the same node and subobject as the current alarm instance.

If the trigger being fired will affect instances of a different alarm, you may need to change the
default values. The steps below explain the values you can provide for these attributes.

a. Tochange the value in the SubObject field, either type in a new value or select a value from
the SubObject drop-down list.

Note: When choosing a SubObject value, keep in mind that alarm instances with subobject scope must
reference the same subobject to be transitioned by this trigger. For transitions with instance scope, only
the instances must match; the base objects can be different. Any alarm instances with a node or
enterprise scope will ignore the value in the SubObject field.

The following table lists the acceptable values for the SubObject field.

Value Explanation

$sSO The trigger inherits the originating alarm’s subobject. This is the default.

SANY The trigger is assigned a subobject that matches any destination alarm subobject. Think
of this as a subobject wildcard.

$ON.$OI If the originating alarm has a subobject that consists of a base object plus an instance
joined by a period, the trigger inherits the originating alarm’s subobject (same as $SO).
However, if the originating alarm does not have this type of subobject, the trigger’s
subobject is null (see SNULL below).

$ON If the originating alarm has a subobject that consists of a base object plus an instance
joined by a period, the trigger inherits the base object portion of the alarm’s subobject and
appends to this base object a period and a wildcard for the instance. The resulting trigger
can drive alarm instances with a subobject containing a matching base object and any
instance. For example, let’s say that an alarm instance with the subobject ifEntry.3 fires a
trigger using $ON. The trigger’'s subobject will be ifEntry.*, and the trigger will affect alarm
instances with subobjects such as ifEntry.1, ifEntry.2, and so on. If the originating alarm
instance does not have a subobject that consists of a base object plus an instance, $ON
is equivalent to SNULL.

SNULL The trigger is assigned a null subobject. The only subobject scope alarm that can be
affected by such a trigger is one that has a null subobject itself.

baseObject | You can type the subobject. The trigger's subobject is set to the subobject you specify,
.instance | for example, ifEntry.3 or system.0.

282 Designing and Managing Behavior NerveCenter 6.2
Models

Fire Trigger

Explanation

anyString | This feature enables you to take advantage of the matching rules for triggers and alarm
transitions by making creative use of the subobject attributes of these objects. For
example, you could use the name of an application as the subobject in order to correlate
all events relating to that application.

b. To change the value of the Node field, either type in a new value or select a value from the
Node drop-down list.

The following table lists the acceptable values for the Node field.

Value Explanation

$NODE The trigger inherits the originating alarm instance’s node. This is the default.

SANY The trigger is assigned a node that matches any destination alarm instance node. Think of
this as a node wildcard.

nodeName | You assign the name of any managed node to this attribute. Use the Node drop-down list
to prevent spelling errors.

c. Tochange the value of the Property field, either type in a new value or select a value from
the Property drop-down list.

The following table lists the acceptable values for the Property field.

Value Explanation

$PROPERTY | The trigger inherits the originating alarm instance’s property. This is the default.

$NO_PROP | The trigger is assigned no property. In this case, NerveCenter ignores the trigger's
property attribute when determining which alarm transitions the trigger can affect.

property The trigger is assigned the property you type in or select from the Property drop-down
list.

When a trigger contains a property, the property group of the node found in a destination
alarm instance’s node data member must contain the trigger’s property. Otherwise, no alarm
transition will occur.

5. Select a delay for the trigger by entering a positive integer in the Delay text field and selecting the
appropriate radio button: Days, Hours, Minutes, or Seconds.

6. Select the OK button in the Fire Trigger Action dialog.
7. Select the OK button in the Transition Definition window.
8. Select the Save button in the Alarm Definition window.

NerveCenter 6.2 Designing and Managing Behavior 283
Models

m Alarm Actions

Forward Trap

When you define a Forward Trap action, you cause NerveCenter to set up for reproducing and sending a
received SNMP Trap or Inform onward to the destinations that have been defined by the NerveCenter
Administrator application. The Forward Trap action applies only to contexts where an alarm transition is
being made in direct response to an SNMP Trap or Inform having been received. The Forward Trap action
has no effect if it is encountered on an alarm transition where the stimulus was something other than a
SNMP Trap or Inform.

Note: Note: Traps and Informs are forwarded to a set of destinations that have been prepared using the
NerveCenter Administrator. Using the Administrator program a table of Trap Destinations is prepared.
Each destination is defined with a name.

§j NERVECENTER =R

ICMP | SNMP | SNMPy3 | Log | Connections | Classify |
Server | Node Source-| Fiters | Inform Configuration | Aclions|
SNMP Agent | Poling Trap Destinations | SNMP Traps |

SNMP Trap Destinations
Name Address Version
Add Update ‘ Delete |

‘ Save | ‘ Close | ‘ Undo I | Help |

Figure 49: Administrator with three defined trap destinations

When a Forward Trap operation occurs in response to a received SNMP Trap or Inform, the configured
Forward Trap action causes NerveCenter to match the naming provided by the action against the names
provided in the Trap Destinations table — each match will cause NerveCenter to forward the Trap or
Inform to that destination.

The Forward Trap Action can be set up to match the set of names from the Trap Destinations table either
exactly or using a wildcard.

284

Designing and Managing Behavior NerveCenter 6.2
Models

Forward Trap

To ADD A FORWARD TRAP ACTION TO AN ALARM TRANSITION

1. From the Transition Definition window, select the New Action list.
A list of available actions is displayed.

2. Select Forward Trap from the pop-up menu.
The Forward Trap Action dialog is displayed.

Forward Trap Action X
Trap Destination
" Address

| Ll Cancel

v Mask

[:

3. Configure the Trap Destination.

m Foranexact match:

a. Select the Address radio button and then select an option from the list to match
against.

The list displays Trap Destination names as defined in the Administrator.

Forward Trap Action X
Trap Destination
+ Address

LI Cancel

ncb200-thel?-g
netcool-001
traplogger

“

b. Select the OK button to close the dialog and add the Forward Trap action to the set
of actions to be performed on this transition.

When this action occurs at runtime, the received Trap or Inform will be relayed
forward to this (and only this) named destination.

m Touse wildcard matching:

a. Select the Mask radio button and enter the wildcard specification in the text field.

The mask uses the typical shell prompt format: ? matches a single character and *
matches zero or more characters. The default is * which will match against all
names in the Trap Destination table. For example, a value such as *1ogger* would
lead to a runtime match of all Trap Destination table entries that have “logger” as part
of their name.

NerveCenter 6.2 Designing and Managing Behavior 285
Models

m Alarm Actions

Forward Trap Action X
Trap Destination
" Address
| _I Cancel
A
* Mask
[*Iogger*

b. Select the OK button to close the dialog and add the Forward Trap action to the set
of actions to the set of actions to be performed on this transition.

4. Select the OK button in the Transition Definition window.
5. Select the Save button in the Alarm Definition window.

Inform

Once NerveCenter has used its event-correlation abilities to detect a problem, it can notify a network
management platform or another NerveCenter server of the problem using the Inform action. This alarm
action enables you to notify another NerveCenter when a significant network event is detected.

Note: For information about sending messages to IBM Tivoli Netcool/OMNIbus, see the section Inform
Platform on page 289.

Inform sends the equivalent of an SNMP trap to its recipients, and the specific trap number in the trap
indicates the nature of the problem. The recipients of the trap must be set up to interpret this trap properly
and to take appropriate action.

Note: Although the message that the Inform action sends to its recipients contains the same
information as a trap, the message is not sent via UDP. Because the delivery mechanism must be
reliable, the message is sent via TCP.

286 Designing and Managing Behavior NerveCenter 6.2
Models

Inform

Typically, a behavior model uses the Inform alarm action on a transition to some terminal state. For
example, consider the predefined alarm SnmpStatus, shown in Figure 50.

t -

AgentDown) [meaeie]

el
[colastart |
= i

nodeUpFast
E—
RS ICHP_TDMEOUT | [NODE_UNREACHABLE |

PORT_ mmu PORT_ 'llltllm:l[llll.l 4

SNMP_1 TIMEI]IIT ll]l'lB umummm.lz

l agent ¥p r/'ﬁ.m Icn:p TIMEOUT m

NET UNREACHABLE

RESPONSE -+ i NODE_VUNREACHABLE

Figure 50: SnmpStatus Alarm

Only one transition in this alarm contains an Inform action. That is the transition SS_ICMP_Failed, which
leads to the DeviceDown state. An alarm does not specify who is to receive Inform messages. The
recipients of these messages are set up in the NerveCenter Administrator by the person who configures
NerveCenter.

If the destination is a network management platform, you must create a new event message for the
platform that will be posted when it receives your Inform message. If the destination is another
NerveCenter server, you must create a trap mask in the destination NerveCenter to capture the Inform
message. (For information on how to create such a trap mask, see the section Creating a Trap Mask on
page 230.)

NerveCenter 6.2 Designing and Managing Behavior 287
Models

m Alarm Actions

TO ADD AN INFORM ACTION TO A TRANSITION

1.

From the Transition Definition window, select the New Action list.
A list of available actions is displayed.

Select Inform from the pop-up menu.
The Inform Action dialog is displayed.

Inform Action

Specific Number oK.

| Cancel

Help

Flel

Type a number in the range 100000 to 199999 in the Specific Number text field, or leave this field
blank.

For more information about the specific number field, see Inform Specific Numbers on page 290.

Select the OK button in the Inform Action dialog.
Select the OK button in the Transition Definition window.
Select the Save button in the Alarm Definition window.

As mentioned earlier, each Inform message looks like an SNMP trap. Thus, it contains a great deal of
information in addition to a specific-trap number. You can use this information in a NerveCenter trap
mask. This information is listed below:

A timestamp.
A generic trap number. This number will always be 6.
An enterprise. The enterprise OID will always be 1.3.6.1.4.1.78.

A list of variable bindings. For a list of these variable bindings, see the section Variable Bindings for
NerveCenter Informs on page 234.

288

Designing and Managing Behavior NerveCenter 6.2
Models

Inform Platform

Inform Platform

You can design alarms to notify the IBM Tivoli Netcool/OMNIbus network management platform of
significant events that require your attention. In addition, you must have a corresponding network
management platform event configured to listen for the specific trap number.

TO CONFIGURE AN INFORM PLATFORM ACTION

1.

5.

From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

Select Inform Platform from the pop-up menu.
The Inform Platform Action dialog is displayed.

Inform Platform Action

Specific Number oK

[Cancel

Help

Pl -

In the Specific Number field, enter the specific trap value you want to use for the Inform.
Typically, this number would be between 100000 and 199999.

For more about the specific number field, see Inform Specific Numbers on the next page.

Select the OK button.
The new action is added to the transition.

Select the OK button again to close the Transition Definition dialog box and save your action.

Note: When you are finished making changes to an alarm’s definition, select Save to save all changes
before closing the Alarm Definition window.

Informs contain the following information in addition to the specific trap number you enter:

A timestamp.
A generic trap number. This number will always be 6.
An enterprise. The enterprise OID will always be 1.3.6.1.4.1.78.

A list of variable bindings. For a list of these variable bindings, see the section Variable Bindings for
NerveCenter Informs on page 234.

NerveCenter 6.2

Designing and Managing Behavior 289
Models

m Alarm Actions

The following information about the MIB objects is inserted at the end of the variable bindings.

ObjectName1.0ObjectIinstance1=Value1;ObjectName2.0bjectinstance2=Value2; ...

A NerveCenter MIB definition for these variable bindings is located in /opt/OSInc/mibs/nervectr.mib

If you incorporate this MIB into your network management platform, the attribute names of the variable
bindings are displayed in the platform’s message browser.

Inform Specific Numbers

When creating an Inform or Inform Platform action, you are expected to supply a Specific Number for the
Inform. Normally, you should enter a number in the range 100000 to 199999 or leave this field blank. The
trap numbers 0 to 99999 are reserved for NerveCenter use, and the numbers 200000 and above are
reserved for future use.

The number you supply becomes the specific trap number in the trap-like message that is sent to all the
destinations that have been configured to receive Inform messages. If the destination is a network
management platform, you must create a new event message for the platform that will be posted when it
receives your Inform message.

If the destination is another NerveCenter server, you must create a trap mask in the destination
NerveCenter to capture the Inform message. (For information on how to create such a trap mask, see the
section Creating a Trap Mask on page 230.) The portion of NerveCenter that must be installed with a
network management platform defines general event messages for these default specific-trap values.
However, other NerveCenter servers know nothing of default values in Inform messages sent by this
NerveCenter server. For that reason, you must create a trap mask in the destination NerveCenter to
receive the Inform message.

If you leave the Specific Number field blank, NerveCenter supplies a default specific trap number.
NerveCenter creates this default value by adding 1000 to the severity level of the destination alarm state.
Thus, if the Inform action takes place on a transition to a Critical state, the default specific number is
1012, because the severity level of Critical is 12.

You can determine a severity's number by choosing Severity List from the client’'s Admin menu.

When NerveCenter sends Informs to your platform, NerveCenter first checks the minimum severity value
configured in NerveCenter Administrator to ensure that the trap value for the Inform matches or exceeds
that severity. There is one case when NerveCenter disregards the minimum severity value specified in
Administrator: After NerveCenter sends an Inform, if the condition returns to a normal state-that is, a state
below the minimum severity threshold you configure-it's important that NerveCenter notify the platform of
this change. Therefore, if a node transitions the alarm from a severity above the minimum value to a
severity below the minimum value, and the transition includes and Inform action, NerveCenter will send a
Normal Inform to the platform. This allows the platform to reset the mapped severity color associated with
the node.

290

Designing and Managing Behavior NerveCenter 6.2
Models

Log to File m

Log to File

The Log to File alarm action writes information about an alarm transition to an ASCI| text file.

Note: Over use of Log to File may slow down NerveCenter's performance.

TO ADD A LOG TO FILE ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Log to File from the pop-up menu.
The Log to File Action dialog is displayed.

Log to File Action ? X

File Name: |

Static

[V Default Data

Custom Data
Special Symbol J ﬂi\
Enable Verbose Output
* On oK * On ‘ol

1] | Cancel | Help |

3. Inthe File Name text field, type in either a filename or a full pathname for your log file.

If you enter a filename, the log file is written to install_directory/opt/OSInc/userfiles/logs. If you
enter a full pathname, the log file is written to the directory you specify.

4. Tolog particular information instead of NerveCenter's default data, do the following:

a. Deselect the Default Data checkbox.

b. Inthe Custom Data field, type or paste the variables you want included in the log,
separating each variable with a space.

Table 23 lists the variables you can include in the Custom Data field.

Note: You can also select a variable from the Special Symbol drop-down listbox and then click the red
arrow.

NerveCenter 6.2 Designing and Managing Behavior 291
Models

m Alarm Actions

5.

Select either the On or Off radio button in the Enable frame.

This option gives you the ability to disable logging without disabling the alarm of which the logging
action is a part.

Select either the On or Off radio button in the Verbose Output frame.

If you turn Verbose Output on, NerveCenter labels each value it writes to the log file. Otherwise,
NerveCenter writes only the values, separated by commas, to the log file. This may be what you
want if you are using the log file only as the basis for reports.

Select the OK button in the Log to File Action dialog.
Select the OK button in the Transition Definition window.
Select the Save button in the Alarm Definition window.

See "NerveCenter Variables " on page 301 for a list of the values that constitute a log file entry. And
remember that if you create your log file in non-verbose mode, the values in an entry are not labeled; they
are separated by commas. You may need to refer to the table mentioned above to interpret the contents of
alog entry.Table 23 also lists the variables you can use in log actions that log alarm data to a file or
database.

Notes

Whenever you create an alarm, you can—and should—create notes that document the alarm. Generally,
this documentation should accomplish the following goals:

Explain the purpose of the alarm
Briefly describe the alarm’s states and transitions
List the polls, masks, and alarms that fire triggers that can affect the alarm

Describe the actions that take place during alarm transitions, especially Fire Trigger and Perl
Subroutine actions

Document any programs or scripts that are called via a Command action
Name any reports that are run against data logged by the alarm

Explain any customization required to work with the alarm

292

Designing and Managing Behavior NerveCenter 6.2
Models

Notes

Using the Notes alarm action you can cause an alarm’s notes to be displayed by a behavior model. The
notes are displayed in the Alarm Definition Notes window when the transition with which the Notes action
is associated occurs. For example, adding a Notes action to the first transition in the predefined alarm
IfDatalLogger would cause the notes in Figure 51 to be displayed whenever that transition occurred:

IfLinkUpDown: Alarm Notes And Associations ? X
STATES AND SEVERITIES A
State Name Severity
LinkDown M ajor
DownTrap Marmal
Ground Normal

OBJECTS THAT TRIGGER TRANSITIONS

linkD awn
LinkDowr-v1 Mask
LinkDown Mask
linkUp y

DESCRIPTION A

Monitors when an interface on a node goes down and remains in that
condition for a configurable period of time. Retuns to Ground if the interface
comes back up. Nodes must be associated with a property group that
contains the property ifEntry.
If the interface is determined to be down an inform of 7004 is sent to the
platform.
STATES
Ground
No traps have been received to indicate that any of a node's interfaces
have gone down, v

| Cancel | Help |

Figure 51: Notes for IfData_LogToFile Alarm

To ADD THE NOTES ALARM ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.
A list of available actions is displayed.

2. Select Notes from the pop-up menu.
The Notes action is added to the list of actions in the Transition Definition window.

3. Select the OK button in the Transition Definition window.
Select the Save button in the Alarm Definition window.

NerveCenter 6.2 Designing and Managing Behavior 293
Models

Alarm Actions

Perl Subroutine

The Perl Subroutine alarm action enables you to execute a Perl subroutine when a particular alarm
transition occurs. This action is similar to the Command action in that it enables you to execute a script.
However, the Perl Subroutine action can be much more powerful than the Command action because:

m NerveCenter provides a set of functions for use in Perl subroutines. These functions enable you to
access the contents of a trigger’s variable bindings, fire triggers, assign property groups to nodes,
and so on. For complete information about these functions, see the section Functions for Use in
Perl Subroutines on page 297.

m NerveCenter provides a set of variables for use in Perl subroutines that give you access to a great
deal of internal NerveCenter information about the alarm transition that just occurred. For details,
see the section NerveCenter Variables on page 301.

Note: You can call Perl subroutines defined outside of NerveCenter from the command line; however,
these Perl subroutines use the Perl interpreter installed by the user and not the Perl engine embedded in
NerveCenter. Also, Perl programs run outside of NerveCenter will not have access to any NerveCenter
variables or data structures.

Using these functions and variables, you can create scripts that you could not write using another
language. The section Perl Subroutine Example on page 303 presents an example of how you might use
the Perl Subroutine action.

To ADD A PERL SUBROUTINE TO A TRANSITION

1. Define the Perl subroutine. This task is documented in the section Defining a Perl Subroutine on
the facing page.

2. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

3. Select Perl Subroutine from the pop-up menu.
The Perl Subroutine Action dialog is displayed.

Perl Subroutine Action ? X

Name SS_lempError ﬂ

Cancel ‘ Help |

4. Select a Perl subroutine from the Name drop-down list.
This list contains all the compiled Perl subroutines stored in the NerveCenter database.

Select the OK button in the Perl Subroutine Action dialog.
Select the OK button in the Transition Definition window.

7. Select the Save button in the Alarm Definition window.

294 Designing and Managing Behavior NerveCenter 6.2
Models

Perl Subroutine m

Defining a Perl Subroutine

Before you can add a Perl subroutine to a transition, you must write it (obviously) and store a compiled
version of it in the NerveCenter database.

Note: Perl subroutines that you define inside NerveCenter use the Perl engine embedded in
NerveCenter and not any Perl interpreters installed outside of NerveCenter. Any Perl programs run
outside of NerveCenter will not have access to any NerveCenter variables or data structures.

ToO DEFINE A PERL SUBROUTINE WITHIN NERVECENTER

1. From the Admin menu in the main client window, choose Perl Subroutine List.
The Perl Subroutine List window appears.

Bl NERVECENTER:Perl Subroutine Library oo
Name Compiled Status
SetPropGrop-Mibll-to-Gateway Compiled
SS_lempError Compiled

Open | New Motes | Help |

This window contains a list with an entry for each Perl subroutine defined in your NerveCenter
database. The Compiled Status column indicates whether the subroutine has been successfully
compiled. From this window, you can add a new subroutine, modify an existing subroutine, or view
the notes for a subroutine.

NerveCenter 6.2 Designing and Managing Behavior 295
Models

m Alarm Actions

2. Toadd a new subroutine to NerveCenter, select the New button.

The Perl Subroutine Definition window appears.

B NERVECENTER:Perl Subroutine Definition =N Ecl <"
Mame: |SetF‘ropGrop-MibII-to-Ghteway
Subroutine:
if (SNodePropertyGrp eq "Mib-II") {
AssignPropertyGroup("Gateway"):
Mare 5
g Edi... | ¥ Execute Perl in Global Space

Save | Close | Undo | Motes | Help

This window enables you to name and define a new Perl subroutine.

3. Type the name of your new Perl subroutine in the Name field.

Note: The maximum length for Perl subroutine names is 255 characters.

4. Todocument your Perl subroutine, select the Notes button, enter a description in the Perl
Subroutine Notes window, and select the OK button in that window.

5. Type your Perl subroutine in the Subroutine text entry box.

Use Perl version 5 to write your subroutine. You can also make use of the NerveCenter functions
and variables discussed in the sections Functions for Use in Perl Subroutines on the facing page
and NerveCenter Variables on page 301

If you right-click in the Perl-subroutine editing area, you'll see a pop-up menu that lists all the
functions and variables available for writing Perl subroutines. For more information about this pop-
up menu, see the section Using the Pop-Up Menu for Perl on page 182.

Note: The maximum length for identifiers in Perl subroutines is 251 characters (252 including the
variable type identifier character $, %, and so on).

If you want to use the shared Perl interpreter, select the Execute Perl in Global Space

Note: If you select Execute Perl in Global Space, the poll condition executes in a shared Perl
interpreter. You can use Global variables in your poll condition to share information between other Perl
routines such as trigger functions or Perl subroutines, however, Perl intensive poll conditions may
impede NerveCenter's performance.

296

Designing and Managing Behavior
Models

NerveCenter 6.2

Perl Subroutine m

If you do not select Execute Perl in Global Space, the poll condition executes in a Perl interpreter
dedicated to poll conditions. This will improve NerveCenter’s performance, however you cannot use
global variables in your poll condition to share information between other Perl routines such as trigger
functions or Perl subroutines.

For more information about the various Perl interpreters, see NerveCenter and Perl on page 45.

7. Select the Save button in the Perl Subroutine Definition window.

NerveCenter automatically attempts to compile the subroutine. If your Perl subroutine does not
compile correctly, NerveCenter displays an error message from the Perl compiler. It also saves
the subroutine and places it in the Perl Subroutine List, with the Compiled Status listed as Not
Compiled.

If your Perl subroutine compiles successfully, the saved subroutine is available for use in a Perl
Subroutine alarm action. It won’t be executed unless it's made the object of a Perl Subroutine
action and the associated alarm transition occurs.

Caution: Do not call the exec or exit function from within your Perl subroutine. These statements may
cause the NerveCenter server to terminate.

Functions for Use in Perl Subroutines

NerveCenter provides a number of functions that you can use in your Perl subroutines. The list below
indicates what types of functions are available and where you can find detailed information about each
function:

m Variable-binding functions. These functions enable you to determine the number of variable
bindings in a trigger’s variable-binding list and to obtain information about each variable binding. For
instance, you can retrieve the subobject and attribute associated with a variable-binding and the
value of a variable-binding.

For reference information about these functions, see the section Variable-Binding Functions on
page 204.

m String-matching functions. These functions enable you to determine whether a string contains
another string or a particular word. The functions are useful in conditions that test the value of a
variable binding for a substring.

For reference information about these functions, see the section String-Matching Functions on
page 181.

NerveCenter 6.2 Designing and Managing Behavior 297
Models

Alarm Actions

DefineTrigger(). This function enables you to create triggers which you can assign to variables and
fire using FireTrigger() in NerveCenter Perl expressions.

For reference information about this function, see the section DefineTrigger() Function on
page 175.

m FireTrigger(). This function enables you to fire a trigger from your Perl subroutine. You can specify
the name, subobject, and node attributes of the trigger.

For reference information about this function, see the section FireTrigger() Function on page 177.

m AssignPropertyGroup(). This function enables you to assign a property group to the node
associated with a trigger.

For reference information about this function, see the section AssignProperty Group() Function on
page 175.

m in(). This function determines whether one scalar value is in a set of scalar values.

For reference information about this function, see the section in() Function on page 179.

m AddNode(). This function enables you to add a node to the NerveCenter managed node list from a
NerveCenter Perl expression.

For reference information about this function, see the section AddNode() Function on the facing
page.

m Counter(). This function retumns the current value of an alarm counter. For reference information
about this function, see the section Counter() Function on the facing page.

m NC:AlarmCounters. This function enables you to do any of the following: increment alarm
counters by a number other than one, decrement alarm counters by a number other than one, create
alarm counters, set alarm counters, and retrieve alarm counters. For reference information about
this function, see the section NC::AlarmCounters on page 179.

NC::AlarmCounters are independent of and not related to the alarm action Alarm Counter. See
Alarm Counter on page 271 for details.

m Node relationship functions. These functions enable you to import, export, and delete node
parenting relationships from the NerveCenter database. You can use these functions in Perl
subroutines that are called from alarms that you transition on demand. Node Relationship
Functions on page 300.

298 Designing and Managing Behavior NerveCenter 6.2
Models

Perl Subroutine m

AddNode() Function

The AddNode() function adds a node to the NerveCenter managed node list. This function can be called
from a poll condition, trap mask trigger function, or a Perl Subroutine alarm action.

Syntax: AddNode(“node name”);

Arguments: node name is the IP address of the node to add to the managed node list and must be
avalid IP address enclosed in quotes, for example, “123.123.123.123".

Description: Adds a node to the NerveCenter managed node list, with the following attributes:

o Node name must be a valid IP address enclosed in quotes (for example “192.168.1.1").

o The address assigned to the node will be the address specified for the node name.

o The node property group will be assigned to the “NCDefaultGroup”

o The node community string will be assigned the default V1 community string value (“public”).
o The node will be marked as 'managed' and 'not suppressed'

o The SNMP version of the node will be assigned as V1.

o No action is taken if a node of the same name already exists in the node list. No validation that
the node name doesn't already exist is performed at compile time.

Counter() Function

You use the Counter() function to get the value of an alarm counter for a particular alarm instance. The
function can only be called from a Perl Subroutine alarm action or an Action Router rule.

The syntax of the Counter() function is shown below:
Counter()

Syntax: Counter(“counterName”)
Arguments:

counterName - The name of an existing alarm counter.

Description: The function returns the value of the specified counter.

NerveCenter 6.2 Designing and Managing Behavior 299
Models

m Alarm Actions

Node Relationship Functions

The following functions import, export, and delete node parenting relationships from the NerveCenter
database. You can use these functions in Perl subroutines that are called from alarms that you transition
on-demand. One use for these functions is with the downstream alarm suppression behavior model that is
shipped with NerveCenter. For more information, refer to "Downstream Alarm Suppression" on page 383.

LoadParentsFromFile()
Syntax: LoadParentsFromFile(filename)

Arguments:

filename - The name of the OVPA or manually created file containing the child parent
relationships. This file should list each child node followed by the parent nodes in space-
delimited fashion.

Description: Imports an OVPA or manually created file containing node parenting relationship
information into the NerveCenter database.

Example: This statement loads the node relationship file data from the file nodeparents.dat into
the NerveCenter database:

NC:: LoadParentsFromFile (nodeparents.dat)

DumpParentsToFile()
Syntax: DumpParentsToFile(filename)

Arguments:

filename - The name of the file NerveCenter will output containing the child parent
relationships exported from NerveCenter database.

Description: Exports node parenting relationship information from the NerveCenter database to
the specified file on the local machine.

Example: This statement exports node relationship information from the NerveCenter database to
the file nodeparents.dat:

NC:: DumpParentsToFile (nodeparents.dat)

RemoveAllParents()
Syntax: RemoveAllParents()

Description: Deletes node parenting relationship information from the NerveCenter database.
Example: This statement deletes node relationship information from the NerveCenter database.

NC:: RemoveAllParents

300 Designing and Managing Behavior NerveCenter 6.2
Models

Perl Subroutine m

NerveCenter Variables

NerveCenter defines a number of variables for use in Perl subroutines, Command Alarm actions, and
logging actions. These variables contain information about the alarm transition that just occurred and
about the trigger that caused the transition.

The variables (and functions) available to you for use in poll conditions, trigger functions, Action Router
rule conditions, and Perl Subroutine alarm actions are summarized in a pop-up menu for Perl accessible
via a right mouse click in the respective editing area. (See the section, Using the Pop-Up Menu for Perl on
page 182, for more information.)

The variables available to you for use in Command Alarm actions and the logging actions are available to
you via the Special Symbol drop-down listbox.

The complete list of NerveCenter variables that you can use are shown in Table 23:

Table 23: NerveCenter Variables

Variable Contains

$AlarminstancelD String. The unique identifier for an alarm instance managed by a
NerveCenter Server. If you are connected to more than one server, you
can use the SNCHostName variable to identify the server associated
with the alarm instance.

$AlarmName String. The name of the alarm whose instance just underwent a
transition.

$AlarmProperty String. The name of the alarm’s property.

$AlarmTransitionTime String. The time at which the alarm transition occurred. This time is

formatted as follows: mm/dd/yyyy hh:mm:ss day. An example of an
alarm transition time is 03/31/2017 11:02:26 Fri.

$Date Number. The date on which the alarm transition occurred. When you use
this variable in a comparison, compare it to a value of the form
mm/dd/yyyy. Before using this value in the comparison, NerveCenter
converts it to a number of seconds since January 1, 1970.

$DayOfWeek Number. The day of the week on which the alarm transition occurred.
When you use this variable in a comparison, compare it to one of the
following values: SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, and SATURDAY. These values are converted
to numbers between 0 and 6 before they are used in the comparison.

$DestState String. The state of the alarm instance following the current transition.
$DestStatePlatformSev String. The network management platform severity that is mapped to
$DestStateSev.
$DestStateSev String. The severity of the state where the transition ended.
$NCHostName String. The NerveCenter Server associated with an alarm instance.
NerveCenter 6.2 Designing and Managing Behavior 301

Models

E Alarm Actions

Variable Contains

$NewMaxNodePlatformSev

String. The network management platform severity that is mapped to
$NewMaxNodeSev.

$NewMaxNodeSev String. The maximum severity associated with a node, following the
current transition. This maximum severity is determined by looking at the
states of all alarm instances that are monitoring the node.

$NodeAddress String. The IP address of the node being monitored.

$NodeAddressList String. A comma-separated list of all the IP addresses associated with
the node being monitored. No white space is allowed in this list.

$NodeName String. The name of the node being monitored by the alarm instance that
underwent the transition.

$NodePropertyGrp String. The property group of the node being monitored.

$NoOfVarBinds Number. The number of variable bindings in the trigger that caused the
alarm transition. These variable bindings may have been derived from a
poll condition or an SNMP trap.

$OrigState String. The state of the alarm instance prior to the current transition.

$OrigStatePlatformSev String. The network management platform severity that is mapped to
$OrigStateSev.

$OrigStateSev String. The severity of the state where the transition began.

$PollKey String. If a poll caused the transition, this variable contains a value that

uniquely describes the poll and the alarm instance with which it
interacted. That value has the format
polllD.nodelD.baseObject.instance. $PollKey is usually used as an
index into a Perl hash.

$PrevMaxNodePlatformSev

String. The network management platform severity that is mapped to
$PrevMaxNodeSev.

$PrevMaxNodeSev String. The maximum severity associated with a node, prior to the
current transition. This maximum severity is determined by looking at the
states of all alarm instances that are monitoring the node.

$ReadCommunity String. The read community string of the node being monitored.

$Time Number. The time at which the alarm transition occurred. When you use
this variable in a comparison, compare it to a value of the form hh:mm.
NerveCenter converts this value to a number of seconds before
performing the comparison.

$TrapPduAgentAddress String. If an SNMP trap caused the transition, this variable contains the
trap’s agent address.

$TrapPduCommunity String. If an SNMP trap caused the transition, this variable contains the

trap’s community string.

Designing and Managing Behavior

NerveCenter 6.2
Models

Perl Subroutine E
Variable Contains

$TrapPduEnterprise String. If an SNMP trap caused the transition, this variable contains the
trap’s enterprise OID.

$TrapPduGenericNumber Number. If an SNMP trap caused the transition, this variable contains
the trap’s generic trap number.

$TrapPduSpecificNumber | Number. If an SNMP trap caused the transition, this variable contains
the trap’s specific trap number.

$TrapPduTime Number. If an SNMP trap caused the transition, this variable contains
the trap’s timestamp.

$TriggerBaseObject String. The base object portion of the trigger's subobject attribute. For
example, if the trigger's subobject is IfEntry.2, the base object is ifEntry.

$Triggerinstance Number. The instance portion of the trigger's subobject attribute. For
example, if the trigger's subobject is IfEntry.2, the instance is 2.

$TriggerName String. The name of the trigger that caused the alarm transition.

$VarBinds String. The list of all variable bindings in the form attribute=value. In the
case of Perl subroutines and Action Router rules, it makes sense to use
attribute name, value or object for an individual variable binding.

$VB(n) String. The nth variable binding. You can use $VB(n) in Log to File and
Log Database alarm actions only.

$WriteCommunity String. The write community string of the node being monitored.

Perl Subroutine Example

As a simple example, suppose that you want to poll a node for the value of an attribute and to fire different
triggers depending on the value. Let’s say that you're interested in the value of ifEntry.ifOperStatus and
that you want to fire different triggers for the values 1 (up), 2 (down), and 3 (testing). You also want to fire a
fourth trigger if the value is some other number.

You could solve this problem by using multiple polls with the poll conditions ifEntry.ifOperStatus == 1,
ifEntry.ifOperStatus == 2, and so on. However, this would be very inefficient. A better solution would be
to use the poll to retrieve the value of the attribute and to fire a trigger if it is successful. So the poll
condition would simple be:

ifEntry.ifOperStatus present

NerveCenter 6.2 Designing and Managing Behavior 303
Models

Alarm Actions

Then, on the transition associated with the poll’s trigger, you could execute a Perl subroutine. This
subroutine might look something like this:
if (ifEntry.ifOperStatus == 1) {
FireTrigger (“OperStatusUp”) ;
}
elsif (ifEntry.ifOperStatus == 2) {
FireTrigger (“OperStatusDown”) ;
}
elsif (ifEntry.ifOperStatus == 3) {
FireTrigger (“OperStatusTest”) ;
}

else {
FireTrigger (“OperStatusBad”) ;

Send SMS

The Send SMS alarm action enables an alarm to send an SMS message concerning a transition.

Note: Before you can use the Send SMS action, NerveCenter must specify an SMTP server. This
setup is covered in Specifying an SMTP Server for Mail Notification in Managing NerveCenter.

To ADD A SEND SMS ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Send SMS from the selection control.
The SMTP Mail/Send SMS Action dialog is displayed.

SMTP Mail/Send SMS Action ? X

Recipients

To: ||

Subject: |

Message:

Special Symbol = ﬂ
0K I Cancel | Help |

304 Designing and Managing Behavior NerveCenter 6.2
Models

Send Trap m

3. Inthe To: field, enter the SMTP gateway addressing for reaching your SMS target per the
instructions of your carrier service.

Optionally, fill the Subject: field. Any entry here will be included at the start of the resulting SMS
message. As SMS messages need to be short (140 characters), this field can be skipped and left
blank.

4. Enter the message body in the Message: field.

The message text (limited to 140 characters, including the Subject you entered one) may be used
as boilerplate wherein you insert a supported variable in the text, which is replaced at runtime with
values taken from the live context.

To add a variable, position the cursor in the text and select a variable from the Special Symbol
list. Then click the ‘up’ arrow to insert the selected variable into the text.

5. Select the OK button.

The new action appears in the list of actions in the Transition Definition window.

Select the OK button in the Transition Definition window.
Select the Save button in the Alarm Definition window.

Send Trap

The Send Trap alarm action enables you to send an SNMPv 1 trap when a transition occurs and gives you
virtually complete control over the contents of the trap.

Note: NerveCenter does not send SNMPv3 traps, because under SNMPv3, a node’s IP address is no
longer sent in the packet’s header; therefore, NerveCenter cannot simulate a node’s |P address and
send the SNMPv3 trap.

Generally, when one alarm must communicate with another, the first uses the Fire Trigger action to fire a
trigger that causes a transition in the second. However, Send Trap can also be used for this type of inter-
alarm communication. The first alarm can send a trap to the NerveCenter server, the server can process
the trap using a trap mask (which can fire a trigger), and the trigger can cause a transition in the second
alarm. This is a more roundabout way of firing the required trigger, but gives you the ability pass the trap’s
variable bindings, along with the trigger, to the second alarm. In addition, Send Trap enables an alarm
being managed by one NerveCenter server to communicate with an alarm being managed by another
server, while Fire Trigger does not.

Of course, you aren’t limited to sending traps to NerveCenter. You can send a trap to any application that
knows how to process SNMP traps.

NerveCenter 6.2 Designing and Managing Behavior 305
Models

Alarm Actions

TO ADD A SEND TRAP ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Send Trap from the pop-up menu.
The Send Trap Action dialog is displayed.

Send Trap Action

$NodeName

Source Vatiable Bindings

Base Attribute

Destination |$NCHostName

Instance l Value l

Port 162
Community | public

Trap Number
7] Generic 6
Specific |1

Default

Enterprise $P |

Altribute ¥ alue Instance

I I

Base Object Attribute

$P P A
aal5VecEntry

aclEntry

addressMap

addressMapControlEntry
addressMapEntry

alarmE ntry

alHostEntry v

o]

Cancel |

Help |

3. Inthe Source field, enter information about node whose address you want to appear in the agent-

address field of the trap PDU.
The valid values for this field are:

o $NodeName (the default value), which represents the node associated with the trigger that

caused the transition.

o $NCHostName, which represents the node on which the active NerveCenter server is running.

o A node name.

o AnIP address. Using an IP address is generally more efficient than using a node name

because it eliminates the name-to-address translation.

306 Designing and Managing Behavior

Models

NerveCenter 6.2

Send Trap m

4. Inthe Destination field, enter information about the node to which the trap should be sent.

The valid values for this field are the same as those for the Source field. $M is the default.

5. Enterinthe Port field the number of the port on the destination machine to which the trap should be
sent.

Generally, SNMP traps are received on port 162, so 162 is the default value.

6. Entera community name in the Community field.

This is the community name that a manager needs to know in order to access the agent that is
sending the trap. The default value is public.

7. Select one of the three options from the Trap Numbers drop-down list: Default, Trap, and
Custom.

If you select Default, your trap’s generic trap number will be 6, and its specific trap number will be
1.

If you select Trap, your trap’s generic and specific trap numbers will match those of the trap
associated with the trigger that caused the alarm transition.

If you select Custom, you can specify a generic trap number using the Generic drop-down list. In
addition, if you select a generic trap number of 6, you can enter a specific trap number in the
Specific field.

8. Inthe Enterprise field, enter an object identifier, or the corresponding name, for the device that is

the source of the trap.
The valid values for this field are:

o $P (the default), which indicates that the enterprise field in the trap you're sending should

match the enterprise field in the trap associated with the trigger that caused the alarm
transition.

Note that if the trigger that caused the transition with which this action is associated is not
caused by a trap, $P will not have a value, and the Send Trap action will not take place.

> An object identifier, such as 1.3.6.1.4.1.9.

> A name associated with an object identifier in an ASN.1 file.

Caution: Be aware that traps from the LogMatrix object ID (1.3.6.1.4.1.78) cannot be seen by
NerveCenter because they are forwarded to your platform.

NerveCenter 6.2 Designing and Managing Behavior 307
Models

m Alarm Actions

9. Enterinformation for each variable binding to be included in the trap PDU.

For each variable binding, perform the following steps.

a. If youwant a variable binding to contain exactly the same information as the corresponding
variable binding in the trap associated with the trigger that caused the alarm transition,
select $P from the Base Object list and then select the Insert button

If you perform Step a, you can the skip the remaining steps in this procedure. Otherwise, go
onto Stepb.

b. Select a base object from the Base Object list.
c. Select an attribute from the Attribute list.

d. Typeaninstance in the Instance field.

Using your base object, attribute, and instance, NerveCenter creates the object identifier
portion of the variable binding. For example, if you supply the base object system, the
attribute sysUpTime, and the instance 0, NerveCenter builds an OID of 1.3.6.1.2.1.1.3.0.

e. Enteravalue for the attribute instance in the Attribute Value field.
f. Select the Insert button.

10. Select the OK button in the Send Trap Action dialog.

11. Select the OK button in the Transition Definition window.

12. Select the Save button in the Alarm Definition window.

Set Attribute

The Set Attribute alarm action enables you to set selected attributes of an alarm, a mask, a poll, ora
node. For alarms, masks, and polls, you can turn an object on or off. For nodes, you can assign the node a
property group, or you can suppress or unsuppress the node.

A good example of the use of this action occurs in the predefined alarm DwnStrmSnmpStatus, which is
part of a behavior model that suppresses alarms from nodes that are downstream from a router that is
down. The state diagram for this alarm is shown in Figure 52.

308

Designing and Managing Behavior NerveCenter 6.2
Models

Set Attribute

art AgentDown nodelp
m]:
— \

PORT_UNRERCHABLE = NODE_UNREACHABLE

agentUpFast =
A NET_UNREACHABLE

A

ront mnmnu ICMP_TTIMEOUT

F s
m 'mmwr [sme_tnEovr | //“
=0
I::mw, /’ i::" - P~

N.I'l' umm:ml.n NE'I‘ mﬂm
(o e |, PSSR vCLE

—
coldStart - achable
UnReachable
/
-

Figure 52: DwnStrmSnmpStatus Alarm

When the behavior model discovers that a node is unreachable because of a router that is down, it fires
the trigger Down and uses the Set Attribute action to turn suppression on for the node it is tracking.
Suppressing the node causes all insuppressible polls to stop polling the node. Similarly, if the poll
IcmpPoll or IcmpFastPoll (both of these polls are insuppressible) determines that the node is reachable

again, the alarm uses the Set Attribute action to turn suppression off for the node. At this point, normal
polling resumes.

Note: If your Set Attribute alarm action turns an alarm off, any pending triggers fired by that alarm are
cleared if the Clear Triggers for Reset To Ground or Off checkbox is checked in the alarm’s
definition window.

NerveCenter 6.2 Designing and Managing Behavior 309
Models

m Alarm Actions

TO ADD A SET ATTRIBUTE ALARM TO A TRANSITION

1.

© ® N o

From the Transition Definition window, select the New Action list.
A list of available actions is displayed.

Select Set Attribute from the pop-up menu.
The Set Attribute Action dialog is displayed.

X

Set Attribute Action ?

Obiect Type:

Mame: [$NODE

Attribute: | Suppress

Lol Lo o] L

Walue: |D n

oK | Cancel | Help |

In this release of NerveCenter, the Host field is not used.

From the Object Type drop-down list, select the type of object for which you want to set an
attribute.

Select the name of the object whose attribute you want set from the Name drop-down list.

For an alarm, a mask, or a poll, your options include all the objects of that type in the NerveCenter
database. For a node, you can select any of the nodes in the NerveCenter database or the variable
$NodeName. This variable contains the name of the node associated with the trigger that caused
the transition.

Select the object attribute you want to set using the Attribute drop-down list.

If the Object Type is Alarm, Mask, or Poll, the Attribute field is read only because the only attribute
you can set is State (the object’s Enabled status). For a node, you can select either Property
Group or Suppress.

Select the value to which you want to set the attribute from the Value drop-down listbox.
Select the OK button in the Set Attribute Action dialog.

Select the OK button in the Transition Definition window.

Select the Save button in the Alarm Definition window.

310

Designing and Managing Behavior NerveCenter 6.2
Models

SMTP Mail m

SMTP Mail

The SMTP Mail alarm action enables an alarm to send email concerning a transition.

Note: Before you can use this action, NerveCenter must specify an SMTP server. This setup is
covered in Specifying an SMTP Server for Mail Notification in Managing NerveCenter.

To ADD AN SMTP MAIL ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select SMTP Mail from the selection control.
The SMTP Mail/Send SMS Action dialog is displayed.

SMTP Mail/Send SMS Action ? X

Recipients

To: ||

Subject: |

Message:

Special Symbol e ﬂ
oK | Cancel | Help |

3. Enter a recipient for the mail in the To: field.
Enter a subject line for the mail in the Subject: field.
5. Enterthe message body in the Message: field.

The message text may be used as boilerplate wherein you insert a supported variable in the text,
which is replaced at runtime with values taken from the live context.

To add a variable, position the cursor in the text and select a variable from the Special Symbol
list. Then click the ‘up’ arrow to insert the selected variable into the text.

6. Select the OK button.
The new action appears in the list of actions in the Transition Definition window.

NerveCenter 6.2 Designing and Managing Behavior 311
Models

Alarm Actions

7. Select the OK button in the Transition Definition window.

8. Select the Save button in the Alarm Definition window.

SNMP Set

The SNMP Set alarm action enables you to set one or more values in the MIB of an SNMP agent residing
on one of your managed nodes. When the transition with which this action is associated occurs,

NerveCenter sends an SNMP set request, which includes information you’ve supplied, to the node where
the agent resides.

To ADD AN SNMP SET ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.
A list of available actions is displayed.

2. Select SNMP Set from the pop-up menu.
The SNMP Set Action window is displayed.

SNMP Set Action ? X

Destination Host / IP Address |$NDDE
Community Stiing |$WRITE_COMMUNITY |

Port [sPORT
Variable Bindings

Base Attribute I Instance Value

| I |

Attribute Value Instance
[s

Base Object Attribute

aal5VecEntry A

aclEntry

addressMap

addresst apContiolE ntry
addressMapEntiy
alarmE ntry

alHostEntry v
[Tl Cancel Help
312 Designing and Managing Behavior NerveCenter 6.2

Models

SNMP Set

Enter the destination for the SNMP set request in the Destination Host/IP Address field, or leave
the default value, $NODE.

The valid values for this field are:

o $NODE, a variable that contains the node associated with the trigger that caused the alarm
transition. For example, if a poll generates the trigger, SNODE contains the name of the node
that was polled.

o The name of a node.
o The IP address of a node.

Enter a write community string in the Community String field, or leave the default value,
$WRITE_COMMUNITY.

The valid values for this field are:

o $WRITE_COMMUNITY, a variable containing the write community value associated with the
destination node.

o A community name.

Enter a port number in the Port field, or leave the default value, $PORT. This field indicates the
port to which the SNMP message will be sent.

The valid values for this field are:

o $PORT, a variable containing the port number associated with the destination node. If the
node’s Port attribute is blank, $SPORT represents the value 161.

o A port number.

Build a list of variable bindings to be included in your set request’s PDU (protocol data unit). Each
variable binding specifies an attribute to be set and the value to which it should be set.

For each variable binding you want to add to the PDU, perform these steps:

a. Select a base object from the Base Object list.
The base object list contains all the base objects referred to in your compiled MIB. Once you
select a base object, the attributes of that object are listed in the Attribute list.

b. Select an attribute from the Attribute list.

c. Type avalue for your attribute in the Attribute Value field.

d. Specify which instance of the attribute you want to set using the Instance field.

If the attribute is a zero-instance attribute, NerveCenter automatically supplies the instance
(0) when you insert the variable binding into the Variable Binding list. In addition,
NerveCenter provides a variable, $I, that you can use to refer to instance information in the
poll or trap mask that generated the trigger.

e. Select the Insert button.
Your variable binding is appended to the Variable Binding list.

NerveCenter 6.2

Designing and Managing Behavior 313
Models

m Alarm Actions

Note: The SNMP Set Action dialog also enables you to modify and delete existing variable bindings.
Use the Update, Delete, and Delete All buttons for these operations.

7. Select the OK button in the SNMP Set Action dialog.
The new action is added to the Actions list in the Transition Definition window.

8. Select the OK button in the Transition Definition window.
9. Select the Save button in the Alarm Definition window.

314 Designing and Managing Behavior NerveCenter 6.2
Models

Performing Actions Conditionally
(Action Router)

When an alarm transition occurs, all the actions associated with that transition are performed
unconditionally. However, the responsibility of one action—Action Router—is to send information about
the transition to the Action Router facility, which performs actions conditionally. That is, the Action Router
action always takes place, but the Action Router facility may or may not initiate some other action.

Whether the Action Router facility performs one or more actions—such as executing a command or
logging data to a file—depends on rules that you've set up using the Action Router. For example, you
might want to specify that if a particular alarm transition occurs at night or on the weekend, an
administrator should be paged. In this case, the alarm transition has the Action Router action associated
with it, and the Action Router rule looks like this:

$DayOfWeek >= MONDAY and $DayOfWeek <= FRIDAY and ($Time < 08:00
or $Time > 17:00)or ($DayOfWeek == SATURDAY or $DayOfWeek ==
SUNDAY)

-> Paging 5551234567:911:#

All actions that can be performed from an alarm transition can be performed from the Action Router,
except for the Alarm Counter and Action Router actions. Also, rule conditions can be built using many
types of data, for example:

m The name of an alarm. Did the transition take place in an instance of this alarm?

m The name of a node. Was the alarm instance in which the transition took place monitoring this
node?

m The name of a property group. Does the node that was being monitored have this property group?
m The severity of the destination alarm state.
m The name of the trigger that caused the transition.

For a complete list of the variables that can be used in an Action Router rule condition, see the table
NerveCenter Variables on page 301.

The remainder of this chapter explains how to determine what Action Router rules have already been
defined and how to create new rules.

NerveCenter 6.2 Designing and Managing Behavior 315
Models

Performing Actions Conditionally (Action Router)

Listing Existing Action Router Rules

This section explains how to display a list of the Action Router rules currently defined in the NerveCenter
database. The section also explains how to view the definition of a particular rule.

For information on creating a new rule, see Creating an Action Router Rule on page 318.

TO DISPLAY A LIST OF ACTION ROUTER RULES AND THEN DISPLAY A PARTICULAR RULE’S DEFINITION

1. From the client’'s Admin menu, choose Action Router Rule List.

The Action Router Rule List window is displayed.

B NERVECENTER:Action Router Rule List =N ECR ™
Name | Definition | Compiled Status
SMS Test if (SNodePropertyGrp e... Compiled
| New | Close | Help |

This window lists all currently defined Action Router rules. If enough room is available in the
window, you can see, for each rule, the condition under which actions will be performed (the rule
condition) and the actions that will be performed under those conditions (the rule actions).

316 Designing and Managing Behavior NerveCenter 6.2
Models

Listing Existing Action Router Rules

If you can only see part of the rule, you can either enlarge the window or perform the following
steps.

2. Double-click the rule whose definition you want to see.

The Action Router Rule Definition window is displayed.

B NERVECENTER : Action Router Rule Definition =N EoR =

Rule Condition | Rule Action |

Name
SMS Test

Rule Condition

if (£NodePropertyGrp =q 'CriticalDevices') {
return TRUE;

} else {

return FALSE;

Save | Cancel | Undo | Help |

3. Select the Rule Condition tab to see the rule condition and the Rule Action tab to see the
actions defined for the rule.
In the figure above, the condition says, “If the alarm transition occurs after hours on a week day or
on a weekend, take the actions listed on the Rules Action page.”

NerveCenter 6.2 Designing and Managing Behavior 317
Models

m Performing Actions Conditionally (Action Router)

Creating an Action Router Rule

There are two components to an Action Router rule: a condition and a list of actions. For example,
suppose you need to develop a rule that will cause NerveCenter to send you e-mail if a device goes down.
The rule’s condition might be:

$STriggerName eq “deviceDown”

This means that you want to know if the Action Router is notified of a transition that occurred as a result of
a deviceDown trigger.

The rule’s action might be:
SMTP Mail networkadmin@yourcompany.com
This means that if the condition is met, NerveCenter should send SMTP mail to the address shown.

The next two sections explain how to create such rule conditions and rule actions; note that you must
create both a condition and one or more actions to complete an Action Router rule.

318

Designing and Managing Behavior NerveCenter 6.2
Models

Creating an Action Router Rule m

Defining a Rule Condition

Defining a rule condition is one part of defining an Action Router rule. After defining the rule condition, you
must define a rule action to complete the Action Router rule. For information on defining a rule action, see
the section Defining a Rule Action on page 323.

TO DEFINE A RULE CONDITION

1. From the client’'s Admin menu, choose Action Router Rule List.
The Action Router Rule List window is displayed.

2. Select the New button in the Action Router Rule List window.
The Action Router Rule Definition window is displayed.

_E] MNERVECENTER : Action Router Rule Definition El LX)

Rule Condition | Rule Action I

Name

Rule Condition

More

Save | Cancel | Undo | Help |

3. Enter a unique name for your Action Router rule in the Name field.

Note: The maximum length for Action Router rule names is 255 characters.

NerveCenter 6.2 Designing and Managing Behavior 319
Models

Performing Actions Conditionally (Action Router)

4. Write your rule condition in the Rule Condition text area.
You write this rule condition using Perl. However, you need not write a complete Perl statement.
You can assume the following context:
if (...) |
ruleAction;}

All you must supply is the condition that would fit inside the parentheses. For example,
$O0riginStateSev eq “Normal” is a complete rule condition.

To help you write rule conditions, NerveCenter provides several aids:

m A set of variables that contain data you can use in your rule condition. We've already seen a
number of these, such as $DayOfWeek, $Time, and $OriginStateSev. For a complete list of the
variables available to you, see the section NerveCenter Variables on page 301.

m A set of functions that you can use in your rule conditions. These functions enable you to determine
whether a variable contains a substring, to access information in the variable bindings of a trap that
caused an alarm transition, and more.

For more information about these functions, see the section Functions for Use in Action Router
Rule Conditions on the facing page.

m A pop-up menu that lists the variables and functions you can use in a rule condition and enables you
to enter the name of a variable or function in the rule-condition editing area. For further information
about this pop-up menu, see the section Using the Pop-Up Menu for Perl on page 182.

m Lists of the alarms, days, nodes, properties, property groups, severities, and triggers that you can
use in a rule condition. Selecting an item from one of these list writes the name of the selected
object to the rule-condition editing area.

For further information about these lists, see the section Using Action Router Object Lists on the
facing page.

Note: When creating poll conditions, trigger functions, and Perl subroutines, you can choose between
using multiple Perl interpreters or a Global Perl interpreter. If you configure your poll conditions, trigger
functions, and Perl subroutines to use the Global Perl interpreter, Action Router rules that take a long
time to run, such as logging to a file, performing database queries, or issuing external system calls, can
slow down NerveCenter's performance. If you have need of such Perl scripts in your environment, use
the scripts sparingly. See NerveCenter and Perl on page 45 for more information.

Once you've finished building your rule condition, you must go to the Rule Action page and build a list of
rule actions. For instructions on how to build this list, see the section Defining a Rule Action on page 323.

320 Designing and Managing Behavior NerveCenter 6.2
Models

Creating an Action Router Rule

Functions for Use in Action Router Rule Conditions

NerveCenter provides a number of functions that you can use in your Action Router rule conditions. The
list below indicates what types of functions are available and where you can find detailed information
about each function:

m Variable-binding functions. These functions enable you to determine the number of variable
bindings in a trigger’s variable-binding list and to obtain information about each variable binding. For
instance, you can retrieve the subobject and attribute associated with a variable-binding and the
value of a variable-binding.

For reference information about these functions, see the section Variable-Binding Functions on
page 204.

m String-matching functions. These functions enable you to determine whether a string contains
another string or a particular word. The functions are useful in conditions that test the value of a
variable or variable binding for a substring.

For reference information about these functions, see the section String-Matching Functions on
page 181.
m in(). This function determines whether one scalar value is in a set of scalar values.
For reference information about this function, see the section in() Function on page 179.
m Counter(). This function returns the current value of an alarm counter. For reference information
about this function, see the section Counter() Function on page 299.

m NC::AlarmCounters. This function enables you to do any of the following: increment alarm
counters by a number other than one, decrement alarm counters by a number other than one, create
alarm counters, set alarm counters, and retrieve alarm counters. For reference information about
this function, see the section NC::AlarmCounters on page 179.

NC::AlarmCounters are independent of and not related to the alarm action Alarm Counter. See
Alarm Counter on page 271 for details.

Using Action Router Object Lists

If you are writing an Action Router rule condition and need to enter the name of an alarm, you do not need
to:

m Look up the name of the alarm in the Alarm Definition List window.
m Type the name of the alarm in the Rule Condition editing area.

Instead, you can select the name of the alarm from a list of alarms on the Rule Condition page. Selecting
this name copies the name to the Rule Condition editing area, at the point of the cursor.

NerveCenter 6.2 Designing and Managing Behavior 321
Models

Performing Actions Conditionally (Action Router)

In addition to a list of alarms, the Rule Condition page provides lists of:

Days (Days are not really NerveCenter objects.)
Nodes

Properties

Property groups

Severities

Triggers

How TO ENTER THE RULE CONDITION $ALARMNAME EQ ‘AUTHENTICATION’

1.

2.

In the Rule Condition editing area enter the text $AlarmName eq using the editing area’s pop-up
help menu or your keyboard.

Select the More button on the Rule Condition page to expand the page.

B NERVECENTER : Action Router Rule Definition =N EoR =

Rule Condition | Rule Action]

Name

Rule Condition

if (SAlarmName eg

Condition Type Alarms

lAlarrn LI AllTraps_LogT oFile N
Authentication
Forward-AlTraps
lempStatus

IfE rorStatus
IfLinkUpDown
ifStatus

|fJoD ownStatus

Save Cancel Undo Help

322

Designing and Managing Behavior NerveCenter 6.2
Models

Creating an Action Router Rule m

3. Select Alarm from the Condition Type drop-down list.

The list to the right of the drop-down list is populated with the names of all the alarms in the
NerveCenter database.

Note: If you were writing a different rule condition, you could have selected a different object from the
drop-down list.

4. Double-click Authentication in the Alarms list.
This action causes the text ‘Authentication’ to be added to the rule condition.

5. Afteryou've defined your rule’s action, select the Save button.

Defining a Rule Action

Once you've created an Action Router rule condition, as described in the section Defining a Rule
Condition on page 319, you must create a rule action to complete your Action Router rule. This action rule
contains descriptions of one or more actions that you want to be performed when the rule condition is met.

TO CREATE AN ACTION RULE

1. Inthe Rule Composition window, select the Rule Action tab.
The Rule Action page is displayed.

_EJ NERVECENTER : Action Router Rule Definition E' [t 5|
Rule Condition Fule Action
Type Argument
< >
New Action v I
Save Cancel Undo Help
NerveCenter 6.2 Designing and Managing Behavior 323

Models

m Performing Actions Conditionally (Action Router)

2. Select the New Action list.

A list of available actions is displayed. Except for the Action Router and Alarm Counter actions,
you can add to the rule any action that you can perform from an alarm transition.

Actions are described in "Alarm Actions" on page 269.

3. Select an action from the list.

All of the actions except Delete Node and Notes require parameters, so a dialog box appears.
Again, refer to the appropriate section in "Alarm Actions" on page 269 for an explanation of how to
supply the necessary parameters.

4. Repeat Step 2 and Step 3 for each action that you want to add to the rule action.
5. Select the Save button at the bottom of the Rule Composition window.

324 Designing and Managing Behavior NerveCenter 6.2
Models

Creatin
Models

g Multi-Alarm Behavior

Most behavior models employ only one alarm. However, some models require two or more alarms. If a

model

uses more than one alarm, the alarms generally communicate using the Fire Trigger alarm action.

That is, one alarm fires a trigger that causes a transition in a second alarm.

This chapter presents an example of a multi-alarm behavior model (sometimes referred to as multi-tier

behavi

or models), which might serve as an example for your own models.

Note: Another good example of a multi-alarm behavior model is the downstream alarm suppression

mode

I, NodeStatusDwnStrm, that ships with NerveCenter. For more information, refer to "Downstream

Alarm Suppression" on page 383.

IfUpDownStatusByType

IfUpDownStatusByType is one of the multi-alarm behavior models shipped with NerveCenter and
provides interface management for devices that can be managed using the MIB-II and Frame Relay

MiIBs.
[|
[|

This model manages the following types of interfaces:
Asynchronous Transfer Mode (ATM)

Integrated Services Digital Network (ISDN)

Fiber Distributed Data Interface (FDDI)

Frame Relay Permanent Virtual Circuit (PVC) subinterfaces
Frame Relay

Local Area Network (LAN)

Switched Multimegabit Data Service (SMDS)

Synchronous Optical Network (SONET)

Wide Area Network (WAN)

NerveCenter 6.2

Designing and Managing Behavior 325
Models

m Creating Multi-Alarm Behavior Models

The majority of the alarms in this model are subobject scope alarms that categorize an interface (the
possible categories are listed above) and then monitor its status. For most interfaces, the interface can be
up, down, or in testing mode. (The exception is a Frame Relay PVC, which can only be up or down.)

If-IfTypeNotAdminOp

;

If-IfTypeNotAdminOp IF-IfStatus

IF-IATMStatus @ IFIFATMNOtAdminOp 4—;2'
A

|

i.qi If-IfFFDDINotAdminOp
IF-IfSelectType

IF-IfFDDIStatus

When an alarm instance transitions to one of these states, it executes an Inform action to notify a network
management platform of the new state. For this Inform action to have the desired effect, you must
integrate the trapd.conf.txt file supplied with these models with the standard NerveCenter trapd.conf.
The trapd.conf.txt file along with the .mod file resides in the /model/interface_status/updown_bytype
directory. For information about importing behavior models into NerveCenter, see Importing Node,
Object, and Behavior Model Files on page 364.

The interface status alarms are listed below:

IF-IFATMStatus
IF-IfFDDIStatus
IF-IfFramePVCStatus
IF-IfFrameRelayStatus
IF-IfISDNStatus
IF-IfLANStatus
IF-IFfSMDSStatus
IF-IfSonetStatus
IF-IFWANStatus

The model file also includes three other alarms: |F-IfStatus, IF-IfColdWarmStart, and IF-IfNmDemand.

326

Designing and Managing Behavior NerveCenter 6.2
Models

IfUpDownStatusByType

IF-IfStatus Alarm

The predefined alarm IF-IfStatus is a subobject scope alarm that monitors interfaces on the network. Its
definition is shown in Figure 53.

& NERVECENTER:Alarm Definition : IF-IfStatus

.l

E=SEch

.

=

=
|Z£-T€TypeNotAdminOp
——

Name |IF-IfStatus Property IifE ntry LI Scope |SubDbject d
Enabled .
- on O [Clear Triggers for Reset To Ground or OFff
State List Transition List
State | Severity From State To State Trigger
Ground Normal Ground Ground If-if TypeNo...
Save | Cancel | Undo | Notes | Help

Figure 53: IF-IfStatus Alarm

IF-IfStatus listens for the trigger IF-1fTypeNotAdminOp, which is fired whenever an interface is not
operationally up (either down or in testing mode). When IF-IfStatus transitions to IF-I1fTypeNotAdminOp,
the alarm fires a Perl subroutine, IF-SelectType.

NerveCenter 6.2 Designing and Managing Behavior 327

Models

Creating Multi-Alarm Behavior Models

IF-SelectType Perl Subroutine

IF-SelectType is a Perl subroutine composed of an If statement that reads the instance of ifEntry.ifType
to determine the interface type being monitored and to fire the appropriate trigger.

Y NERVEC ine Definition : IF- =2

Name: |IF-SelectType
Subroutine:

if (ifEntry.ifType == 6) { FireTrigger ("If-ifLANNotAdminOp"); } # 802.2 interface A
elsif (ifEntry.ifType == 7) { FireTrigger ("If-ifLANNotAdminOp"); } # 802.3 interface
elsif (ifEntry.ifType { FireTrigger ("If-ifFDDINotAdminOp"); } # FDDI interface
elsif (ifEntry.ifType { FireTrigger ("If-ifWANNotAdminOp"); } # SDLC interface
elsif (ifEntry.ifType { FireTrigger ("If-ifWANNotAdminOp"); } # DSL interface
elsif (ifEntry.ifType { FireTrigger ("If-ifWANNotAdminOp"); } # EL interface
elsif (ifEntry.ifType { FireTrigger ("If-ifbISDNNotAdminOp"): } # bISDN interface
elsif (ifEntry.ifType { FireTrigger ("If-ifWANNotAdminOp"); } # pISDN interface
elsif (ifEntry.ifType { FireTrigger ("If-ifWANNotAdminOp"): } # pPPPS interface
elsif (ifEntry.ifType { FireTrigger ("If-ifWANNotAdminOp"); } # DS3 interface
elsif (ifEntry.ifType { FireTrigger ("If-ifSMDSNotAdminOp"); } # SIP interface
elsif (ifEntry.ifType { FireTrigger ("If-ifFRAMENotAdminOp"); } # fRELAY interface
elsif (ifEntry.ifType { FireTrigger ("If-ifATMNotAdminOp"); } # ATM interface
elsif (ifEntry.ifType { FireTrigger ("If-ifSONETNotAdminOp"): } # SONET interface
elsif (ifEntry.ifType { FireTrigger ("If-ifSMDSNotAdminOp"); } # smdsDxi interface
elsif (ifEntry.ifType { FireTrigger ("If-ifFRAMENotAdminOp"): } # fRelaySERVICE
elsif (ifEntry.ifType { FireTrigger ("If-ifWANNotAdminOp"); } # V35 interface
elsif (ifEntry.ifType { FireTrigger ("If-ifWANNotAdminOp"); } # HSSI interface
elsif (ifEntry.ifType { FireTrigger ("If-ifWANNotAdminOp"); } # HIPPI interface
clsif (ifEncrv.iffyoe == 50) { FireTrigoer("If-ifSONETNotAdminOo"): } # sonetPATH 1ncexf§<“

m [V Execute Perlin Global Space

Close Undo Notes Help

Figure 54: IF-SelectType Perl Subroutine

IF-SelectType fires the appropriate trigger to instantiate the correct interface-type alarm for the interface
that is in a non-operational status.

328 Designing and Managing Behavior NerveCenter 6.2
Models

IfUpDownStatusByType m

Interface-type Alarms

The IfUpDownStatusByType behavior model has an alarm for each interface type (ATM, ISDN, FDDI,
and so on) that it monitors. The interface alarms (with the exception of IF-IfFramePVCStatus) are
identical. The definition for these alarms, is shown in Figure 55.

If-coldWarmStart | “

If-ifAdminOp |

[zf-coraarmstart |

[If-ifTesting |

If-ifAdminlp

If-ifDowvm2 |

,-f,‘_\h"*-,
[IfNotAdminOp
I£-i fATMNot AdminOp

If-ifTesting? |

If-ifAdminOp |

If-ifDowvn

[Tf-coldwarmstart

If-LinkUp | f

If-coldWarmStart

,//_‘-.-""-\.,
[fUpDownTrap If-ifNotAdminOp |

Figure 55: Interface-type Alarms State Diagram

NerveCenter 6.2 Designing and Managing Behavior 329
Models

m Creating Multi-Alarm Behavior Models

The interface-type alarms (with the exception of IF-IfFramePVCStatus) contain the following states:

Ground - No evidence that the interface is down, or in testing mode.

IfNotAdminOp - An initial indication that an interface is either down or in testing mode has been
received by a poll. The interface is categorized (ATM, FDDI, LAN, and so on) and the appropriate
alarm is transitioned.

IfUpDownTrap - Mask indicates that a link is either up or down. The interface is polled. If the
interface is up, NerveCenter sends a 1512 Inform to the platform and returns to Ground. If a cold or
warm start is detected, returns to Ground. If the interface is down or in testing, NerveCenter sends
a 1514 Inform to the platform and goes to IfDown.

IfDown - Poll indicates that an interface down. NerveCenter sends a 1514 Inform to the platform.

The interface is polled. If the interface is up, NerveCenter sends a 1512 Inform to the platform and
returns to Ground. If a cold or warm start is detected, returns to Ground. If the interface is in some
test mode, NerveCenter sends a 1513 Inform to the platform and goes to IfTesting.

IfTesting - Poll indicates that an interface is in some test mode. NerveCenter sends a 1513 Inform
to the platform. The interface is polled. If the interface is up, NerveCenter sends a 1512 Inform to
the platform and returns to Ground. If a cold or warm start is detected, returns to Ground. If the
interface is down, NerveCenter sends a 1514 Inform to the platform and goes to IfDown.

IF-IfFramePVC

Unlike the other interface-type alarms, the IF-IfFramePVC relies on a frame relay MIB with which to
monitor frame relay permanent virtual circuit (PVC) subinterfaces. NerveCenter instantiates IF-
IfFramePVC when a frame relay PVC interface is non-active. The definition for IF-IfFramePVC, is shown
in Figure 56.

If-ifFramePVCUp

IfFramePYC

If-coldWarmStart

If-FramePVCDovm

e FramePVCPom
If-coldWarmStart ramePYCUf If-FramePVCUP

Figure 56: IF-IfFramePVC State Diagram

330

Designing and Managing Behavior NerveCenter 6.2
Models

IfUpDownStatusByType

IF-IfFramePVCStatus contains the following states:

m Ground - No evidence that the interface is down. If the interface is down, goes to
FramePVCUp/Down. If the interface is active, goes to IfFramePVC.

m FramePVCUp/Down - Mask indicates that a link is either up or down. The interface is polled. If the
interface is up, NerveCenter sends a 1510 Inform to the platform and returns to IfFramePVC. If a
cold or warm start is detected, returns to Ground. If the interface is down, NerveCenter sends a
1511 Inform to the platform and goes to IfFramePVCDown.

m IfFramePVCDown - Poll indicates that an interface down. NerveCenter sends a 1511 Inform to the
platform. The interface is polled. If the interface is up, NerveCenter sends a 1510 Inform to the
platform and goes to IfFramePVC. If a cold or warm start is detected, returns to Ground. If the
interface is up or down, goes to FramePVCUp/Down.

m IfFramePVC - Interface is active. If a cold or warm start is detected, returns to Ground. If the
interface is up or down, goes to FramePVCUp/Down. If the interface is down, NerveCenter sends
a 1511 Inform to the platform and goes to IfFramePVCDown.

IfColdWarmStart Alarm

The IfColdWarmStart alarm detects that a device has been restarted and fires a trigger that causes all the
interface-type alarms monitoring that device to return to Ground state.

NERVECENTER:Alarm Definition : IF-IfColdWarmStart oo ==

@ |Ez

If-coldStart

-’h_ —/'_Mu__\
Ground “iColdWarmtart

If-warmStart

If-coldWarmStartClear

Name [IFiColdwamStat Propetty [iEnty =] Scope [Node |
Enabled i
COon @ Of [Clear Triggers for Reset To Ground or Off
State List Transition List
State | Severity | From State To State Trigger
fColdWarm... Inform Ground IfColdWar... If-coldWar...
Ground Normal IfColdWarm... Ground If-coldWar...
Ground IfColdWar... If-coldStart
Ground IfColdWar... If-warmStart

Save | Cancel ‘ Undo | Notes ‘ Help |

Figure 57: IF-IfColdWarmStart Alarm

The IfColdWarmStart alarm also fires a trigger that causes a transition in an INmDemand alarm.

NerveCenter 6.2 Designing and Managing Behavior 331
Models

Creating Multi-Alarm Behavior Models

IfNmDemand Alarm

An IfNmDemand alarm is instantiated whenever an interface-type alarm transitions to the up, down,
testing, or ground state.

NERVECENTER:Alarm Definition : IF-IfNmDemand [E=N(Ec =

L |
fNmDemandPoll

ol

If-ifNmDemand

4 If-ifNmDemandTimer

Mame [IFiiNmDemand Property [{Enty ~| Scope [Node ~|

Enabled)
C On & Of ™ Clear Triggers for Reset To Ground or OFff
State List Trangition List
State | Severity From State To State Trigger
Ground MNormal [fNmDeman... Ground [f-ifNmDe...
fNmDeman... MNormal Ground KNmDema... [If-ifNmDe...
Save | Cancel | Unda | Notes | Help

Figure 58: IF-IfNmDemand Alarm

When the alarm is created and transitions to the INmDemandPoll state, it executes an Inform action that
causes your network management platform to demand poll the appropriate device and reflect the current
state of the device and its interfaces in its topology maps. The Inform action that requests the demand
poll is made outside of the status alarms—in a node-scope alarm—to help cut back to the number of
requests that can be sent to your network management platform.

332 Designing and Managing Behavior NerveCenter 6.2
Models

Managing NerveCenter Objects

The majority of this book has discussed the function of the various NerveCenter objects and how to
create those objects.

This chapter discusses how to perform other operations on objects, such as copying and deleting them. It
also covers how to change selected object attributes without returning to the object definition windows.
For example, the chapter explains how to change an alarm’s property without returning to the Alarm
Definition window.

Enabling Objects

As we’ve mentioned many times, a behavior model does not become functional until all of the polls,
masks, and alarms in the model are enabled. This section explains how you can quickly enable, or
disable, any poll, trap mask, OpC mask, or alarm.

TO ENABLE ONE OF THESE OBJECTS

1. Open the appropriate list window: the Poll List, Mask List, OpC Mask List, or Alarm Definition List
window. In this example, the Poll List window.

B NERVECENTER:Poll List =N =R <=
D [Name l Enabled | Suppressible I Property [Base Objects [Trace l A
7 AuthFail On No snmp snmp off
& AuthQuickFail On No snmp snmp off
2 [fErrorRates On No ifEntry ifEntry off
3 IfLoadRates On No ifEntry ifEntry off
1 ifStatus On No NO_PROP ifEntry off
4 IS_lcmpFastPoll On No nl-ping nl-ping off
5 IS_lcmpPoll On No nl-ping nl-ping off
11 SnmpFastPoll On No system system off
10 SnmpPoll On No system system off h

| New | N | Close | Export... | Help

2. Select the object whose enabled status you want to change.

NerveCenter 6.2 Designing and Managing Behavior 333
Models

Managing NerveCenter Objects

3. With your cursor positioned over the selected object, click the right mouse button to display a pop-
up menu listing actions you can perform against the object.

B NERVECENTER:Poll List =N =R ==
D | Name l Enab,..l Sup.. I Property | Base Objects I 1A
5 [IfLoadRates Off Ne ifEntry ifEntry C
3 ifStatus On .

6 IS_lempFastPoll On On nl-ping ¢
7 IS_lcmpPoll On Off nl-ping 4
13 SnmpFastPoll On Delete system 4
12 SnmpPoll On system C
8 SS_lempFastPoll On Property nl-ping C
11 SS_lempPoll On Suppressible nl-ping C
1 SystemSort Off Unsuppressible system [
< Unsuppressible >
Tracing Off
Open Mew ort... Help
(oo] L oom = s
Copy

If the object is disabled, the Off entry will be grayed out, and if the object is enabled, the On entry
will be grayed out.

4. Select On from the menu to enable the object, or Off to disable it.
The object is now enabled. It's not necessary to save this change in order for it to take effect.

Copying Objects

Being able to copy objects can be very convenient. For example, if you want to create a property group
that is exactly the same as an existing one except that it contains one additional property, it's nice to be
able copy the existing property group, give the copy a name, and add the one property—instead of
creating a new property group and adding a long list of properties to it. The same is true if you need to
create a new alarm that is similar to an existing alarm, or a new poll that is similar to an existing one.

NerveCenter enables you to copy most objects. To copy a property group, you select a Copy button in the
Property Group List button. To copy any other object (that supports a copy operation), you select Copy
from a pop-up menu associated with the object.

334 Designing and Managing Behavior NerveCenter 6.2
Models

Copying Objects

Copying a Property Group

This section explains how to create a copy of an existing property group.

TO COPY A PROPERTY GROUP

1. Open the Property Group List window.

B NERVECENTER:Property Group List [=] ==
Property Groups Properties
:thDntry Property |
NCDefaultGroup egpMeighEntry
NerveCenter icmp v I
fEntry
interfaces Attributes:
ip
ip&ddiEntry
ipMetToMediaEntry
ipRouteE ntry
nl-ping v
New Property Group New Property

| l
ap | dd | Delelel dd | elete | er |

Save I Cancel | Undo | MIB to Gloq:l Help | 0ID To Property Group

Select the property group you want to copy from the Property Group list.

3. Enter a name for the copy of the property group in the New Property Group field.
The Copy button is enabled.

Select the Copy button.
5. Select the Save button.

You now have an exact copy of the property group you began with. You'll probably want to add properties
to, or remove properties from, the new property group and save it again.

Copying Other Objects

You can easily copy Alarms, Polls, Masks, Nodes, Action Router rules, and Perl subroutines.

NerveCenter 6.2 Designing and Managing Behavior 335
Models

m Managing NerveCenter Objects

TO COPY ONE OF THESE OBJECTS

Open the appropriate list window.
Select the object you want to copy from the list.

With your cursor over the selected object, click the right mouse button to display a pop-up menu of
actions you can perform against the object.

4. Select Copy from the pop-up menu.
A definition window is displayed. The window contains a complete definition except for a name.

5. Inthe definition window, enter a name for the copied object.

Select the Save button in the definition window.

You now have an exact copy of the object you began with. Make any necessary changes to the copy, and
save it again.

Deleting Objects

If you have objects in your NerveCenter database that you know you’ll never use again, you can delete
them.

There are two methods of deleting objects in NerveCenter:

m Delete button: Some objects — Property Groups, OID to Property Group mappings, and
Severities — are deleted via a button in the appropriate definition window.

m Delete pop-up: Other objects — Alarms, Polls, Masks, Nodes, Action Router rules, and Perl
subroutines — are deleted via a pop-up menu in the appropriate list window.

Using a Delete Button

This section explains how to delete a property group, an OID to property group mapping, or a severity.

TO DELETE ONE OF THESE OBJECTS

1. Open the appropriate list window.
2. Select from the list the object you want to delete.
A Delete button is enabled.

336 Designing and Managing Behavior NerveCenter 6.2
Models

Deleting Objects m

3. Select the Delete button.

A property group can not be deleted if it is currently assigned to a node or is being used in an OID to
property group mapping. If you attempt to delete a property group that is being used in one of these
ways, you'll see a warning message. Of course, you can remove the dependency and then delete
the property group.

Similarly, you can’t delete a severity that is being used in an alarm. If you try to do so, you see a
dialog similar to the one shown in Figure 59:

Replace Severity ? X
Alarmg affected by deleting
1BusyNode
1BusyPort

1PersistentTraffic

Select new severity for these

‘ Cancel | Help |

Figure 59: Replace Severity Dialog

The dialog in the figure indicates that the selected severity is being used in the alarm
SynBoardChannel. If you want to go ahead and delete the severity, you must first change the
severity of the affected state in this alarm. You do this by selecting a severity from the drop-down
list and selecting the Save button. (You'll also have to confirm that you want to replace the
severity.)

Using a Pop-Up Menu

This section explains how to delete an alarm, a poll, a mask, a node, an Action Router rule, or a Perl
subroutine.

Caution: Before deleting a an alarm, a poll, a mask, a node, an Action Router rule, or a Perl subroutine,
make sure that it is not used in a behavior model and is not required to transition any alarms.

TO DELETE ONE OF THESE OBJECTS

Open the appropriate list window.
Select the object you want to delete.

3. With your cursor positioned over the selected object, click your right mouse button to display a
pop-menu that lists actions you can perform from this window.

NerveCenter 6.2 Designing and Managing Behavior 337
Models

m Managing NerveCenter Objects

4. Select the Delete entry from the pop-up menu.
A Confirm Deletion dialog appears, asking if you're sure you want to delete the object.

5. Select the Yes button in the Confirm Deletion dialog.
The object is deleted.

Changing an Object Property or Property Group

NerveCenter provides shortcuts for changing a poll’s or an alarm’s property and for changing a node’s
property group.

Changing Poll or Alarm Properties

This section explains how to change the property attribute of a poll or an alarm.

TO CHANGE AN OBJECT’S PROPERTY

1. Make sure that the poll’s or alarm’s enabled status is off.
For instructions on how to disable an object, see Enabling Objects on page 333.

2. With the Poll List or Alarm Definition List window open, select the object whose property you want
to change.

3. With your cursor positioned over the selected object, click your right mouse button to display a
pop-menu that lists actions you can perform from the list window.

4. Select Property from the pop-up menu.
The Property dialog is displayed.

Property Group ? X
K

| Cancel |

5. Select a new property for your object from the drop-down listbox in the Property dialog.
The Save button is enabled.

6. Select the Save button.
The object’s property is changed. Re-enable the object if necessary.

338 Designing and Managing Behavior NerveCenter 6.2
Models

Changing an Alarm Scope m

Changing a Node Property Group

This section explains how to change a node’s property group without going to the Node Definition window.

TO CHANGE A NODE’S PROPERTY GROUP

1. Select Node List from the client’'s Admin menu.

The Node List window appears.

Select the node whose property group you want to change.

With your cursor positioned over the selected node, click your right mouse button to display a pop-
up menu that lists the actions you can take from the Node List window.

4. Select Property Group from the pop-up menu.
The Property Group dialog is displayed.

Property Group ? X

‘ Cancel |

5. Select the node’s new property group from the drop-down listbox in the Property Group dialog.
The dialog’s Save button is enabled.

6. Select the dialog’s Save button.
The node’s property group is changed.

Changing an Alarm Scope

It's rarely necessary to change the scope of an alarm since determining the alarm’s scope is usually a
very fundamental part of designing the alarm. However, if the need to change an alarm’s scope does
arrive, you can make this change from the Alarm Definition List window.

TO CHANGE AN ALARM'’S SCOPE

1. Choose Alarm Definition List from the client’'s Admin menu.

The Alarm Definition List window is displayed.

Select the alarm whose scope you want to change.

With your cursor positioned over the selected alarm, click your right mouse button to display a pop-
up menu that lists the operations you can perform from the Alarm Definition List window.

NerveCenter 6.2 Designing and Managing Behavior 339
Models

Managing NerveCenter Objects

4. Select Scope from the pop-up menu.
The Scope dialog appears.

Scope ? X

I -

| Cancell Help ‘

5. Select a scope from the drop-down listbox in the Scope dialog.
The dialog’s Save button is enabled.

6. Select the Save button.
The alarm’s scope is changed.

Suppressing Polling

To prevent a particular poll from being sent to a particular node, the node must be suppressed, and the poll
must be suppressible. By default, polls are suppressible; however, nodes are not. Therefore, keeping a
poll from being sent to a node usually involves turning on the node’s Suppressed attribute. You may have
to edit the poll as well if someone has tumed off its Suppressible attribute.

Suppressing a Node

This section explains how to suppress a node by enabling its Suppressed attribute.

TO ENABLE THIS ATTRIBUTE

1. From the client’'s Admin menu, select Node List.
The Node List window is displayed.

Y NERVECENTER:Node List fo o ==

Node Count : 3 | Search

IDI Name l IP Address I Group] Severity] Managed I Su... I SN...] Err| IP Addresses
5 Cisco-WirelessVPNRouter 192.168.1.220 Mib-II Special Managed No vZc 192.168.1.184
2 HP-Photosmart-6520 192.168.1.242 lcmp Normal Managed No vl

3 LAPTOP-T7J6KAICD 192.168.1.184 lcmp Normal Managed No vic

4 Linksys-Router 192.168.1.1 Mib-1l Normal Managed No vl

1 ncb200-centosb-g 192.168.1.239 NerveC.. Normal No No 3

6 nervecenter 192.168.1.191 MNerveC.. Normal Managed No vl

< >

Open New Notes Close Export... Help
Format EnginelD

340 Designing and Managing Behavior NerveCenter 6.2
Models

Suppressing Polling

2. Select the node whose Suppressed attribute you want to enable.
3. With your cursor positioned over the selected node, right-click to display a pop-up menu.
4. Select Suppress from the pop-up menu.

This operation is the equivalent of checking the Suppressed in the Node Definition window.

Making a Poll Suppressible

This section explains how to make a poll suppressible by enabling its Suppressible attribute.

By default, polls in NerveCenter are suppressible and poll only those nodes that are not suppressed.
However, there may be specific polls that you want to occur on a node even whenit is suppressed. In this
case, you can set the poll to insuppressible. An insuppressible poll will occur for a node even if the node is
suppressed. This is useful for a poll that checks the status of a node to determine if it has returned to
normal.

TO ENABLE THIS ATTRIBUTE

1. From the client’'s Admin menu, choose Poll List.
The Poll List window is displayed.

B NERVECENTER:Poll List == ==
D [Name l Enabled | Suppressible I Property [Base Objects [Trace l ~
7 AuthFail On No snmp snmp off
8 AuthQuickFail On No snmp snmp off
2 [fErrorRates Cn No ifEntry ifEntry off
3 IlfLoadRates On No ifEntry ifEntry off
1 ifStatus On No NO_PROP ifEntry off
4 IS_lcmpFastPoll On No nl-ping nl-ping off
5 IS_lcmpPoll On No nl-ping nl-ping off
11 SnmpFastPoll Cn No system system off
10 SnmpPoll Cn No system system off v

| New ‘ ‘ Close | Export... | Help |

Select from the list the poll whose Suppressible attribute you want to enable.

3. With your cursor positioned over the selected poll, click your right mouse button to display a pop-
up menu listing actions you can take from the Poll List window.

4. Select Suppressible from the pop-up menu.

The poll is now suppressible, which means that the poll cannot cause NerveCenter to poll a
suppressed node.

NerveCenter 6.2 Designing and Managing Behavior 341
Models

Managing NerveCenter Objects

Changing Other Node Attributes

Earlier sections of this chapter explained how to change a node’s property group and its Suppressed
setting:

m Forinformation on changing a node’s property group, see the section Changing a Node Property
Group on page 339.

m Forinformation on turning on a node’s Suppressed attribute, see the section Suppressing a Node
on page 340.

This section explains how to change the values of a node’s Managed and Auto Delete attributes.

TO CHANGE ONE OF THESE ATTRIBUTES

1. From the client’'s Admin menu, select Node List.
The Node List window is displayed.

Y NERVECENTER:Node List [B]
Node Count : [Search

IDI Name l IP Address l Group | Severity| Managed | Su... | SN,“| Err| IP Addresses
5 Cisco-WirelessVPNRouter 192.168.1.220 Mib-Il Special Managed No v2c 192168.1.184
2 HP-Photosmart-6520 192.168.1.242 lcmp Normal Managed No vi
3 LAPTOP-7J6KA1CD 192.168.1.184 lcmp Normal Managed No v2c
4 Linksys-Router 192.168.1.1 Mib-II Normal Managed No v1
1 nc6200-centosb-g 192.168.1.239 NerveC.. Normal No No 3
6 nervecenter 192,168.1.191 NerveC.. Normal Managed No w1

< >

Open MNew Notes Close Export... Help

Format EnginelD [

Select a node from the list.

With your cursor positioned over the selected node, click your right mouse button to display a pop-
up menu listing the actions you can take from this window.

4. From the pop-up menu, choose Managed, Unmanaged, Auto Delete, or No Auto Delete.

Choosing Managed is the equivalent of checking the Managed checkbox in the Node Definition
window, and choosing Auto Delete is the equivalent of checking the Auto Delete checkbox.
Choosing Unmanaged or No Auto Delete is the equivalent of unchecking the appropriate
checkbox.

The new node setting takes effect.

342 Designing and Managing Behavior NerveCenter 6.2
Models

NerveCenter Severities

Severities are NerveCenter objects that indicate the seriousness of a network or system condition. For
instance, a severity is an important part of the definition of each alarm state. In the alarm definition in
Figure 60, you can see that the state LinkDown has the severity Major associated with it because it is

colored orange.

NERVECENTER:Alarm Definition : fLinkUpDown =N EcR ™

.lf‘

linkDown I

r linkUp I | l:.nl'[':uner I

Ground

Name |lfLinkUpDown Property [ifEnuy LI Scope |SubObject LI

Enabled

C 0On & Off [” Clear Triggers for Reset To Ground or OFff
State List Transition List
State | Severity A From State To State Trigger ~
LinkDown Major ~ DownTrap Ground linkUp ~
~ i Gt ~ i P — S~
Save | Cancel | Undo | Notes | Help

Figure 60: Alarm State Severities

In addition, NerveCenter categorizes the conditions it has detected by severity in alarm summary
windows.

The remainder of this chapter explains in detail what constitutes the definition of a severity and how
severities are used in NerveCenter, what predefined severities are supplied with NerveCenter, and how to

create new severities.

NerveCenter 6.2 Designing and Managing Behavior 343
Models

m NerveCenter Severities

Definition of a Severity

A severity object has the following data set described and defined in Table 24.
Table 24: Definitions of Severity Attributes

Data
Member

Name

Definition

A unique name.

Group

The name of the severity group to which the severity belongs. A group name should describe
a general type of condition that NerveCenter can detect; for instance, the two predefined
groups are Fault and Traffic, and all the predefined severities belong to one of these groups.
You can also define new groups.

Color

Each severity has a color associated with it. These severity colors are used in state
diagrams to indicate the severity of alarm states.

Level

A severity’s level is intended to reflect the seriousness of an associated alarm state. That is,
an alarm state whose severity has a level of 0 represents a harmless condition, whereas an
alarm state whose severity has a high level represents a serious condition.

Platform
name

The name of a severity used by your network management platform. If NerveCenter informs
your platform of a condition, the platform uses the severity defined by this attribute when it
displays information about the event.

For more information about these attributes, see the sections:

m Severity Attributes Used by NerveCenter on the facing page

m Severity Attributes and Network Management Platforms on the facing page

344

Designing and Managing Behavior NerveCenter 6.2
Models

Definition of a Severity n

Severity Attributes Used by NerveCenter

The severity attributes Name, Group, and Color are used by NerveCenter when it displays information
about current alarm instances in the Alarm Summary or Aggregate Alarm Summary window. In the figure
below there is a severity named Critical, which belongs to the severity group Fault and is associated with
the color red.

=8 § NERVECENTER 13

g7 Severity 13
5-E2 Fault 13
B Critical
Major
Minor
Warning
Inform 8

EEEROD@

Special
B Normal 5
g8 Traffic
B Saturated
O VeryHigh
O High
O Medium
B Low
O VeryLow

Figure 61: Severity Names, Groups, and Colors

You can add new severities to the existing groups (Fault and Traffic), or add severities that belong to a
new group. In the latter case, NerveCenter will create a new folder to represent the new severity group.

Note: Severity colors are also used in alarm state diagrams to indicate the severity of particular states.

Severity Attributes and Network Management Platforms

The severity attributes Level and Platform Name are used to help define how NerveCenter interacts with
a network management platform. For more details, see the NerveCenter Platform Integration Guide.

Level

Each NerveCenter severity must have a unique severity level, which is represented by an integer. You
associate severities that have low severity levels with alarm states representing benign conditions, and
severities that have high levels with states representing serious conditions.

Now, here’s how severity levels affect NerveCenter's interaction with a network management platform.
When NerveCenter is set up, an administrator can define an “Inform Configuration.” This configuration
indicates where NerveCenter should send messages when it performs Inform alarm actions. The
configuration also specifies a “Minimum Severity.” If the administrator sets the Minimum Severity to 4,
only transitions to alarm states with severity levels of 4 or more can cause Inform messages to be sent to
a platform.

NerveCenter 6.2 Designing and Managing Behavior 345
Models

m NerveCenter Severities

Platform Name

You can associate with each NerveCenter severity the name of a severity defined by your network
management platform. For example, the predefined severity Saturated has associated with it the platform
name Normal. Given this situation, if NerveCenter sends to the platform an Inform message whose
variable bindings indicate that the destination alarm state in NerveCenter had a severity of Saturated, the
platform will interpret this as an event of Normal severity. That is, the event will show up in the platform’s
event browser as an event of Normal severity, and if the map icon representing the node whose interface
was saturated is (color), that icon will remain (color).

Default Severities

Table 25 lists the thirteen predefined NerveCenter severities.

Table 25: Predefined NerveCenter Severities

Severity Name Severity Level Severity Group Platform Name

Normal 0 Fault Normal Dark Green
VeryLow 1 Traffic Normal White
=
-
Low 2 Traffic Normal Yellow Green
Medium 3 Traffic Normal Light Aqua
High 4 Traffic Normal Cyan
VeryHigh 5 Traffic Normal Sky Blue
@
Saturated 6 Traffic Normal Magenta °
346 Designing and Managing Behavior NerveCenter 6.2

Models

Default Severities

Severity Name Severity Level Severity Group Platform Name

Special 7 Fault Normal Burgundy °
Inform 8 Fault Normal Violet u
Warning 9 Fault Warning Royal Blue °
Minor 10 Fault Minor Yellow L_:,J
Major 11 Fault Major Orange °
Critical 12 Fault Critical Red °
NerveCenter 6.2 Designing and Managing Behavior 347

Models

NerveCenter Severities

Creating a New Severity

If your behavior models require severities other than those supplied with NerveCenter, you can create
new severities.

TO CREATE A NEW SEVERITY

1. From the client’'s Admin menu, choose Severity List.

The Severity List window is displayed. This window presents information about all the severities
currently defined in the NerveCenter database.

B NERVECENTER:Severity List =N (=
NC Name | NC Level | Group | Platform Na...
Critical 12 Fault Critical
High 4 Traffic MNormal
Inform 8 Fault Normal
Low 2 Traffic Normal
Major 11 Fault Major
Medium 3 Traffic MNormal
Minor 10 Fault Minor
Normal 0 Fault MNormal
Saturated 6 Traffic Normal
Special 7 Fault MNormal
VeryHigh 5 Traffic Normal
VeryLow 1 Traffic MNormal
Warning 9 Fault Warning

I I Close Help
2. Select the New button in the Severity List window.
The New Severity window is displayed.
New Severity ? X

Severity Name ||

Seveiity Level |U

Severity Group |

Platform Name |Unknown

Change Color |

0K | Cancel | Undo | Help |

3. Enter a unique name for your severity in the Severity Name field (255 characters maximum).

348 Designing and Managing Behavior NerveCenter 6.2
Models

Creating a New Severity m

4. Enter aunique severity level, aninteger in the range 0 to 255, in the Severity Level field.

Since the predefined severities use the levels 0 through 12, you should avoid those numbers
(unless you've modified the levels of the predefined severities).

In general, you should set up your severity levels so that the lowest priority severities have the
lowest levels and the highest priority severities have the highest levels. This is true because if
NerveCenter is set up to forward information about important alarm transitions to a network
management platform, NerveCenter forwards information about any transition whose destination
state has a severity whose level is greater than or equal to x, where x is defined when NerveCenter
is configured.

5. Enter the name of a severity group in the Severity Group field.

This group can be one of the preexisting groups—Fault or Traffic—or a user-defined group. In either
case, the severity group should indicate the type of problem that the severity reflects.

6. Inthe Platform Name field, enter the name of a severity on your network management platform, or
if you’re not using a network management platform, leave the value set to “Unknown.”

When you enter a platform severity name, you establish a mapping between the NerveCenter
severity you're defining and a severity on your network management platform. For example, the
predefined NerveCenter severity VeryHigh (traffic) is mapped by default to the platform severity
Normal. Given this situation, if NerveCenter informs a platform of a condition of VeryHigh severity,
the platform will indicate (in its event browser) that an event of Normal severity has occurred.

7. Assign acolorto the severity.
To assign this color, perform the following steps:

a. Select the Change Color button in the New Severity window.
The Color window is displayed.
b. Select the color box containing the color you want to assign to the severity.
c. Select the OK button in the Color window.
8. Select the Save button in the New Severity window.
Information about the new severity is saved to the NerveCenter database.

NerveCenter 6.2 Designing and Managing Behavior 349
Models

m NerveCenter Severities

Creating Custom Colors

One attribute of a NerveCenter severity is it color. This color can be one of 48 predefined colors or one of
16 custom (user-defined) colors. This section explains how to create a custom color that you can use later
in the definition of a severity.

TO CREATE A CUSTOM COLOR

1. From the client’'s Admin menu, choose Severity List.
The Severity List window is displayed.

2. Select the New button in the Severity List window.
The New Severity window is displayed.

3. Select the Change Color button in the New Severity window.

The Color window is displayed. This window shows NerveCenter's predefined colors and any
previously defined custom colors.

4. Select the Define Custom Colors button in the Color window.

The Color window expands to include an area for creating custom colors.

i u

Hoe: 160 Red: ,_
sat:f0 Green:[0
I ColoriSolid Lum:lD_ BIue:ID_

MEEEET
HEEEN]
EEENTT
EEEENN
EEENET]
TTHENEE
EEEENT
THEENET

e
a
[=]
E
o
=%
o
o

171
171
171
171
171
171
171
171

i

Coc]

Add to Custom Colors |
350 Designing and Managing Behavior NerveCenter 6.2

Models

Creating Custom Colors

5. Specify the custom color you want to define by following the directions below. The color is
displayed in the Color|Solid color box.

a. Dragthe crosshairs in the large colored area horizontally to establish the desired hue.

b. Drag the crosshairs vertically to establish the desired amount of saturation.

Moving the crosshairs up increases the amount of saturation, and moving them down
decreases the amount of saturation.

c. Dragthe arrowhead to the right of the long, narrow colored area to establish the color's
luminance.

Moving the arrowhead up increases the color’s luminance, and moving it down decreases the
color’s luminance.

You can also specify a color by entering values in the Hue, Sat, and Lum fields or the Red, Green,
and Blue fields.

6. Select the color square in the “Custom color” area to in which you want to save the new custom
color.

You can overwrite an existing custom color with a new one.

7. Select the Add to Custom Colors button.
The new color is saved and is available for assignment to a severity.

NerveCenter 6.2 Designing and Managing Behavior 351
Models

m NerveCenter Severities

352 Designing and Managing Behavior NerveCenter 6.2
Models

Importing and Exporting NerveCenter R
Nodes and Objects

The NerveCenter Client import and export features enable you to choose which NerveCenter behavior
models, objects, or nodes to import or export. Perhaps you have developed a behavior model that you
want to propagate across a multi-NerveCenter server environment. With the export feature, you can
selectively load one or more behavior models, (or individual objects) into another NerveCenter server's
database.

In addition to directly exporting to another NerveCenter server’'s database, you can also export
NerveCenter objects, nodes, and behavior models to a file. Using the import feature, you then import such
files into a NerveCenter database. For example, you might want to create a master node list and then
divide it into smaller lists to export to remote NerveCenter installations. Or, perhaps, create a node list as
a backup for quick recovery should the system go down.

For a complete list of the types of NerveCenter objects that you can export, see the section, Exporting
NerveCenterObjects and Nodes to Other Servers on page 357.

NerveCenter ships with object and behavior model files (.mod) that include fixes and vendor-specific
behavior models. Because not everyone will want to use them, these objects and models are not loaded
into the NerveCenter database by default. With the import feature, you can load these definitions into your
NerveCenter database.

Exporting Behavior Models to Other Servers

When you don’t want to export an entire NerveCenter database, NerveCenter enables you to pick and
choose those behavior models you want to export to other NerveCenter servers. For example, for a multi-
NerveCenter site, you might want to propagate particular behavior models across your NerveCenter
servers.

To export behavior models to a file, see Exporting Behavior Models to Other Servers above. For
information about exporting a set of nodes or individual NerveCenter objects, see the following sections:

m Exporting NerveCenterObjects and Nodes to Other Servers on page 357
m Exporting NerveCenterObjects and Nodes to Other Servers on page 357

NerveCenter 6.2 Designing and Managing Behavior 353
Models

1 7 Importing and Exporting NerveCenter Nodes and Objects

TO EXPORT BEHAVIOR MODELS TO ANOTHER NERVECENTER SERVER

1. Be sure that you are connected to the NerveCenter server(s) to which you want to export the
behavior model. (See Connecting to a Server on page 54 for more information.)

2. From the client’s Admin menu, choose Alarm Definition List.
The Alarm Definition List window is displayed.

5

B NERVECENTER:Alarm Definition List = e <
D | Name Enabled | Property | Scope A
9 AllTraps_LogToFile Off NO_PROP Node
10 Authentication Off NO_PROP Subobjeci
2 Forward-AllTraps On NO_PROP Node
5 lempStatus Off icmpStatus Node
8 IfErrorStatus Off ifEntry Subobject
7 IfLinkUpDown Off ifEntry Subobjeci
1 ifStatus On ifEntry Subobjec
6 IfUpDownStatus Off ifEntry Subobjec
" IPSweep Off NO_PROP Enterprise v
< >

3. Select the alarm whose behavior model you want to export.

You can select any number of alarms at one time.

4. Right-click the selected alarm to bring up the alarm pop-up menu, and select Export Model.
The Export Model/Object dialog is displayed.

Export Model/Object ? X
File: Name ||
Export to Servers I Select Servers
| Cancel | Help |

5. Select the Export to Servers checkbox.
Select the Select Servers button.
The Server Selection dialog box is displayed.

Server Selection ? X

Connected Servers Selected Servers

NCEZOOCENTOSEG »»
|
< |
A |
[ok | ceneel | Heb

354 Designing and Managing Behavior NerveCenter 6.2
Models

Exporting Behavior Models to a File

a. Select the servers to which you're exporting from the list.

b. Select the >> button. To select all servers to export to, select the All >> button.
The selected servers are added to the Selected Servers list.

You can remove servers from the Selected Servers list by selecting the object and then
selecting the << button.

Repeat this step for each server to which you want to export behavior models.

c. Whenfinished, select OK to save your choices and close the Server Selection dialog.
7. Select the OK button

The behavior model(s) you've selected are exported to the selected NerveCenter server(s)
database.

Exporting Behavior Models to a File

Situations can arise when you might want to export particular NerveCenter behavior model to a file.
Having one or more behavior models in a separate file can be useful when troubleshooting NerveCenter or
sharing behavior models between different NerveCenter sites.

For more about what NerveCenter actually exports when you select an behavior model, see the section
Exporting Behavior Models to Other Servers on page 353.

When you export one or more behavior models to a file, NerveCenter actually creates two files:

m Afile with a.mod extension that contains the data required to re-create the behavior models. This is
the file that is imported later into the destination database.

m Atext file (*.txt) that contains a textual description of the exported behavior models. Although not
required during an import, this file is important because it serves as documentation for the
corresponding .mod file and is the only method of knowing what models reside in the .mod file prior
to actually importing the models.

NerveCenter 6.2 Designing and Managing Behavior 355
Models

1 7 Importing and Exporting NerveCenter Nodes and Objects

TO EXPORT BEHAVIOR MODELS TO A FILE

1. From the client's Admin menu, choose Alarm Definition List.
The Alarm Definition List window is displayed.

B NERVECENTER:Alarm Definition List = |
D | Name Enabled [Property | Scope A
9 AllTraps_LogToFile Off NO_PROP Node
10 Authentication Off NO_PROP Subobjeci
2 Forward-AllTraps On NO_PROP Node
5 lempStatus Off icmpStatus MNode
8 IfErrorStatus Off ifEntry Subobjeci
7 IfLinkUpDown Off ifEntry Subobjeci
1 ifStatus On ifEntry Subobjec
6 IfUpDownStatus Off ifEntry Subobjec
1 IPSweep Off NO_PROP Enterprise v
< >

’—| New‘ ‘ | = | Export.. Help

2. Select the alarm whose behavior model you want to export.

You can select any number of alarms at one time.

3. Right-click the selected alarm to bring up the alarm pop-up menu, and select Export Model.
The Export Model/Object dialog is displayed.

Export Model/Object ? X
File Narne ||
Export to Servers I Select Servers |
| Cancel | Help |

4. Inthe File Name text field, type a filename without an extension or a pathname including a
filename without an extension.

NerveCenter will create two files. One will have the filename extension .mod and contain the
actual data for the behavior model you export. This is the file that you can import into another
NerveCenter database. The second file will have a .txt extension and contain a textual description
of the behavior model. This file is not used during an import operation, but it is the only source of
documentation for the .mod file contents.

If you specify a pathname in the File Name field, the file will be written to the directory you specify.
By default, NerveCenter places the file in the NerveCenter model directory.

5. Select the OK button.

356 Designing and Managing Behavior NerveCenter 6.2
Models

More About Exporting Behavior Models

More About Exporting Behavior Models

When you export a behavior model to another NerveCenter server or to a file, you export an alarm (or
alarms) and all of the objects associated with that alarm. These associated objects include:

m Any object that can fire a trigger that can cause a transition in the alarm, including polls, masks, and
other alarms.

All triggers referred to in any exported object, including:
> Formasks, simple trigger and triggers used in the trigger function.
o Foralarms, triggers used in Clear/Fire Trigger actions.

> Forpolls, True and False trigger.

Any alarm that can be affected by a trigger fired by the alarm.

Any properties used by any of the exported objects.

Any property groups that contain any of the properties mentioned above.

Note: The exported property groups include only those properties used by the behavior model.

= Any property groups used in AssignProperty Group() functions in polls, masks, and Perl Subroutine
expressions. Also, any property groups used in SetAttribute alarm actions in alarm transitions. No
properties are included from the group.

m The severities used by the exported alarms.

m Any Perl subroutines called by a Perl Subroutine action in an exported alarm.
NerveCenter does not export the following objects with behavior models:

m Alarms that listen to Clear Trigger alarm actions.

m Objects that fire triggers used only in Clear Trigger alarm actions of the exported alarms.

m Polls and trap masks that fire triggers used only in Fire Trigger alarm actions of the exported
alarms. (Perl subroutines in this situation are exported.)

m Perl subroutines that are not used as an action in one of the exported alarms.

m Action Router rules.

Exporting NerveCenterObjects and Nodes to Other Servers

When you don’t want to export an entire NerveCenter database, NerveCenter enables you to pick and
choose those nodes and objects you want to export to other NerveCenter servers. For example, fora
multi-NerveCenter site, you might want to propagate particular masks across your NerveCenter servers.

Caution: If you export nodes to a NerveCenter Server on another segment, any applicable parenting
information is exported with the nodes. However, this information might not be valid for the new
topology into which the node information is imported.

NerveCenter 6.2 Designing and Managing Behavior 357
Models

1 7 Importing and Exporting NerveCenter Nodes and Objects

For a complete list of the object types and what NerveCenter actually exports when you select an object,
see the section Exporting NerveCenterObjects and Nodes to Other Servers on the previous page.

To export nodes and objects to afile, see "Exporting NerveCenterObjects and Nodes to a File" on
page 360. For information about exporting a behavior model—an alarm and all of the objects associated
with it—see the following sections:

m Exporting Behavior Models to Other Servers on page 353
m Exporting Behavior Models to a File on page 355

TO EXPORT A SET OF NODES OR OBJECTS TO ANOTHER NERVECENTER SERVER

1. Be sure that you are connected to the NerveCenter server(s) to which you want to export the
nodes or objects. (See Connecting to a Server on page 54 for more information.)

2. From the client’s Admin menu, choose Export Objects and Nodes.
The Export Objects and Nodes dialog is displayed.

Export Objects and Nodes ? X

Obijects File || [Export Objects to Selected Servers

[Export Nodes to Selected Servers

NodeFie |

Object Type
 Alarm " Poll " Perl Subroutine ¢ DID To Property Group
" Mask (" DpCMask Property " Action Router Rule
" Node " Severity " Property Group
Avallable Objects Selected Objects
Object I Type
[«a || .
Cancel | Undo Help
358 Designing and Managing Behavior NerveCenter 6.2

Models

Exporting NerveCenterObjects and Nodes to Other Servers

3. Toexport:

o Objects—select the Export Objects to Selected Servers to choose servers for objects
you're exporting.

> Nodes—select Export Nodes to Selected Servers to choose servers for nodes you're
exporting.

Caution: If you export nodes to a NerveCenter Server on another segment, any applicable parenting
information is exported with the nodes. However, this information might not be valid for the new
topology into which the node information is imported.

4. Select the Select Servers button.
The Server Selection dialog is displayed.

Server Selection ? X

Connected Servers Selected Servers

NCB200-CENTOSEG A
|
|
|

oK | Cancel | Help ‘

a. Select the servers to which you're exporting from the list.
b. Select the >> button. To select all servers to export to, select the All >> button.
The selected servers are added to the Selected Servers list.

You can remove servers from the Selected Servers list by selecting the object and then
selecting the << button.

Repeat this step for each server to which you want to export objects or nodes.
c. Whenfinished, select OK to save your choices and close the Server Selection dialog.
5. Select Node or the type of object that you want to export from the Object Type radio set.

Create alist of nodes or objects to be exported. Creating a node or object list is similar to how you
selected the server(s) in Step 4.

The selected objects or nodes are added to the Selected Objects list.
Repeat Step 5 and Step 6 for each type of object that you want to export.

7. Select the OK button.

The definition of the objects or nodes you've selected are exported to the selected NerveCenter
server(s) database.

NerveCenter 6.2 Designing and Managing Behavior 359
Models

Importing and Exporting NerveCenter Nodes and Objects

Exporting NerveCenterObjects and Nodes to a File

Situations can arise when you might want to export particular NerveCenter nodes and objects to afile.
Having nodes or objects in a separate file can be useful when troubleshooting NerveCenter or sharing
nodes and objects between different NerveCenter sites.

For a complete list of the object types and what NerveCenter actually exports when you select an object,
see the section Exporting NerveCenterObjects and Nodes to Other Servers on page 357.

When you export objects to a file, NerveCenter actually creates two files:

m A file with a.mod extension that contains the data required to re-create the objects. This is the file
that is imported later into the destination database.

m Atext file (*.txt) that contains a textual description of the exported objects. Although not required
during an import, this file is important because it serves as documentation for the corresponding
.mod file and is the only method of knowing what models reside in the .mod file prior to actually
importing the models.

When you export nodes, NerveCenter creates a .node file that contains the data to re-create the nodes.

To export nodes and objects to a NerveCenter database on another NerveCenter server, see Exporting
NerveCenterObjects and Nodes to Other Servers on page 357. For information about exporting a behavior
model—an alarm and all of the objects associated with it—see the following sections:

m Exporting Behavior Models to Other Servers on page 353
m Exporting Behavior Models to Other Servers on page 353

360

Designing and Managing Behavior NerveCenter 6.2
Models

Exporting NerveCenterObjects and Nodes to a File

TO EXPORT A SET OF OBJECTS FROM NERVECENTER

1. From the client’'s Admin menu, choose Export Objects and Nodes.
The Export Objects and Nodes dialog is displayed.

Export Objects and Nodes ? X

Obijects File || I~ Export Objects to Selected Servers

I Export Nodes to Selected Servers

NodeFie |

Obiject Type

" Alarm " Poll " Perl Subroutine ¢ DID To Property Group
" Mask " OpCMask Property " Action Router Rule

" Node " Severity " Property Group

Available Objects Selected Objects
Object | Type
[«a ||)
‘ Cancel I Undo | Help ‘

2. Inthe Objects File text field, type a filename for the serialized text file you want to export. You can
include the path in order to write the file to a certain location; by default, NerveCenter places the
file in the NerveCenter installation/model directory.

NerveCenter will create two files. One will have the filename extension .mod and contain the
actual data for the objects you export. This is the file that you can import into another NerveCenter
database. The second file will have a .txt extension and contain a textual description of the
objects. This file is not used during an import operation, but it is the only source of documentation
for the .mod file contents.

3. If you are exporting nodes, NerveCenter also creates a .node file by default in the model directory.
You must provide a name for this file in the Node File field. This file can later be imported using the
importutil.exe tool, which is described in Reconfiguring a NerveCenter Server from the Command
Line in Managing NerveCenter.

NerveCenter 6.2 Designing and Managing Behavior 361
Models

Importing and Exporting NerveCenter Nodes and Objects

4. Create alist of objects to be exported by following the directions below:

a. Select the radio button for the type of object you want to export, such as Property Group.
A list of objects of that type is displayed in the Available Objects list box.

b. Select the objects you want to export from the list.

c. Select the >> button. To select all objects for export, select the All >> button.

The selected objects are added to the Selected Objects list; you can remove objects from the
Selected Objects list by selecting the object and then selecting the << button.

Repeat this step for each type of object that you want to export.
5. Select the OK button.

The definition of the objects you've selected are exported.

More about Exporting Objects

Using the client’s Export Objects and Nodes command (Admin menu), you can export the following
NerveCenter objects:

m "Alarm" on the facing page

m "Mask" on the facing page

m "OID to Group" on the facing page

m "Perl Subroutine" on the facing page
m "Poll" on the facing page

m "Property" on the facing page

m "Property Group" on the facing page
m "Rule" on the facing page

m "Severity" on page 364

When you export an object to another server, NerveCenter actually exports not only that object, but any
objects that the object contains and some related objects. Table 26 lists the objects that NerveCenter
exports for each object type.

362 Designing and Managing Behavior NerveCenter 6.2
Models

More about Exporting Objects

Table 26: Exporting Objects

Object Type Objects Exported

Alarm m Thealarm
m The alarm’s property
m Any property groups that contain the alarm’s property or is used by the set
attribute action
m The triggers that can affect the alarm, including those called by Perl subroutines
m The severities used by the alarm’s states
m Any action, including but not limited to Perl subroutines called by a Perl
Subroutine action
Mask m The mask
m The triggers fired by the mask, including simple triggers and triggers referenced by
FireTrigger()
m Any property groups referenced by the trigger function AssignPropertyGroup()
OID to m The OID to property group mapping
Group m The property group referred to in the mapping
Perl m The Perl subroutine
Subroutine m Any property groups referenced by AssignPropertyGroup()
m Any triggers referenced by FireTrigger()
Poll = The poll
m The poll’s property
m Any property groups that contain the poll’s property, including any referenced by
AssignPropertyGroup()
m The triggers fired by the poll, including any referenced by FireTrigger()
Property m The property
m The property groups that contain the property
Property m The property group
Group m The properties in the property group
m Any property groups that are a superset of this property group
Rule m The Action Router rule conditions and actions

NerveCenter 6.2

Designing and Managing Behavior 363
Models

Importing and Exporting NerveCenter Nodes and Objects

Object Type Objects Exported

Severity m The severity name

m The severity color
m The severity numeric level

m The severity mapped name, if applicable

Importing Node, Object, and Behavior Model Files

You can copy node, object, and behavior model definitions into another NerveCenter database. Node files
(.node) contain node definitions that have been exported to a file with the NerveCenter export feature.
Object and behavior model files (.mod) contain definitions of objects and behavior models. Object/model
files come from one of two places:

m Object or behavior model files created using NerveCenter's export feature.
m Models files shipped with NerveCenter. These files reside in NerveCenter's model directory.

When you import a behavior model, you are also importing the objects associated with that model. For
every object/model file (.mod) there is a text file that contains descriptions of the objects in the model.
(This text file is the only documentation for the .mod file.)

Caution: Any existing object with the same name as an imported object is overwritten.

Whatever the source of your node or object/model files, and regardless of whether they contain individual
objects or behavior models, you use the same procedure to import the file contents.

Note: You can also use the utility ImportUtil to import behavior models. This utility is discussed in
Importing Behavior Models or Nodes with ImportUtil on the facing page.

TO IMPORT THE CONTENTS OF A NODE OR OBJECT/MODEL FILE

1. If the objects you are importing use base objects or attributes not in the current NerveCenter MIB,
add the necessary MIB definitions and recompile the NerveCenter MIB before proceeding. See
Managing Management Information Bases (MIBs) in Managing NerveCenter.

Note: IP filters set in the NerveCenter Administrator also apply to nodes imported via a node file. For
more information, refer to Filtering Nodes and Enabling and Disabling IP and Hostname Filters in
Managing NerveCenter.

2. Move the node or object/model file to a location available to the destination NerveCenter server.

364 Designing and Managing Behavior NerveCenter 6.2
Models

Importing Behavior Models or Nodes with ImportUtil

3. From the client’s Server menu, choose Import Objects and Nodes.
The Import Objects and Nodes dialog is displayed.

Import Objects and Nodes ? X

File Mame ||

| Cancel | Browse,_| Help |

4. Inthe File Name field, enter the path of the node or object/model file.

Caution: Any existing object with the same name as an imported object is overwritten.

If you don’t specify a pathname, NerveCenter looks in the server’s current working directory; the
server’s current working directory is always the NerveCenter bin directory.

5. Select the OK button in the Import window.
NerveCenter imports the node or object/model file definitions into the new server's database.

Note: If you are missing objects in a behavior model you have imported, you must update the compiled
NerveCenter MIB file. Adding MIB definitions is described in Managing Management Information Bases
(MIBs) in Managing NerveCenter. (For any models that you imported before you updated and
recompiled the NerveCenter MIB, the missing objects will not appear until the alarms they transition are
instantiated or until you re-import the model/objects.)

Importing Behavior Models or Nodes with ImportUtil

You can use the utility importutil to copy server configuration information into the registry of a new
NerveCenter Server and to import behavior models and nodes. Using this utility allows you to reconfigure
a setting on more than one NerveCenter Server at a time by changing one file and importing it to all the
relevant servers.

For more details, see Reconfiguring a NerveCenter Server from the Command Line.

NerveCenter 6.2 Designing and Managing Behavior 365
Models

Importing and Exporting NerveCenter Nodes and Objects

TO IMPORT USING IMPORTUTIL

1. Locate the file imputil.ini.

m Inatypical NerveCenter installation on UNIX, this file can be found in the directory
/opt/OSInc/userfiles.

The file imputil.ini is made of a number of sections that include a section header and keys.

2. Before making any changes, create a backup copy of the file imputil.ini.

Caution: You will not be able to restore the original imputil.ini after making changes to the file unless
you first make a backup copy.

3. Delete all but the [[IMPORT_MODEL] or [IMPORT_NODE] section, as appropriate.

All sections in the file are optional. If you remove a section, including the section header, ImportUtil
does not change or delete any values in the registry for that key.

Any new values left in imputil.ini will overwrite old values. To avoid having placeholders overwrite
legitimate values, delete any unnecessary keys before running ImportUtil.

4. Enter the file name and path of the model or node list you want to import.

[IMPORT MODEL]
File = model path and filename

or

[IMPORT NODE]
File = node path and filename

Remember that you must also add the MIB definitions to the NerveCenter MIB file. Refer to
Managing Management Information Bases (MIBs) in Managing NerveCenter for information about
changing the NerveCenter MIB file.

5. Save the changedfile.
6. While the NerveCenter Server is running, run the utility ImportUtil using the following command:

importutil imputil.ini

Note: You must either be in the same directory as the imputil.ini file or include the full pathname of the
imputil.ini file.

NerveCenter notifies you upon successful completion of the reconfiguration.

If NerveCenter is running as a service, the account under which the service or daemon is running must
have the appropriate rights/group membership to import from or export to local machine or network
shares.

366 Designing and Managing Behavior NerveCenter 6.2
Models

Communications and Data

As atool that comprehensively monitors and manages your network, NerveCenter uses a variety of data
transfers to gather, correlate, disseminate, and store information about network events. This appendix
outlines the general flow of data into, through, and out of NerveCenter in the course of its operation.

NerveCenter’s primary sources of network information are SNMP traps and device responses to
NerveCenter polls. If configured appropriately, LogMatrix NerveCenter responds to trap and poll data by
forwarding it to your network management platform and to other NerveCenters. For example, forwarded
event data might ultimately land in a network management platform’s Event Categories window or trigger
an alarm transition in a central NerveCenter. Although this sequence may happen quickly, the actual
communication path from initial receipt of trap or poll data to the final event message has many stages.

As Figure 62 shows, a trace of the communication path initiated by a managed device’s SNMP trap or poll
response might look like this:

1. Traps are relayed directly to the NerveCenter Server if the platform and the server are running on
different machines. If they’re running on the same machine, traps are detected by the operating
system trap service or the management platform’s trap service and then forwarded to the
NerveCenter SNMP Trap process. The NerveCenter SNMP Trap process, in turn, forwards the
trap to LogMatrix NerveCenter.

2. LogMatrix NerveCenter trap masks filter incoming traps to see if they are of interest. If a trap is of
interest, an internal event, called a trigger, is generated and used by active alarms. Polls evaluate
the poll data returned by managed devices and also use triggers to pass data to alarms.

3. LogMatrix NerveCenter alarms correlate the traps and polls with other related data. For example,
an alarm might detect that this is the third trap of the same type from the same machine. The alarm
then takes any automated actions that were associated with this trap detection. For example, it
could issue a trouble ticket or change the device configuration.

NerveCenter 6.2 Designing and Managing Behavior 367
Models

Communications and Data

Devices

SNMP trap over UDP

m W
SNMP MIB data e Platform or
requests and responses OS trap service
SNF [ap Trap relayed with MS API
or OV API
NerveCenter
SNMP
SNMP trap over UDP

Trap Service

@ Triggers
Event and symbol color messages
over TCP sockets

SNMP trap over
TCP sockets

Platform adapter

Map instructions
using TCP sockets

Pseudo SNMP trap data
@ via platform API
Mask
Set status instructions Platform event at another

via platform API NerveCenter

Internal platform
communication

Platform map Event Categories window

Figure 62: Data Flow

4. If an alarm transition contains the Inform action, the alarm sends a message to the LogMatrix
NerveCenter platform adapter process, which always resides on the same host as the network
management platform, and/or to any listed NerveCenters.

5. The platform adapter determines whether the message requires changing a symbol’s color on the
map, initiating an event message, or both. Messages to other NerveCenters forward the trap data.

6. Ifaneventis to be posted, the platform adapter uses an API to submit a data structure that
resembles an SNMP trap to the platform event facility, which decodes traps, associates text
messages with events, and posts them in the Event Categories window.

368 Designing and Managing Behavior NerveCenter 6.2
Models

NerveCenter is a client/server application. The NerveCenter server acts as the hub for the data transfers
described in this appendix. As shown in the following illustration, event information moves from managed
device to NerveCenter server to management platform. But data also flows between the server and other

NerveCenter components in support of this flow.

Platform Platforms
Node
Source
SNMP Other
Agents NerveCenter
Servers

Informs
SNMN messages
Server
ODBC Driver
Import/Export
. v
S(;?HI:IQS Behavior Model o
. .mod files Database nervectr.mib Mib Files
Figure 63: NerveCenter Components
NerveCenter 6.2 Designing and Managing Behavior 369

Models

m Communications and Data

The components shown in the preceding figure are defined in Table 27:

Table 27: NerveCenter Components

Component Definition

Client

A user interface to the server. Provides facilities
for the creation, modification, maintenance, and
monitoring of behavior models.

Administrator

A user interface to the server. Provides facilities
for NerveCenter configuration.

Command line interface (CLI)

Provides a subset of client commands for use from
the command line, programs, and scripts.

Platform/node source

The network management platform that provides
and monitors a list of nodes to be monitored by the
server.

Helps you plan and carry out your NerveCenter
upgrades and new installations. Use the Release
Notes in conjunction with this book.

The network management platforms that the
server informs as an alarm action.

Other NerveCenters Other NerveCenter servers that can accept
Informs from the server, allowing correlation
across multiple domains.

SNMP agents Agents running on managed nodes that generate
traps and respond to NerveCenter polls.

mibTool Utility to compile and merge MIBs into the
NerveCenter master MIB.

Configuration Settings Repository for NerveCenter configuration

parameter values— NerveCenter.xml
configuration file (UNIX) and the Registry
(Windows).

Behavior model .mod files

ASCII files containing exported behavior models
and their components.

Designing and Managing Behavior

Models

NerveCenter 6.2

Debugging a Behavior Model

This appendix provides information for resolving problems relating to NerveCenter behavior models.
Actions you can take to debug behavior models include:

m Verifying that the behavior model is enabled
m Checking properties and property groups
m Matching triggers and alarm transitions

m Auditing behavior models

Enabling a Behavior Model's Components

If a behavior model is not working, the first thing to check is whether all of the model's components have
been enabled. For a model to be functional, all polls, masks, and alarms must be enabled.

To determine whether a given object is enabled, open the Poll List, Mask List, or Alarm Definition List
window, and note the Enabled status of the object in which you're interested. For information of how to
enable an object, see the section Enabling Objects on page 333.

Checking Properties and Property Groups

If all of the components of a behavior model are enabled and the behavior model still does not work, you
should make sure that your polls' properties, your alarms' properties, and your nodes' property groups are
set up correctly. The upcoming sections explain how to perform these checks.

NerveCenter 6.2 Designing and Managing Behavior 371
Models

m Debugging a Behavior Model

Checking a Poll's Property

Part of NerveCenter's smart polling feature is that NerveCenter does not send a poll to a node unless the
poll's property is in the node's property group.

TO MAKE SURE THAT YOUR POLL PASSES THIS TEST

1.

Open the Poll List window, and note your poll's property.

If your poll's property is set to NO_PROP, you can stop the test here because a poll whose
property is NO_PROP always passes this test.

Open the Node List window, locate a node you are trying to poll, and note this node's property
group.

Open the Property Group List window, select the property group you noted in Step 2, and see
whether the poll's property appears in the property group's list of properties.

If your poll's property is not in the node's property group, you must change your poll's property,
change the node's property group, or add a property to the current property group.

Checking a Poll's Poll Condition

If your poll's poll condition refers to a MIB base object, NerveCenter does not send the poll to a node
unless the base object referred to in the poll condition is in the node's property group.

TO MAKE SURE THAT YOUR POLL PASSES THIS TEST

1.

Open the Poall List window, and note your poll's base object.

If your poll's base object is set to NO_OBJECT, you can stop the test here because a poll whose
base objectis NO_OBJECT always passes this test.

Open the Node List window, locate a node you are trying to poll, and note this node's property
group.

Open the Property Group List window, select the property group you noted in Step 2, and see
whether the poll's base object appears in the property group's list of properties.

If your poll's base object is not in the node's property group, you must change the node's property
group or add a property to the current property group.

372

Designing and Managing Behavior NerveCenter 6.2
Models

Matching Triggers and Alarm Transitions m

Checking an Alarm's Property

Let's assume that NerveCenter is polling a node, that NerveCenter is firing a trigger as a result of the poll,
and that you have an enabled alarm whose one transition out of the Ground state has the same name as
this trigger. Even in this case, NerveCenter does not create an alarm instance unless the alarm's property
is in the node's property group.

TO MAKE SURE THAT YOUR ALARM PASSES THIS TEST

1. Open the Alarm Definition List window, and note your alarm's property.

If your alarm's property is set to NO_PROP, you can stop the test here because an alarm whose
property is NO_PROP always passes this test.

Open the Node List window, note the property group of a node you are trying to poll.

Open the Property Group List window, select the property group you noted in Step 2, and see
whether the alarm's property appears in the property group's list of properties.

If your alarm's property is not in the node's property group, you must change your alarm's property,
change the node's property group, or add a property to the current property group.

Matching Triggers and Alarm Transitions

When a trigger is fired, NerveCenter must decide whether that trigger should cause a state transition in an
active alarm instance or cause a new alarm instance to be created. What conditions must a trigger and
transition meet before one of these actions takes place?

m A transition whose name matches the name of the trigger must be pending.

In an active alarm, a transition is pending if its origin state is the alarm instance's current state. A
transition is also considered pending if its origin state is Ground. When the second type of
transition occurs, a new alarm instance is instantiated.

m The trigger's identity must match the transition's identity.

Triggers have four-part identities. These identities include a name, a subobject, a node, and
sometimes a property. Transitions' identities have the same four parts, plus a fifth part, scope.
NerveCenter uses matching rules to compare a trigger's identity to the identity of each pending
alarm transition. Each pair of names, subobjects, nodes, and properties must pass a comparison
test before a transition takes place.

This section describes the identities of triggers and transitions, specifies the matching rules, and provides
examples of objects that match and objects that don't match. See the subsections listed below:

m Enabling a Behavior Model's Components on page 371

m Enabling a Behavior Model's Components on page 371

m Enabling a Behavior Model's Components on page 371

NerveCenter 6.2 Designing and Managing Behavior 373
Models

m Debugging a Behavior Model

Identities of Triggers and Transitions

The components of a trigger's identity may be supplied by you, the designer, or by NerveCenter,
depending on how the trigger is generated. On the other hand, a transition's identity is inherited from an
active alarm instance or, if the transition's origin state is Ground, from an alarm definition. The remainder
of this section discusses how the components of a trigger or transition's identity are given values.

m Name—Any string.

o Trigger—You give a trigger its name when you define the poll or mask that will fire the trigger,
when you make a call to the FireTrigger() function, or when you use the Fire Trigger alarm
action. NerveCenter assigns reserved names to built-in triggers.

o Transition—You establish a transition's name when you define the transition, in the course of
drawing an alarm's state diagram.

m Subobject—Usually the MIB base object and instance (connected with a period) associated with
the condition that prompted the trigger.

> Trigger —The subobject of a trigger fired by a poll is taken from the OID used in the SNMP
GetRequest that caused the trigger to be fired. Similarly, the subobject of a trigger fired by a
trap mask is taken from the OID in the first variable binding in the trap that caused the trigger to
be fired. Built-in triggers are assigned a subobject of SANY.

For triggers fired as a result of a call to the Fire Trigger () function or by a Fire Trigger alarm
action, you specify the subobject when you call the function or define the alarm action.

o Transition — In a subobject-scope alarm instance, a transition inherits its subobject from the
alarm instance. For example, if an alarm instance tracks ifEntry.2 on a given node, all its
transitions do also. If the transition would be an alarm instance's first, it has no subobject.
Transitions in node- and enterprise-scope alarms do not have subobjects either.

m Node — The name of a managed node.

> The node attribute of a trigger fired by a poll or a mask is assigned the name of the node on
which the condition of interest was detected. For triggers fired as a result of a call to the Fire
Trigger () function or by a Fire Trigger alarm action, you specify the node when you call the
function or define the alarm action.

o A transition inherits its node from its alarm instance. For example, if an alarm instance tracks
node router1, all of its transitions do also. If the transition would be an alarm instance's first, the
transition does not have a node. In addition, transitions in enterprise scope alarms do not have
nodes.

m Property — The name of a property or empty.

o Trigger — You specify the property of a trigger fired by a Fire Trigger alarm action when you
define the action. Triggers from other sources do not have properties.

o Transition — A transition inherits its property from the associated alarm definition.
m Scope — Subobject, Node, Instance, or Enterprise
o Trigger — A trigger does not have a scope.

o Transition — A transition inherits its scope from the associated alarm definition.

374 Designing and Managing Behavior NerveCenter 6.2
Models

Matching Triggers and Alarm Transitions m

Rules for Matching

A trigger causes an alarm transition if the identities of the trigger and the transition match—that is, if their
names, subobjects, nodes, and properties all pass comparison tests. The four comparison tests
corresponding to the four parts of a trigger's identity are discussed in the upcoming subsections. The
trigger must pass all four tests before it can prompt a transition.

Name Rule

A trigger's name must match the transition's name exactly.

Subobject Rule

A trigger's subobject matches a transition's subobject when any of the following statements is true:
m Thetransition's scope is Enterprise.
m Thetransition's scope is Node.
m Both the trigger's and the transition's subobjects are zero instance (baseObject.0) or are empty.
m The trigger's subobject matches the transition's subobject exactly.
m Thetransition’s scope is instance and the instances match.
m Thetrigger's subobject is a wildcard (JANY), and the transition's origin state is not Ground.

m The transition has subobject scope, the base objects are the same in the subobject for the trigger
and transition, the instance in the trigger's subobject is a wildcard ($ON), and the transition's origin
state is not Ground.

m The transition has instance scope, the instance in the trigger’'s subobject is a wildcard ($ON), and
the transition is not from ground state.

m Theinstances in the trigger's subobject and transition's subobject match, and one of the base
objects is an extension of the other.

Here's an example of one base object extending another. MIB-II defines ifEntry, a row of datain a
table of information about an interface. You access a particular instance of ifEntry using the index
ifindex. Cisco extends this interface table by defining a local interface table, which contains many
additional attributes for each interface. The rows in this table are accessed using the same index
used to access the rows in the MIB-Il interface table.

If the transition's origin state is Ground - that is, a new alarm instance is being created -- the following
statement must also be true:
m Thetrigger's subobject is not SANY or SNULL and does not contain $ON.

The trigger can have an empty subobject.

NerveCenter 6.2 Designing and Managing Behavior 375
Models

Debugging a Behavior Model

Node Rule

A trigger's node matches a transition's node when any of the following statements is true:
m Thetransition's scope is Enterprise.
m The trigger's node matches the transition's node exactly.
m The trigger's node is $ANY, and the transition's origin state is not Ground.

If the transition would create a new alarm instance and therefore has no associated node, the follow
statement must also be true:

m Thetrigger's node is not $ANY.

Property Rule
A trigger and transition pass the property test when all of the following conditions are met:

m Fortransitions of subobject or node scope, the transition's property is contained in the property
group of the trigger's node, or the transition's property is NO_PROP.

m Fortransitions of subobject or node scope, the trigger's property (if it has one) is contained in the
property group assigned to the trigger's node.

m Fortransitions of enterprise scope, the trigger's property (if it has one) must match the transition's
property.

Examples of Matching Triggers and Transitions

This section presents a number of examples of triggers and transitions that do and do not match.

Example 1

A trigger named highLoad with the subobject system.0 and the node hp124 would prompt the following
transitions:

m Name: highLoad
Scope: Subobject
Subobject: ip.0
Node: hp124
Property: hpws, which is contained in hp124's property group

= Name: highLoad
Scope: Subobject
Subobject: Unassigned (transition from Ground)
Node: Unassigned (transition from Ground)
Property: NO_ PROP

m Name: highLoad
Scope: Node
Subobject: Irrelevant
Node: hp124
Property: hpws, which is contained in hp124's property group

376 Designing and Managing Behavior NerveCenter 6.2
Models

Matching Triggers and Alarm Transitions

The highLoad trigger would not prompt the following transition:

s Name: highLoad
Scope: Subobject
Subobiject: ifEntry.2
Node: hp124
Property: hpws, which is contained in hp124's property group

The trigger and transition fail the subobject rule.

Example 2

A trigger named lowSpace with the subobject $ANY, the node hp124, and the property includeMe (which
is contained in hp124's property group) would prompt the following transitions:

m Name: lowSpace
Scope: Subobject
Subobject: ifEntry.2
Node: hp124
Property: includeMeToo, which is contained in hp124's property group

m Name: lowSpace
Scope: Node
Subobject: Irrelevant
Node: hp124
Property: NO_PROP

m Name: lowSpace
Scope: Subobject
Subobject: system.0
Node: hp124
Property: NO_PROP

The lowSpace trigger would not prompt the following transitions:

m Name: lowSpace
Scope: Enterprise
Subobject: Irrelevant
Node: Irrelevant
Property: hpws, which is contained in hp124's property group

The trigger and transition fail the property rule.

m Name: lowSpace
Scope: Subobject
Subobject: ifEntry.2
Node: hp125
Property: includeMe

The trigger and transition fail the node rule.

NerveCenter 6.2 Designing and Managing Behavior 377
Models

m Debugging a Behavior Model

m Name: lowSpace
Scope: Subobject
Subobject: Unassigned (transition from Ground)
Node: Unassigned (transition from Ground)
Property: NO_PROP

The trigger and transition fail the subobject rule.

Example 3

A trigger named lowSpace with the subobject SNULL, the node $ANY, and the property NO_PROP would
prompt the following transitions:

m Name: lowspace
Scope: Node
Subobject: Irrelevant
Node: hp125
Property: includeMe

m Name: lowspace
Scope: Enterprise
Subobject: Irrelevant
Node: Irrelevant
Property: dontincludeMe

The lowSpace trigger would not prompt the following transitions:

m Name: lowspace
Scope: Subobject
Subobject: ifEntry.2
Node: hp125
Property: includeMe

The trigger and transition fail the subobject rule.

m Name: lowspace
Scope: Subobject
Subobject: Any string at all, including the empty string
Node: Any node at all
Property: NO_PROP

The trigger and transition fail the subobject rule.

Auditing Behavior Models

NerveCenter includes an auditing feature that looks for:
m Alarm transitions for which there are no corresponding triggers
m Triggers that are fired by a poll or a mask and are not used in alarms
m Alarms with states that are unreachable

You should audit your database periodically to ensure that you don't have extraneous objects in your
database and that alarms you're currently using don't have unreachable states or unusable transitions.

378 Designing and Managing Behavior NerveCenter 6.2
Models

Behavior Model Log

TO PERFORM AN AUDIT

1. Choose Audit from the client's Admin menu.

The Audit window appears.

NERVECENTER: Audit E=R|E=E ==

™ Alarm Triggers | Mask /Poll Triggers [Alarm States

tear Aucit File| View udit Fie| [Close |[Help

Run dudit ||1

2. Check one or more of the checkboxes above the text area.

> Checking the Alarm Triggers checkbox indicates that you want to see information about
alarm transitions for which there are no corresponding triggers.

o Checking the Mask /Poll Triggers checkbox indicates that you want to see information about
polls and masks that fire triggers that are not used by any currently defined alarm.

o Checking the Alarm States checkbox indicates that you want to see information about alarms
that contain states that are unreachable.

3. Select the Run Audit button.

The results of the audit are written to the text area in the Audit window and to
lopt/OSIncluserfiles/logs.

The other buttons in the Audit window have the following functions:

o Clear clears the contents of the text area in the Audit window.
o Clear Audit File clears the contents of the file audit.txt.

o View Audit File displays the contents of the file audit.txt in the text area of the Audit window.

Behavior Model Log

NerveCenter logs most behavior model changes to /opt/OSlinc/userfiles/logs/AuditTrail.log. Table 28
describes the events recorded in AuditTrail.log. You can use this to help trace how and when a behavior
model stops functioning.

NerveCenter 6.2 Designing and Managing Behavior 379
Models

Debugging a Behavior Model

Table 28: Events Recorded in AuditTrail.log

NerveCenter Object Events Recorded

Alarm m Addalarm

m Update alarm
m Delete alarm
m Alarm On/Off

Poll = Add poll
m Update poll
m Delete poll
m Poll On/Off
Mask m Add mask

m Update mask
m Delete mask
m Mask On/Off

Perl Subroutine m Add Perl Subroutine
m Update Perl Subroutine

m Delete Perl Subroutine

Property Group m Add/Delete Property Group
Yy

The following is a sample AuditTrail.log.

01/21/2004 17:08:54 Wed - User bxie added Property: newpropl
01/21/2004 17:08:54 Wed - User bxie added Property: newprop
01/21/2004 17:08:54 Wed - User bxie added PropertyGroup: newGroup
01/21/2004 17:09:17 Wed - User bxie added Property: newprop2
01/21/2004 17:09:17 Wed - User bxie added PropertyGroup: newGroupl
01/21/2004 17:09:29 Wed - User bxie updated PropertyGroup:

newGroup
01/21/2004 17:11:04 Wed - User root updated PropertyGroup:
newGroup
01/21/2004 17:12:14 Wed - User bxie added poll with name of
newPoll
01/21/2004 17:12:24 Wed - User bxie updated poll with name of
newPoll
01/21/2004 17:12:35 Wed - User bxie turned Off poll with name of
newPoll
01/21/2004 17:12:46 Wed - User bxie deleted poll with name of
newPoll
01/21/2004 17:13:43 Wed - User root added mask with name of
newMask

380 Designing and Managing Behavior NerveCenter 6.2

Models

Behavior Model Log

01/21/2004 17:13:57 Wed - User root updated mask with name of
newMask

01/21/2004 17:14:10 Wed - User bxie turned Off mask with name of
newMask

01/21/2004 17:14:25 Wed - User bxie deleted mask with name of
newMask

01/21/2004 17:15:07 Wed - User root added alarm with name of
NewAlarm

01/21/2004 17:15:41 Wed - User root updated alarm with name of
NewAlarm

01/21/2004 17:55:57 Wed - User bxie has turned Off the alarm with
name of NewAlarm

01/21/2004 17:56:03 Wed - User bxie has turned On the alarm with
name of NewAlarm

01/21/2004 17:56:03 Wed - User bxie has turned On the alarm with
name of newAlarm

01/21/2004 17:56:03 Wed - User bxie has turned On the alarm with
name of newAlarm?2

01/21/2004 17:56:03 Wed - User bxie has turned On the alarm with
name of newAlarm3

01/21/2004 17:56:08 Wed - User bxie deleted alarm with name of
NewAlarm

01/21/2004 17:56:08 Wed - User bxie deleted alarm with name of
newAlarm

01/21/2004 17:56:09 Wed - User bxie deleted alarm with name of
newAlarm?2

01/21/2004 17:56:10 Wed - User bxie deleted alarm with name of
newAlarm3

01/21/2004 17:56:33 Wed - User bxie added perl subroutine with
name of nEwPerl

01/21/2004 17:56:58 Wed - User bxie updated perl subroutine with
name of newPerl

01/21/2004 17:57:12 Wed - User bxie updated perl subroutine with
name of newPerl

01/21/2004 17:57:24 Wed - User bxie deleted perl subroutine with
name of newPerl

01/21/2004 17:57:46 Wed - User bxie added opcmask with name of
newOpcMask

01/21/2004 17:57:51 Wed - User bxie updated opcmask with name of
newOpcMask

01/21/2004 17:57:58 Wed - User bxie turned Off opcmask with name
of newOpcMask

01/21/2004 17:58:20 Wed - User bxie deleted opcmask with name of
newOpcMask

01/21/2004 17:58:39 Wed - User bxie removed Property: newprop?2
01/21/2004 17:58:39 Wed - User bxie removed Property: newpropl

NerveCenter 6.2 Designing and Managing Behavior 381
Models

Debugging a Behavior Model

01/21/2004 17:58:39 Wed - User bxie removed Property: newprop
01/21/2004 17:58:39 Wed - User bxie removed PropertyGroup:

newGroupl
01/21/2004 17:58:39 Wed - User bxie removed PropertyGroup:
newGroup
382 Designing and Managing Behavior NerveCenter 6.2

Models

Downstream Alarm Suppression

The NerveCenter downstream alarm suppression behavior model monitors nodes in a complex network.
Using topology information, the model uses the relationships between nodes to determine the status of

those nodes accurately. You can also use the model to log data to the database for outage and availability
reports.

This appendix describes how the model works, how to test the model, and the technical details of the
model. The latest downstream alarm suppression model, nodestatus_dwnstrm.mod, is included with the
current release of LogMatrix NerveCenter. You can also get them from the LogMatrix NerveCenter site at
http://www.logmatrix.com.

This appendix includes the following sections:
m Understanding How the Model Works below
m Testing the Model on page 387
m Understanding the Technical Details on page 390

Understanding How the Model Works

The first downstream alarm suppression model (which included DSCollectRoutes, DSlIcmpStatus, and
DSSnmpStatus), used information about local routers to determine the status of an unreachable node. If a
route existed for the node, the node was assumed to be down; otherwise, it was marked as unreachable.
In either case, the node was suppressed. For simple networks that consisted of nodes behind routers,
this model was adequate. However, for more complex networks with multiple routers, switches, and
hubs, and for certain routing protocols, the new model provides a more accurate determination of a node’s
status.

What is a complex network, as opposed to a simple network? A simple network might include single
parent-child relationships. Nodes that are dependent on other nodes for a route to the NerveCenter server
are child nodes. Nodes on which other nodes are dependent are parent nodes.

>

[

i e
- - l
%\'\/ %\;/
NerveCenter Server Router Node on another
(Not a parent) (Parent of Node) segment
Figure 64: A Simple Network
NerveCenter 6.2 Designing and Managing Behavior 383

Models

http://www.logmatrix.com/

m Downstream Alarm Suppression

Note: The NerveCenter Server is not a parent node, nor does it have a parent. Logically, then, no node
on the same segment as the NerveCenter Server has a parent.

A more complex network might include nodes with multiple parents and nodes that are themselves
parents to other nodes.

7
Router1 \ %\’g/

(Parent of / NodeA
D I Switch) <> O

Router0 \ / Switch Hub \
NerveCenter (Parent of (Parent of (Parent of

Server Router1 and Hub) NodeA and E D

Not a parent Router2 NodeB

(P)) Router2) %\@,/
(Parent of Switch) NodeB

Figure 65: A More Complex Network

The new model uses the status of devices between NerveCenter and managed nodes in the network to
make real-time determinations about whether nodes are up, down, or unreachable. NerveCenter can then
take appropriate actions based on the statuses of those nodes. For example, suppose NerveCenter is
monitoring 1000 nodes, and 300 nodes behind a router stop responding to polls. NerveCenter can use the
status of the router and any intermediate devices to determine whether the nodes are down or
unreachable. If the nodes are actually down, NerveCenter forwards the appropriate alarms to the network
management platform; however, if they are unreachable, NerveCenter just forwards one critical alarm for
the router and uses built-in LogMatrix NerveCenter Smart Polling technology to stop suppressible polls for
those nodes until they are available again.

NerveCenter can get information about the nodes in the following ways:

m You create a text file that defines the relationships of the nodes on your network. Then, you create
an alarm that uses a Perl subroutine with some built-in functions to load that information into the
database.

Note: Don't include nodes that have many routes (nodes that have hundreds of parents, for example).
The overhead necessary to maintain parent information about these nodes is unnecessary because the
likelihood that every single route to the nodes is going to be down is very small.

Once NerveCenter has that relationship information, the DwnStrmSnmpStatus and DwnStrmlcmpStatus
alarms monitor nodes and maintain their statuses in the NerveCenter database.

Note: The accuracy of NerveCenter decisions depends on the accuracy of the topology information it
receives. Note that if you export node information that includes parent information, from one server to
another on a different segment, the parent data might not be accurate because the topology perspective
will be different.

384 Designing and Managing Behavior NerveCenter 6.2
Models

Understanding How the Model Works

NerveCenter
~ Server
1

Topology Status
information * * information
~ HP OpenView and
i OVPA or pc.dat file

==

Figure 66: NerveCenter Maintains Parent-Child Relationship and Status Information

QJ

Nodes can have the following statuses: up, testing, down, and unreachable. Any node that responds has
a status of up. The first time a node does not respond, its status is set to testing. While anode is in
testing, its status is not updated again until NerveCenter determines that the node is up, down, or
unreachable.

NerveCenter decides whether the node is down or unreachable based on whether the node has parents,
whether the parents’ statuses are more current than the node’s last status update, and what those
statuses are.

Note: The current downstream alarm suppression model evaluates parent status at the node level, not
the subobject or interface level.

The model uses the following logic:

m The node is set to unreachable if the following condition is true: all parents have more current
statuses and no parents are up or in testing.

m The node is set to down if one of the following conditions is true:
o At least one parent has a more current status than the node and is up
o The node has no parents

m The status of the node does not change as long as one of the following is true:
o No parents have a more current status than the node

> One or more parents have a more current status than the node but are not up

NerveCenter 6.2 Designing and Managing Behavior 385
Models

m Downstream Alarm Suppression

The key is to only update a node’s status when NerveCenter can make a definitive decision about the
status based on real-time data, which can only happen when the parents’ status is more current than the
node’s status.

If the node does go to down or unreachable, NerveCenter continues to monitor the node and its parents to
determine if the node is available again, if the parents’ statuses have affected the status of the node, or if
there has been no change.

For example, the Figure 67 shows a node that has one parent. At T, the node does not respond to an
SNMP poll, so the alarm transitions from ground to error and the node’s status is updated to testing. If the
node does not respond to a second poll at T4, the alarm transitions from error to testing but the node’s
status is not updated. On a circular transition that loops back to the testing state, a Perl subroutine
checks—and continues to check—the parent’s status. At T, the parent’s status has been updated. Since
the parent’s status is more current than the node’s status, the alarm transitions to unreachable and the
node’s status is set to unreachable. At T3, the parent’s status has not changed, so the node’s status is
not updated.

Time TO T2

Parent : T1 T3

s' | | |

s | | -

ITes;ting |Testing |Unreachable |Unreachable
S5
<

Child ! ! | !
Figure 67: Updating a Node’s Status Depends on When the Parent’s Status Was Last Updated

As long as the parent’s status remains down and is more current than the node’s status every time the
Perl subroutine checks it, the node’s status is refreshed.

For more details about the new downstream alarm suppression model, see Understanding the Technical
Details on page 390.

386 Designing and Managing Behavior NerveCenter 6.2
Models

Testing the Model m

Testing the Model

The alarm suppression model is based on this concept: by monitoring whether nodes are dependent on
other nodes (parent-child relationships) and by keeping each node’s status updated proactively, the model
can make accurate assessments as to what the statuses of dependent, or child, nodes are.

The following sections describe how to test the models:
m Importing the New Model below
m Identifying Parent-Child Relationships on the next page
m Making the Relationship Information Available to NerveCenter on the next page

m Testing the Alarm Suppression Model on page 389

Importing the New Model

The alarm suppression model is not included in the default database that is installed with NerveCenter.
You must import the model before you can use it. The model includes all of the objects you need,
including the alarms, polls, masks, Perl subroutines, and so on.

Caution: Older versions of the imported objects will be overwritten (for example, IcmpPoll).

TO IMPORT THE NEW MODEL

Start the Client and connect to the NerveCenter Server.
From the Server menu, select Import Objects and Nodes.
Select Browse.

Double-click the node_status directory.

Select nodestatus_dwnstrm.mod and then Open.

Select OK.

A o

A message is displayed when the file has been imported. The following alarms are listed in the alarm list:
m DwnStrmlcmpStatus
m DwnStrmlcmpStatus_LogToDB
m DwnStrmSnmpStatus
m DwnStrmSnmpStatus_LogToDB

See Importing and Exporting NerveCenter Nodes and Objects on page 353 for complete details on
importing models.

NerveCenter 6.2 Designing and Managing Behavior 387
Models

m Downstream Alarm Suppression

Identifying Parent-Child Relationships
In order to use NerveCenter's Downstream Alarm Suppression behavior model, it is necessary to
establish the parent-child relationship between nodes. To identify parent-child relationships manually
1. Openanew text file.
2. Include aline for each node that has parents. Use the following syntax:
child parent

where child is the name of the node and parent is the name of each node on which the child is
dependent. If you have more than one parent, separate parents by typing a space between each
one.

Note: If NerveCenter uses a full domain name for the node, use the full name in this file when referring
to that node.

For example, if nodeA is dependent on nodeB.domain.com and nodeC, and nodeB.domain.com is
dependent on nodeD, then the text file would look like this:

nodeA nodeB.domain.com nodeC

nodeB.domain.com nodeD

3. Save and close thefile.

The name and location of the file do not matter, as long as you remember the location to use in the
next procedure.

Making the Relationship Information Available to NerveCenter

If you created a text file with the relationship information, you must load that information into
NerveCenter.

TO LOAD RELATIONSHIP INFORMATION INTO NERVECENTER

1. Inthe NerveCenter Client, create an alarm that you can transition on demand. On the transition,
call a Perl subroutine that includes the following function:

NC: :LoadParentsFromFile (FileName) ;

where FileName is the name of the file you created.

2. Transition the alarm. After the alarm transitions, you can turn the alarm off.

Caution: If you modify the file, you must repeat this procedure.

388 Designing and Managing Behavior NerveCenter 6.2
Models

Testing the Model m

To make sure the contents of the file were read correctly, you can create another alarm with a Perl
subroutine that includes the following function:

NC: :DumpParentsToFile (FileName) ;
The information will be written to the file on the local machine.

To remove relationship information, you can create an alarm with a Perl subroutine that includes the
following function:

NC: :RemoveAllParents () ;

Testing the Alarm Suppression Model

You can test the model by turning the DwnStrmSnmpStatus alarm (see DwnStrmSnmpStatus Alarm on
page 392) and DwnStrmlcmpStatus alarm (see DwnStrmlcmpStatus Alarm on page 398) on, and then
simulating a node being unreachable.

TO TEST THE ALARM SUPPRESSION MODEL

Make sure the Client is connected to the NerveCenter Server.
2. From the Admin menu, select Alarm Definition List.
The Alarm Definition List dialog is displayed.

3. Inthelistbox, right-click on DwnStrmSnmpStatus and select On.
In the listbox, right-click on DwnStrmlcmpStatus and select On.

The DwnStrmSnmpStatus and DwnStrmlcmpStatus alarms monitor the status of managed nodes.

Note: To use the model to log data against which you can run availability reports, use
DwnStrmSnmpStatus_LogToDB and DwnStrmlcmpStatus LogToDB instead of the versions that don’t
log data (DwnStrmSnmpStatus and DwnStrmlcmpStatus).

To simulate a node being unreachable, you can change the IP address of an existing node or that of a new
node to an invalid address for your network. (For example, you might use 10.10.10.10.) If you have a test
network available, you can also make nodes unreachable by unplugging devices—a router, for example.

NerveCenter detects errors since the node no longer responds to polls. As a result, NerveCenter
reevaluates and updates the node status. If the alarm is in an AgentDown, DeviceDown, or Unreachable
state, NerveCenter suppresses suppressible alarms for that node until it is available again.

To make sure the statuses of the nodes are correct, you can create an alarm with a Perl subroutine that
includes the following function:

NC: :DumpNodeStatusToFile (FileName) ;

The information will be written to the file in the NerveCenter installation directory on the local machine.

NerveCenter 6.2 Designing and Managing Behavior 389
Models

m Downstream Alarm Suppression

Understanding the Technical Details

The two particular areas of interest in the model are the alarms used to monitor device status and the Perl
subroutines used to store and evaluate relationship and status information. See the following sections for

details about those types of objects:
m Alarms on the facing page

m Perl Subroutines on page 402

The following objects are imported when you import the MOD file.

Caution: Older versions of the imported objects will be overwritten (for example, SnmpPoll).

m Alarms
o DwnStrmlcmpStatus (off)
o DwnStrmlcmpStatus_LogToDB (off)
o DwnStrmSnmpStatus (off)
o DwnStrmSnmpStatus_LogToDB (off)
m Properties
o icmpStatus
o nl-ping
o system
m Polls
> IS _lcmpPall (on)
o |S_lecmpFastPoll (on)
o SnmpFastPoll (on)
o SnmpPoll (on)
o 8S_lcmpPall (on)
o 8S_lcmpFastPoll (on)
m Masks
o ColdStart (on)
o WarmStart (on)
m Triggers
o agentUp
o agentUpFast
o warmStart
o coldStart
> Down
> ICMP_ERROR

390 Designing and Managing Behavior
Models

NerveCenter 6.2

Understanding the Technical Details

o

o

IS_Icmp_Error
ISF_lcmp_Error
ISnodeUpFast
ISnodeUp
SNMP_TIMEOUT
SS_Icmp_Error
SS_PortUnreachTesting
SSF_Icmp_Error
SSnodeUpFast
SSnodeUp
UnReachable

m Severities

o

o

o

o

Critical
Inform
Minor

Normal

m Perl subroutines

o
o

o

Alarms

SetNodeStatusDown
SetNodeStatusTesting
SetNodeStatusUnReachable
SetNodeStatusUp
SS_IcmpError
TestParentSetNode

TestParentStatus

The downstream alarm suppression behavior model monitors node status using both SNMP and ICMP.
This section includes descriptions of the following alarms:

m DwnStrmSnmpStatus Alarm on the next page

m DwnStrmlcmpStatus Alarm on page 398

Note: You must import the downstream behavior models before they become available in NerveCenter
Client. From the Server menu in Client, choose Import Objects and Nodes, and then browse to select
the node status models.

NerveCenter 6.2

Designing and Managing Behavior 391

Models

m Downstream Alarm Suppression

DwnStrmSnmpStatus Alarm

This alarm accurately monitors the status of nodes and their SNMP agents by taking into consideration
the status of the nodes’ parents. This alarm is the same as the DwnStrmSnmpStatus_LogToDB version,
except that the DwnStrmSnmpStatus_LogToDB version also logs data on most transitions.

. Agemnuwn]:

éﬁ

[s5_rortunreacn| [I0@_tDMEOUT |

S§S_TompError

SSnodeUpFast 5SF_T

h
round e cro U Testing - BECCREEES [BeviceDown
S =

col

Gnrcachabie JES T

Figure 68: DwnStrmSnmpStatus/DwnStrmSnmpStatus_LogToDB Alarm State Diagram

Table 29 lists the severity of each state:

Table 29: Severities of Each State in DwnStrmSnmpStatus

State Severity Color
Ground Normal Green
Error Normal Green
Testing Normal Green
AgentDown Minor Yellow
DeviceDown Critical Red

Unreachable Inform Purple

When this alarm is turned on, the following polls and masks cause state transitions:

m ColdStart (trap mask)

m SnmpFastPoll (SNMP get request)

m SnmpPoll (SNMP get request)

m SS_IcmpFastPoll (ICMP echo request, or ping)
m SS_IcmpPoll (ICMP echo request, or ping)

m WarmStart (trap mask)

392

Designing and Managing Behavior
Models

NerveCenter 6.2

Understanding the Technical Details m

This alarm uses the following Perl subroutines:

m SS_IcmpError Perl Subroutine on page 402
m SetNodeStatus Perl Subroutines on page 403
m TestParentStatus Perl Subroutine on page 404

m TestParentSetNode Perl Subroutine on page 407

Note: Before turning this alarm on, NerveCenter must have loaded the relationship data. See Identifying
Parent-Child Relationships on page 388 and Making the Relationship Information Available to
NerveCenter on page 388.

The following sections describe the states in the DwnStrmSnmpStatus alarm and the transitions and
actions that can happen from those states:

m Ground State below

m Error State on the next page

m Testing State on the next page
m AgentDown State on page 396
m Unreachable State on page 396

m DeviceDown State on page 397

Ground State
In Ground state, the node is reachable and the SNMP agent is up.

As long as the node and agent respond to the SnmpPoll and SnmpFastPoll requests, the agentUp circular
transition is triggered. The agentUp transition calls the SetNodeStatusUp Perl subroutine (see
SetNodeStatus Perl Subroutines on page 403) to refresh the update time.

If the node does not respond to the polls, the following triggers can transition the alarm from Ground to
Error:

= ICMP_ERROR
= SNMP_TIMEOUT

Transitions to the Error state call the SetNodeStatus Testing Perl subroutine (see SetNodeStatus Perl
Subroutines on page 403) to update the status to Testing.

ICMP_ERROR also calls the SS_IcmpError Perl subroutine (see SS_IcmpError Perl Subroutine on
page 402). If the SS_IcmpError Perl subroutine determines that the port is unreachable, it fires SS_
PortUnreach. The SS_PortUnreach trigger does the following:

m Transitions the alarm to an AgentDown state

m Uses the Set Attribute action to suppress the node so the node won't be polled by suppressible
polls while the agent is down

m Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page 403) to
update the status so that NerveCenter can evaluate the states of the children of this node, if there
are any, accurately

NerveCenter 6.2 Designing and Managing Behavior 393
Models

m Downstream Alarm Suppression

Error State

The alarm suppression behavior model uses the Error state to confirm that there is actually a problem (as
opposed to a dropped packet, for example). From the Error state, a node can transition back to Ground, to
Testing, or to AgentDown.

If the node and agent respond to the SnmpFastPoll request, the agentUpFast transition is triggered. The
agentUpFast transition does the following:

m Retumns the alarm to Ground state

m Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page 403) to
update the status so that NerveCenter can evaluate the states of the children of this node, if there
are any, accurately

If the node still does not respond to the poll, the following triggers transition the alarm from Error to
Testing:

m ICMP_ERROR, which calls the SS_IcmpError Perl subroutine (see SS_IcmpError Perl Subroutine
on page 402)

m SNMP_TIMEOUT

If the SS_lcmpError Perl subroutine determines that the port is unreachable, it fires SS_PortUnreach. The
SS_PortUnreach trigger does the following:

m Transitions the alarm to an AgentDown state

m Uses the Set Attribute action to suppress the node so the node won't be polled by suppressible
polls while the agent is down

m Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page 403) to
update the status so that NerveCenter can evaluate the states of the children of this node, if there
are any, accurately

Testing State

While an alarm is in the Testing state, NerveCenter identifies whether the node is:
m Down
m Unreachable
m Up, but its agent is down

If SS_PortUnreach is triggered by the SS_IcmpError Perl subroutine while the node transitioned from
Error to Testing or if SS_nodeUpFast is triggered by SS_IcmpFastPall, the trigger:

m Transitions the alarm to an AgentDown state

m Uses the Set Attribute action to suppress the node so the node won't be polled by suppressible
polls while the agent is down

m Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page 403) to
update the status so that NerveCenter can evaluate the states of the children of this node, if there
are any, accurately

394 Designing and Managing Behavior NerveCenter 6.2
Models

Understanding the Technical Details m

If SSF_lcmpError is triggered by SS_lcmpFastPoll, the trigger:

m Transitions the alarm to an Unreachable state

m Uses the Set Attribute action to suppress the node so the node won't be polled by suppressible
polls while the node is unreachable

m Calls the SetNodeStatusUnreachable Perl subroutine (see SetNodeStatus Perl Subroutines on
page 403) to update the status so that NerveCenter can evaluate the states of the children of this
node, if there are any, accurately

If SS_nodeUpFast results in a circular ICMP_TIMEOUT transition, the TestParentStatus Perl subroutine
(see TestParentStatus Perl Subroutine on page 404) looks up the status of the parents. If
TestParentStatus can determine the node’s state based on the parents’ status, TestParentStatus fires
the appropriate trigger: UnReachable or Down.

m The UnReachable trigger:
o Transitions the alarm to an Unreachable state

o Uses the Set Attribute action to suppress the node so the node won't be polled by suppressible
polls while the node is unreachable

o Calls the SetNodeStatusUnreachable Perl subroutine (see SetNodeStatus Perl Subroutines on
page 403) to update the status so that NerveCenter can evaluate the states of the children of
this node, if there are any, accurately

m The Down trigger:
o Transitions the alarm to a DeviceDown state

o Uses the Set Attribute action to suppress the node so the node won't be polled by suppressible
polls while the node is unreachable

o Calls the SetNodeStatusDown Perl subroutine (see SetNodeStatus Perl Subroutines on
page 403) to update the status so that NerveCenter can evaluate the states of the children of
this node, if there are any, accurately

o Sends an Inform action to notify a network management platform or another NerveCenter of the
status of this node

NerveCenter 6.2 Designing and Managing Behavior 395
Models

m Downstream Alarm Suppression

AgentDown State

While an alarm is in the AgentDown state, NerveCenter continues to monitor the node for changes. As
long as the node responds to the SS_IcmpPoll requests, the SSnodeUp transition is triggered. The
SSnodeUp transition calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines
on page 403) to refresh the update time.

If the node does not respond to the polls, the following triggers transition the node from AgentDown to
Testing:

s ICMP_TIMEOUT
m SS_IcmpError

Each transition calls the SetNodeStatus Testing Perl subroutine (see SetNodeStatus Perl Subroutines on
page 403) to update the status to Testing.

If NerveCenter receives a warmStart trap or a coldStart trap, or agentUp is triggered in response to an
SnmpPoll response, the trigger:

m Transitions the alarm to a Ground state
m Uses the Set Attribute action to turn poll suppression off so NerveCenter can resume all normal
polling

m Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page 403) to
update the time of the last status change so that NerveCenter can evaluate the states of the
children of this node, if there are any, accurately

Unreachable State

While an alarm is in the Unreachable state, NerveCenter continues to monitor the node for any changes.
If NerveCenter receives a coldStart trap or SSnodeUp is triggered by a response to SS_IcmpPoll, the
trigger:

m Transitions the alarm to a Ground state

m Uses the Set Attribute action to turn poll suppression off so NerveCenter can resume all normal
polling
m Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page 403) to

update the status so that NerveCenter can evaluate the states of the children of this node, if there
are any, accurately

If the poll does not get a response and an ICMP_TIMEOUT transition is triggered, NerveCenter calls the
TestParentSetNode Perl subroutine (see TestParentSetNode Perl Subroutine on page 407), which looks
up the parent status. If TestParentSetNode can determine the node’s state based on the parents’ status,
TestParentSetNode fires the Down trigger or refreshes the node’s update time.

The Down trigger:
m Transitions the alarm to a DeviceDown state

m Calls the SetNodeStatusDown Perl subroutine (see SetNodeStatus Perl Subroutines on page 403)
to update the status so that NerveCenter can evaluate the states of the children of this node, if
there are any, accurately

m Sends an Inform action to notify a network management platform or another NerveCenter of the
status of this node

396

Designing and Managing Behavior NerveCenter 6.2
Models

Understanding the Technical Details m

DeviceDown State

While an alarm is in the DeviceDown state, NerveCenter continues to monitor the node for any changes.

If NerveCenter receives a coldStart trap or the SSnodeUpFast transition is triggered by an SS_
IcmpFastPoll, the trigger:

m Transitions the alarm to a Ground state

m Uses the Set Attribute action to turn poll suppression off so NerveCenter can resume all normal
polling

m Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page 403) to
update the time of the last status change so that NerveCenter can evaluate the states of the
children of this node, if there are any, accurately

If SSF_IcmpErroris triggered by SS_IcmpFastPoll, the trigger:
m Transitions the alarm to an Unreachable state

m Uses the Set Attribute action to suppress the node so the node won't be polled by suppressible
polls while the node is unreachable

m Calls the SetNodeStatusUnreachable Perl subroutine (see SetNodeStatus Perl Subroutines on
page 403) to update the status so that NerveCenter can evaluate the states of the children of this
node, if there are any, accurately

If the poll does not get a response and a circular ICMP_TIMEOUT transition is triggered, NerveCenter
calls the TestParentSetNode Perl subroutine (see TestParentSetNode Perl Subroutine on page 407),
which looks up the status of the parents. If TestParentSetNode can determine the node’s state based on
the parents’ status, TestParentStatus fires the Unreachable trigger or refreshes the node’s update time.

The Unreachable trigger:
m Transitions the alarm to an Unreachable state

m Calls the SetNodeStatusUnReachable Perl subroutine (see SetNodeStatus Perl Subroutines on
page 403) to update the status so that NerveCenter can evaluate the states of the children of this
node, if there are any, accurately

NerveCenter 6.2 Designing and Managing Behavior 397
Models

m Downstream Alarm Suppression

DwnStrmicmpStatus Alarm

This alarm accurately monitors the status of nodes by taking into consideration the status of the nodes’
parents. This alarm is the same as the DwnStrmlcmpStatus_LogToDB version, except that the
DwnStrmlcmpStatus_LogToDB version also logs data on most transitions.

ISnodeUpFast

Figure 69: DwnStrmlcmpStatus/DwnStrmlcmpStatus_LogToDB Alarm State Diagram

Table 30 lists the severity of each state:

Table 30: Severities of each state in DwnStrmSnmpStatus

State Severity Color
Ground Normal Green
Error Normal Green
Testing Normal Green
DeviceDown Critical Red

Unreachable Inform Purple

When this alarm is turned on, the following polls cause state transitions:
m IS_IcmpFastPoll (ICMP echo request, or ping)
m IS_IcmpPoll (ICMP echo request, or ping)
This alarm uses the following Perl subroutines:
m SetNodeStatus Perl Subroutines on page 403
m TestParentStatus Perl Subroutine on page 404

m TestParentSetNode Perl Subroutine on page 407

Note: Before turning this alarm on, NerveCenter must have loaded the relationship data. Seeldentifying
Parent-Child Relationships on page 388 and Making the Relationship Information Available to
NerveCenter on page 388.

398 Designing and Managing Behavior NerveCenter 6.2
Models

Understanding the Technical Details m

The following sections describe the states in the DwnStrmlcmpStatus alarm and the transitions and
actions that can happen from those states:

m Ground State below

m Error State below

m Testing State on the next page
m Unreachable State on page 401

m DeviceDown State on page 401

Ground State
In Ground state, the node is reachable.

As long as the node responds to the IS_IcmpPoll requests, the ISnodeUp transition is triggered. The
ISnodeUp transition calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on
page 403) to refresh the update time.

If the node does not respond to the polls, the following triggers can transition the alarm from Ground to
Error:

s ICMP_TIMEOUT

m IS_IcmpError
Transitions to the Error state call the SetNodeStatus Testing Perl subroutine (see SetNodeStatus Perl
Subroutines on page 403) to update the status to Testing.
Error State

The alarm suppression behavior model uses the Error state to confirm that there is actually a problem (as
opposed to a dropped packet, for example). From the Error state, an alarm can transition back to Ground
or to Testing.

If the node responds to the IS_IcmpFastPoll request, the ISnodeUpFast transition is triggered. The
trigger:

m Retumns the alarm to Ground state

m Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page 403) to
update the status so that NerveCenter can evaluate the states of the children of this node, if there
are any, accurately

If the node still does not respond to the poll, the following triggers transition the alarm from Error to
Testing:

m ICMP_TIMEOUT
m ISF_lcmpError

NerveCenter 6.2 Designing and Managing Behavior 399
Models

m Downstream Alarm Suppression

Testing State

While an alarm is in the Testing state, NerveCenter identifies whether the node is down or unreachable. If
ISnodeUpFast is triggered in response to an IS_IcmpFastPoll poll while the node is in the Testing state,
the trigger:

m Transitions the alarm to Ground

m Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page 403) to
update the status so that NerveCenter can evaluate the states of the children of this node, if there
are any, accurately

If ISF_lcmpError is triggered in response to an IS_lcmpFastPoll poll while the node is in the Testing state,
the trigger:

m Transitions the alarm to Unreachable

m Calls the SetNodeStatusUnreachable Perl subroutine (see SetNodeStatus Perl Subroutines on
page 403) to update the status so that NerveCenter can evaluate the states of the children of this
node, if there are any, accurately

If ISnodeUpFast results in a circular ICMP_TIMEOUT transition, NerveCenter calls the
TestParentStatus Perl subroutine (see TestParentStatus Perl Subroutine on page 404) looks up the
status of the parents. If TestParentStatus can determine the node’s state based on the parents’ status,
TestParentStatus fires the appropriate trigger: UnReachable or Down.

m The UnReachable trigger:
o Transitions the alarm to an Unreachable state

o Uses the Set Attribute action to suppress the node so the node won't be polled by suppressible
polls while the node is unreachable

o Calls the SetNodeStatusUnreachable Perl subroutine (see SetNodeStatus Perl Subroutines on
page 403) to update the status so that NerveCenter can evaluate the states of the children of
this node, if there are any, accurately

m The Down trigger:
o Transitions the alarm to a DeviceDown state

o Uses the Set Attribute action to suppress the node so the node won't be polled by suppressible
polls while the node is unreachable

o Calls the SetNodeStatusDown Perl subroutine (see SetNodeStatus Perl Subroutines on
page 403) to update the status so that NerveCenter can evaluate the states of the children of
this node, if there are any, accurately

o Sends an Inform action to notify a network management platform or another NerveCenter of the
status of this node

400

Designing and Managing Behavior NerveCenter 6.2
Models

Understanding the Technical Details m

Unreachable State

While an alarm is in the Unreachable state, NerveCenter continues to monitor the node for any changes.
If ISnodeUp is triggered by aresponse to IS_IcmpPoll, the trigger:

m Transitions the alarm to a Ground state

m Uses the Set Attribute action to turn poll suppression off so NerveCenter can resume all normal
polling

m Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page 403) to
update the status so that NerveCenter can evaluate the states of the children of this node, if there
are any, accurately

If the poll does not get a response and a circular ICMP_TIMEOUT transition is triggered, NerveCenter
calls the TestParentSetNode Perl subroutine (see TestParentSetNode Perl Subroutine on page 407),
which looks up the status of the parents. If TestParentSetNode can determine the node’s state based on
the parents’ status, TestParentSetNode either fires the Down trigger or refreshes the node’s update time.

The Down trigger:
m Transitions the alarm to a DeviceDown state

m Calls the SetNodeStatusDown Perl subroutine (see SetNodeStatus Perl Subroutines on page 403)
to update the status so that NerveCenter can evaluate the states of the children of this node, if
there are any, accurately

m Sends an Inform action to notify a network management platform or another NerveCenter of the
status of this node
DeviceDown State

While an alarm is in the DeviceDown state, NerveCenter continues to monitor the node for any changes.
If the ISnodeUpFast transition is triggered by an IS_lcmpFastPoll, the trigger:

m Transitions the alarm to a Ground state

m Uses the Set Attribute action to turn poll suppression off so NerveCenter can resume all normal
polling
m Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page 403) to

update the time of the last status change so that NerveCenter can evaluate the states of the
children of this node, if there are any, accurately

If ISF_IcmpError is triggered in response to an IS_IcmpFastPoll poll while the node is in the Testing state,
the trigger:

m Transitions the alarm to Unreachable

m Calls the SetNodeStatusUnreachable Perl subroutine (see SetNodeStatus Perl Subroutines on
page 403) to update the status so that NerveCenter can evaluate the states of the children of this
node, if there are any, accurately

NerveCenter 6.2 Designing and Managing Behavior 401
Models

Downstream Alarm Suppression

If the poll does not get a response and a circular ICMP_TIMEOUT transition is triggered, the
TestParentSetNode Perl subroutine (see TestParentSetNode Perl Subroutine on page 407), which looks
up the status of the parents. If TestParentSetNode can determine the node’s state based on the parents’
status, TestParentSetNode fires the Unreachable trigger or refreshes the node’s update time.

The Unreachable trigger:
m Transitions the alarm to an Unreachable state

m Calls the SetNodeStatusUnReachable Perl subroutine (see TestParentStatus Perl Subroutine on
page 404) to update the status so that NerveCenter can evaluate the states of the children of this
node, if there are any, accurately

Perl Subroutines

The new downstream alarm suppression behavior model uses several Perl subroutines to store parent-
child relationships and maintain node statuses. This section includes descriptions of the following Perl
subroutines:

m SS_IcmpError Perl Subroutine below
m SetNodeStatus Perl Subroutines on the facing page
m TestParentStatus Perl Subroutine on page 404

m TestParentSetNode Perl Subroutine on page 407

SS_IcmpError Perl Subroutine

The ICMP_ERROR transition calls this Perl subroutine to evaluate the error and determine whether or not
it indicates that the node is unreachable. If the ICMP error is Port Unreachable, the node is up and
reachable. It is assumed that other ICMP errors indicate an unreachable node. This assumption may be
incorrect depending on the behavior of your network. To include other ICMP errors that indicate that the
node is unreachable, modify this Perl subroutine.

my S$Type = VbValue(0);
my $Code = VbvValue(1);
if($Type == 3 && S$Code ==)
{
FireTrigger(“SS PortUnreach”);
}
else
{
Modify this else to eliminate other types of
ICMP errors that are not indicative of an
unreachable node. The assumption is that if
SS IcmpError is fired, we are being told, by

P

the network, that the node is unreachable.
FireTrigger (“SS_ IcmpError”);

402 Designing and Managing Behavior NerveCenter 6.2
Models

Understanding the Technical Details

SetNodeStatus Perl Subroutines

For the DwnStrmSnmpStatus and DwnStrmlcmpStatus alarms, all state transitions—except transitions
from Error to Testing—call one of the following Perl subroutines:

m SetNodeStatusTesting

m SetNodeStatusDown

m SetNodeStatusUnreachable

m SetNodeStatusUp
These Perl subroutines update the node status so the node’s children can accurately update their
statuses based on the node’s status.

SetNodeStatusTesting

my SReturn;
SReturn = NC::SetNodeStatus ($NodeName, "Testing”) ;
#If SReturn = 0, operation failed

SetNodeStatusDown

my SReturn;
SReturn = NC::SetNodeStatus ($SNodeName, “Down”) ;
#If SReturn = 0, operation failed

SetNodeStatusUnreachable

my SReturn;
SReturn = NC: :SetNodeStatus ($NodeName, “Unreachable”) ;
#If SReturn = 0, operation failed

SetNodeStatusUp

my SReturn;
SReturn = NC::SetNodeStatus ($SNodeName, "Up”) ;
#If S$Return = 0, operation failed

NerveCenter 6.2 Designing and Managing Behavior 403
Models

Downstream Alarm Suppression

TestParentStatus Perl Subroutine

For the DwnStrmSnmpStatus and DwnStrmlcmpStatus alarms, if a node is in a Testing state, the
ERROR trigger is fired every time the node is polled and doesn’t respond. Each resulting ERROR
transition calls the TestParentStatus Perl subroutine.

The TestParentStatus Perl subroutine tests the parent node status and determines the status of the node
by doing the following:

m |f the node has parents, TestParentStatus evaluates each parent’s last update time. Based on the
following rules, TestParentStatus sets a flag (TriggerFlag) that determines what trigger, if any,
should be fired.

o If no parents have an update time more recent than the node’s update time, then TriggerFlag is
set to Testing.

o If at least one parent has a more recent update time but is not up, the flag is set to Testing.

o |f at least one parent has a more recent update time and is up, the flag is set to Down,
regardless of the status or time of last update of any other parent.

o If all parents have more recent update times and no parent is up or in testing, the flag is set to
Unreachable.

m If the node has no parents, TriggerFlag is set to Down.

If TriggerFlag is set to Testing, TestParentStatus does nothing because TestParentStatus must have
more information to make an accurate decision. If the alarm should be in another state, TestParentStatus
fires the appropriate trigger to transition the node into that state.

The code for this subroutine follows:

The purpose of this subroutine is to test the parent
node status and fire the appropriate trigger to take the
alarm to either down or unreachable. You must make sure
that all parents are being monitored with the status

H= %k 4 3

alarms.
use NC;

my $NodeUpdateTime; # Last time node status was updated

my S$LastNodeStatus; # Last node status

my @Parents = (); # Array of parents

my S$SParent; # Parent Node

my $ParentUpdateTime; # Last time parent node status was updated
my $ParentStatus; # Last parent status

my $TriggerFlag = “NotSet”;

my $ParentNotUpdated = 0; # Remember if we have any parents not
updated

#Define all triggers that can be fired
DefineTrigger ('UnReachable') ;
DefineTrigger ('Down') ;

DefineTrigger ('Testing');

Get the last node status and update time for this node
($LastNodeStatus, $NodeUpdateTime) = NC::GetNodeStatus ($NodeName) ;

404 Designing and Managing Behavior NerveCenter 6.2
Models

Understanding the Technical Details

Get the array of parents for this node

@Parents = NC::GetParents (SNodeName) ;

if (defined($Parents[0]))

{

Test each parent, if ANY are ok, we assume the node
is reachable. Parents update time must be past the
last time the node was updated or we can't assume the

H= 4 W

status is accurate.
foreach $Parent (Q@Parents)
{
(SParentStatus, $ParentUpdateTime) = NC::GetNodeStatus
($Parent) ;
if($ParentUpdateTime >= $NodeUpdateTime)
{
Using TriggerFlag to store name of trigger to be fired. If
any
parent is found to be up, then the flag will be set to
down. If
all parents are down or unreachable, then the flag will be

set

to unreachable. If no parents are down and at least one
parent

is testing, set flag to testing. Otherwise, it will remain
not

set and we will update the node's current status and time.
Testing

handles the case where one parent is testing and another
is

unreachable. We need to make sure we do not mark the node
as

unreachable until the parent node in testing goes to some
final

state because that state could be agent down which is
treated

as up.

if((SParentStatus eqg “Down” || $ParentStatus eqg

“UnReachable”) && $TriggerFlag eq “NotSet”)

{
$TriggerFlag = “UnReachable”;

}
elsif ($ParentStatus eqg “Up”)

{
S$STriggerFlag = “Down”;

NerveCenter 6.2 Designing and Managing Behavior 405
Models

Downstream Alarm Suppression

elsif ($ParentStatus eq “Testing” && $TriggerFlag ne “Down”

S$STriggerFlag = “Testing”;

}
else
{

Remember that we have at least one parent that hasn't been
updated.

S$ParentNotUpdated = 1;

}

}

else

{
If no parents, assume node is down.
$STriggerFlag = “Down”;

}

If I have at least one parent not updated and I do not have
any Up parents, Set TriggerFlag to testing.
if($ParentNotUpdated && $TriggerFlag ne “Down”)
{
$TriggerFlag = “Testing”;
}

if($TriggerFlag ne “Testing”)
{
Fire trigger if node's status should change.
if($TriggerFlag ne $LastNodeStatus)
{
Fire trigger
FireTrigger ($TriggerFlag);

406 Designing and Managing Behavior NerveCenter 6.2
Models

Understanding the Technical Details

TestParentSetNode Perl Subroutine

For the DwnStrmSnmpStatus and DwnStrmlcmpStatus alarms, if an alarm is in a DeviceDown or
Unreachable state, the ERROR trigger is fired every time the node is polled and doesn’t respond. Each
resulting ERROR transition calls the TestParentSetNode Perl subroutine.

The TestParentSetNode Perl subroutine tests the parent node status and determines the status of the
node by doing the following:

m [f the node has parents, TestParentSetNode evaluates each parent’s last update time. Based on
the following rules, TestParentSetNode sets a flag (TriggerFlag) that determines what trigger, if
any, should be fired.

o If no parents have an update time more recent than the node’s update time, then TriggerFlag is
set to Testing.

o If at least one parent has a more recent update time but is not up, the flag is set to Testing.

o |f at least one parent has a more recent update time and is up, the flag is set to Down,
regardless of the status or time of last update of any other parent.

o If all parents have more recent update times and no parent is up or in testing, the flag is set to
Unreachable.

m If the node has no parents, TriggerFlag is set to Down.

If TriggerFlag is set to Testing, TestParentSetNode does nothing because TestParentSetNode must
have more information to make an accurate decision. If the alarm should be in another state,
TestParentSetNode fires the appropriate trigger to transition the alarm into that state. If the alarm is
already in the correct state, TestParentSetNode just refreshes the node update time so the node’s
children can accurately update their statuses based on the node’s status.

The code for this subroutine follows:

The purpose of this subroutine is to test the parent
node status and, if the node is not in a terminal state
but should be, fire a trigger to make it so. If the node
is already in the correct state, just refresh the node
update time. You must make sure that all parents are

S o = S 3

being monitored with the status alarms.
use NC;

my S$NodeUpdateTime;
my SLastNodeStatus;

Last time node status was updated
#
my @Parents = (); # Array of parents
#
#

Last node status
my S$Parent; Parent Node
my S$ParentUpdateTime; Last time parent node status was updated
my S$ParentStatus; # Last parent status

my $TriggerFlag = “NotSet”;

my $ParentNotUpdated = 0; # Remember if we have any parents not
updated

#Define all triggers that can be fired

DefineTrigger ('UnReachable');

DefineTrigger ('Down') ;

NerveCenter 6.2 Designing and Managing Behavior 407
Models

Downstream Alarm Suppression

DefineTrigger ('Testing');

Get the last node status and update time for this node
(SLastNodeStatus, $NodeUpdateTime) = NC::GetNodeStatus (SNodeName) ;
Get the array of parents for this node

@Parents = NC::GetParents ($SNodeName) ;

if(defined($Parents[0]))

{

Test each parent, if any are ok, we assume the node

is reachable. Parents update time must be past the

last time the node was updated or we can't assume the

P

status 1is accurate.
foreach $Parent (Q@Parents)
{
(SParentStatus, SParentUpdateTime) = NC::GetNodeStatus
($Parent) ;
if(SParentUpdateTime >= $NodeUpdateTime)
{
Using TriggerFlag to store name of trigger to be fired. If
any
parent is found to be up, then the flag will be set to
down. If
all parents are down or unreachable, then the flag will be

set

to unreachable. If no parents are down and at least one
parent

1s testing, set flag to testing. Otherwise, it will remain
not

set and we will update the node's current status and time.
Testing

handles the case where one parent is testing and another
is

unreachable. We need to make sure we do not mark the node
as

unreachable until the parent node in testing goes to some
final

state because that state could be agent down which is
treated

as up.

if((SParentStatus eq “Down” || S$ParentStatus eq

“UnReachable”) && $TriggerFlag eq “NotSet”)

{
STriggerFlag = “UnReachable”;

}
elsif (SParentStatus eq “Up”)

{
$STriggerFlag = “Down”;

408 Designing and Managing Behavior NerveCenter 6.2
Models

Understanding the Technical Details

elsif ($ParentStatus eq “Testing” && $TriggerFlag ne “Down”

S$STriggerFlag = “Testing”;

}
else
{

Remember that we have at least one parent that hasn't been
updated.

$SParentNotUpdated = 1;

}

}

else

{
Node does not have parents so assume down
$STriggerFlag = “Down”;

}

If I have at least one parent not updated and I do not have
any up parents, Set TriggerFlag to testing.
if($ParentNotUpdated && $TriggerFlag ne “Down”)
{
STriggerFlag = “Testing”;
}
if($TriggerFlag ne “Testing”)
{
Fire trigger if node's status should change. Otherwise
refresh the time for the node's current state.
if($TriggerFlag ne $LastNodeStatus)
{
Fire trigger
FireTrigger ($TriggerFlag);
}
else
{
Refresh node status
NC: :SetNodeStatus ($SNodeName, $LastNodeStatus) ;

NerveCenter 6.2 Designing and Managing Behavior 409
Models

m Downstream Alarm Suppression

410 Designing and Managing Behavior NerveCenter 6.2
Models

Error Messages

This appendix explains the error and information messages that you might encounter while using
NerveCenter. Possible causes and solutions for the errors are included.

All NerveCenter error messages are written to the host syslog facility. To view messages in the syslog,
read the file /var/adm/messages with a text editor or a command such as more.

Each error description is formatted in the following way:
Category error message number: message: [code number]

Each message is assigned a category, which has a corresponding number. The line listed in the log uses
a number to indicate a category, as follows:

Table 31: Error Message Categories

Number Category

1 NC Server Manager

NC Alarm Manager

NC Trap Manager
NC Poll Manager

NC Action Manager

NC Protocol Manager

NC PA Resync Manager

NC Service

Ol | N[O o |~ O |DN

NC Inform NerveCenter Manager

-—
—_

NC LogToFile Manager

12 NC FlatFile Manager
13 NC Alarm Filter Manager
14 NC Deserialize Manager
16 NC DB Manager
NerveCenter 6.2 Designing and Managing Behavior 411

Models

“ Error Messages

The error message number indicates the error type. The error numbers are organized as follows:

Table 32: Error Message Numbers

Number Range Type of Error

0-999 Users should call customer support.
1000-1999 User can resolve the problem.
2000-2999 User is warned of an event.

3000-3999 User is given an informational message.

The error messages are explained in the following sections:

"Alarm Filter Manager Error Messages" on the facing page
"Deserialize Manager Error Messages" on the facing page
"Flatfile Error Messages" on the facing page

"Inform NerveCenter Error Messages" on the facing page
"LogToFile Manager Error Messages" on page 414

"Poll Manager Error Messages" on page 414

"Protocol Manager Error Messages" on page 414

"PA Resync Manager Error Messages" on page 415
"Server Manager Error Messages" on page 417

"Trap Manager Error Messages" on page 419

"NerveCenter installation Error Messages" on page 420

412

Designing and Managing Behavior NerveCenter 6.2
Models

Alarm Filter Manager Error Messages

Alarm Filter Manager Error Messages

Table 33: Alarm Filter Manager Error Messages

Error Resolution

1 Lookup failed on line number value in File value.

3001 Alarm Filter Manager Initialization successfully finished

Deserialize Manager Error Messages

Table 34: Deserialize Manager Error Messages

Error Resolution

1 Lookup failed on line number value in File value.

3001 | Deserialize Thread Manager Initialization successfully finished

Flatfile Error Messages

Table 35: Flatfile Manager Error Messages

Error Resolution
1 Lookup failed on line number value in File value.
3001 Flat File Initialization successfully finished

Inform NerveCenter Error Messages

Table 36: Inform NerveCenter Manager Error Messages

Error Resolution
1 Lookup failed on line number value in File value.
3001 InformNC Manager Initialization successfully finished
NerveCenter 6.2 Designing and Managing Behavior 413

Models

“ Error Messages

LogToFile Manager Error Messages

Table 37: Log to File Manager Error Messages
#

Error

1 Lookup failed on line number value in File value.

Resolution

3001 LogToFile Manager Initialization successfully finished

Poll Manager Error Messages

Table 38: Poll Manager Error Messages

3001 | Poll Manager Initialization successfully finished

3002 | CPollManagerWnd:OnPollOnOff, PreCompild of PollEvent with Poll Id %ld failed

Protocol Manager Error Messages

Table 39: Protocol Manager Error Messages

Error Resolution
1 Building copy of node list failed. N/A
2 Building copy of poll property list failed. N/A
3 I.nitialization of protocol methods failed N/A
4 Initialization of ping socket failed. N/A
5 Creation of SNMP socket failed, socket error N/A
code: %d
6 Error in ping socket: %s N/A
7 Error in ping socket: create socket failed. N/A
8 Error in ping socket: async select failed. N/A

1000 | Looking for the %s key in the configuration
settings.

Use the Administrator to enter the SNMP
values in the configuration settings.

1001 | Ncuser user ID is not found.

Add ncuser user ID to your system.

3000 | Initialization successfully finished.

N/A

3001 | Invalid value in configuration settings for SNMP
retry interval, using default of 10 seconds.

Use the Administrator to enter an SNMP
retry interval.

414 Designing and Managing Behavior NerveCenter 6.2

Models

PA Resync Manager Error Messages “

Error Resolution

3002 | Invalid value in configuration settings for number of | Use the Administrator to enter a number of
SNMP retries, using default of 3 retries. SNMP retries.

3003 | Invalid value in configuration settings for default Use the Administrator to enter the default
SNMP port, using default of 161. SNMP port number.

PA Resync Manager Error Messages

Table 40: PA Resync Manager Error Messages

Error Resolution

1 Error getting local host name for | N/A
encoding resync request, socket
error code: %d

2 Encoding resync request failed | N/A

3 Sending resync request failed N/A
with zero bytes sent

4 Sending resync request failed: N/A
Y%s

5 Memory allocation error, trying to | N/A
notify of connection status

6 Memory allocation error, creating | N/A
node list
7 Memory allocation error, creating | N/A

aresync node

8 Parent status not sent during
resync

10 Parents not computed during
resync with map host. Check
OVPA. OVPA database must
have nc host node.

500 | Socket Error: (%d)

1000 | Error looking for the %s key in Use the Administrator to enter configuration settings.
the NerveCenter configuration
settings

1001 | Attempt to connect to %s on port | Make sure the platform host is up and running and that the
%d failed: %s name exists in the hosts file.

NerveCenter 6.2 Designing and Managing Behavior 415
Models

“ Error Messages

#
1002

Error

Resync connection attempt
failed: %d

Resolution

Make sure the platform host is up and the platform adapter is
running.

1500

The connection to % was closed

1501

Send failed with zero bytes sent

1505

%s. The address is already in
use

Make sure you are not running two instances of the same
application on the same machine.

1506

%s. The connection was aborted
due to timeout or other failure

Make sure the physical network connections are present.

1507

%s. The attempt to connect was
refused

Make sure the server is running on the remote host.

1508

%s. The connection was reset
by the remote side

Make sure the remote peer is up and running.

1509

%s. A destination address is
required

A destination address or host name is required.

1510

%s. The remote host cannot be
reached

Make sure the routers are working properly.

1511

%s. Too many open files

Close any open files.

1512

%s. The network subsystem is
down

Reboot the machine.

1513

%s. The network dropped the
connection

Make sure the peer is running and the network connections
are working.

1514

%s. No buffer space is available

This might be because you are running several applications,
or an application is not releasing resources.

1515

%s. The network cannot be
reached from this host at this
time

Make sure the routers are functioning properly.

1516

%s. Attempt to connect timed
out without establishing a
connection

Make sure the machine is running and on the network.

1517

%s. The host cannot be found

Make sure you can ping the host, check you hosts file or
DNS server.

1518

The network subsystem is
unavailable

Make sure the network services are started on machine.

416

Designing and Managing Behavior

NerveCenter 6.2
Models

Server Manager Error Messages “

Error Resolution

1519 | %s. Invalid host name specified | The host name cannot be resolved to an IP address. Enter

for destination the name to the hosts file or DNS server.
1520 | The specified address in not Make sure the host name is not zero. Try pinging the host.
available
3000 | initialization successfully N/A
finished
3001 | Node resync from map host was | If you are trying to disable a connection to the platform
not requested because either adapter, then this message is OK. If you want to be
host name or port number is connected to the platform adapter, then use the Administrator
missing to check the map host settings.
3500 | Connection to %s was N/A
successful

Server Manager Error Messages

Table 41: Server Manager Error Messages

Error Resolution
2 Perl create failed. N/A
3 Initialization of value manager thread failed. N/A
4 Failed to restore MibDirectory in configuration N/A

settings.

o

Failed to open configuration settings while trying | N/A
to restore mib information.

6 Discrepancy in data. File: SERVER_CS.CPP, | N/A
Line: value.

10 Conflict in data. File: SERVER_CS.CPP, Line: | N/A
value.

11 Internal Error. File: SERVER_CS.CPP, Line: N/A
value.

20 Cannot read configuration settings value: Bind. | N/A

21 Cannot connect to Tcpip configuration settings | N/A

information.
22 Cannot read configuration settings value: N/A
IPAddress.
NerveCenter 6.2 Designing and Managing Behavior 417

Models

“ Error Messages

Error Resolution

23 Couldn't find value in map. N/A

24 Error while reading database. Poll/Mask:value N/A

uses a simple trigger that doesn't exist in
database.

25 Please report error number value to technical N/A

support.

26 User validation failed: Unable to communicate ~

with ncsecurity process :value.

1002 | Initialization failed, cannot find ncperl.pl. Check NCPerl.pl location.

1003 | Failed to open MIB: value. Check MIB location.

1004 | Failed to parse MIB. Invalid MIB. Check configuration to see if the
correct MIB is specified.

1010 | Failed to validate poll: value. The poll will be Check the poll condition using the Client

turned off. Application.

1100 | value (database error). Try to resolve using the message. If not, call
support.

1103 | Version table validation failed. NC_Version table | Upgrade the NerveCenter database.

doesn't exist in database.
1200 | Failed to open configuration settings while trying | Use the NerveCenter Administrator to check
to restore mib information. the configuration settings. Invalid key is
likely.

1202 | Cannot connect to configuration settings. Use the NerveCenter Administrator to check
the configuration settings. Invalid key is
likely.

1203 | Cannot open key value. Use the NerveCenter Administrator to check
the configuration settings.

1204 | Cannot add value value. Use the NerveCenter Administrator to check
the configuration settings. Invalid key is
likely.

1205 | Cannot read configuration settings value in Use the NerveCenter Administrator to check

MapSubNets key. the configuration settings. Invalid key is
likely.

1206 | Invalid configuration settings Entry for the value | Only Manual and Auto are allowed. Check for

Method in the Platform key. case.

1207 | Cannot read configuration settings value: value | Use the NerveCenter Administrator to check
the configuration settings. Invalid key is
likely.

418

Designing and Managing Behavior

Models

NerveCenter 6.2

Trap Manager Error Messages “

Error Resolution

1208 | Cannot write configuration settings Value: value | Use the NerveCenter Administrator to check
the configuration settings. Invalid key is

likely.

1300 | value (Import behavior/database error). Try to resolve using the message. If not, call -
support.

1313 | Server alarm instance maximum exceeded. Restart server.

Please restart Server.

3001 | Request to delete the node value failed because | N/A
the node doesn't exist.

3002 | Failed to find socket in server's map. Line:
value.

3003 | Exiting due to a SIGTERM signal.

3004 | Primary thread initialization successful.

Trap Manager Error Messages

Table 42: Trap Manager Error Messages

Error Resolution

1 Error in TrapManagerWnd::Initialize - failed to
create GetHostByAddr thread.

2 Error in TrapManagerWnd::LaunchTrapper - failed
to create trapper process.

3 Errorin
TrapManagerWnd::CreateCheckTrapperThread -
failed to create new thread.

8 Error in TrapManagerWnd::Initialize - Failed to
create trap stream socket.

9 Error in TrapManagerWnd::Initialize - Failed to
listen on trap stream socket.

10 Error in TrapManagerWnd::OnTraceTraps - Failed
to create trace file for traps.

1001 | CTrapManagerWnd::OnTrapExist - gethostbyname
from trap data with snmptrap failed for value.

1003 | CTrapManagerWnd::OnlnvalidSignature - Errorin | Check for consistent version numbers of
receiving data on NC socket. trapper and NerveCenter executables.

NerveCenter 6.2 Designing and Managing Behavior 419
Models

“ Error Messages

Error

2001 | MS Trap service threw exception in GetTrap.

Resolution

Make sure you aren't making SNMP get
requests to port 162.

2002 | Error processing trap data.

Make sure you aren't making SNMP get
requests to port 162.

3001 | Trap Manager Initialization successfully finished.

3002 | Check Trapper—Trapper process died. restarting

Trapper.

NerveCenter installation Error Messages

Table 43: NerveCenter Installation Error Messages (UNIX)

Error

Space under dirname is
INSUFFICIENT toinstall
LogMatrix NerveCenter

Resolution

Free up space in the file system by removing files, or choose
another place for installation.

The directory dirmame must reside
on a local disk

The directory you specified for NerveCenter installation is on a
disk that is not on the local file system. Pick a new directory or re-
mount the disk.

Write permission is required by
root for dirmame directory

The directory you specified for NerveCenter installation does not
have write permission for root. Choose another directory or change
the permissions.

Please create the desired
destination directory for
NerveCenter and re-run the
installation script

The directory you specified for NerveCenter installation does not
exist. Choose another directory or create the original.

Invalid mount point

The installation script could not find the CD-ROM drive and
prompted you for its location. The path you specified was not valid.
Verify that the drive exists, is mounted, and is configured
correctly.

ProcessName is running on the
system. Please exit from (or kill)
processName process.

The installation script found that the nervectr or ovw process was
running. Exit from or kill the process and re-run the installation
script.

These processes must be
stopped before NerveCenter can
be installed. Please kill these
processes and re-run the
installation script.

The installation script found processes that need to be killed before
installation, you were prompted to stop them, and you said no. You
must manually exit from or kill the processes and re-run the
installation script.

420

Designing and Managing Behavior

NerveCenter 6.2
Models

NerveCenter installation Error Messages

Error Resolution

hostname is not a valid host name

The host that you provided to the script is not a valid host. Check
the name of the host (capitalization, spelling, and so on) and try
again.

| don’t know how to install on this
architecture

Installation is supported for Solaris. The script issues this
message if attempting to install on an architecture that is not in this
set.

Can't cd to installation
path/userfiles

Make sure the directory exists and has appropriate permissions.

Can’t open hostname.conf

The script couldn’t create the file or couldn’t open an existing
configuration file. Check installation_path/userfiles to make sure
that root has permission to write in this directory, that
hostname.conf has read permission set, if it exists, and that
localhost.conf exists and has read permission set.

Can'’t create hostname.ncdb
Can'’t create hostname.node

The script was attempting to create the indicated file by copying
data from another file. Check installation_path/userfiles to make
sure that root has permission to write in this directory, and that
localhost.ext exists and has read permission set.

Can’t open /etc/rc
Couldn’t re-create /etc/rc
Couldn’t modify /etc/rc

The script couldn’t modify /etc/rc to call the NerveCenter rc script.
Edit the file and add a line that executes installation _
path/bin/rc.openservice. There’s no need to rerun the installation
script after this correction.

Can't append to /etc/rc.local

The script couldn’t modify /etc/rc.local to call the NerveCenter rc
script. Edit the file and add a line that executes installation
path/bin/rc.openservice. There’s no need to rerun the installation
script after this correction.

Can'’t create
/etc/rc2.d/K94ncservice on

The script couldn’t create the NerveCenter rc script
letc/rc2.d/K94ncservice on Solaris.

Solaris Copy installation _path/bin/rc.openservice to
/etc/rc2.d//K94ncservice.
There’s no need to rerun the installation script after this correction.
NerveCenter 6.2 Designing and Managing Behavior 421

Models

“ Error Messages

Error Resolution

An error occurred in trying to The script was attempting to update system services and failed.
contact the Server “hostname”. As | Correct the specific error (perhaps the host name or file name was
a result, the information that you | entered incorrectly) and rerun the script. If the errorisn’t easily
have specified cannot be used to | corrected, you can edit /etc/services yourself. Make sure that the

complete this NIS update. following lines are included in the file:
(LjJ ;:Sbrl]c’at Z)X?;;)'dlfy filename. 1t SNMP 161/udp
i SNMP-trap 162/ud
Unable to modify filename. File P P
sizeis 0! If you're running NIS, be sure to make these changes on the NIS

server, change to the NIS directory, and run make services.

422 Designing and Managing Behavior NerveCenter 6.2
Models

Index

-A -

Action Router
alarm action 269
creating arule 318

Action Router alarm action 15,
269

Action Router Rule Definition
window 317, 319

Action Router Rule List
window 316

Action Router rules

conditions, creating 318

Counter() 299

deleting 337

functions 321

In() 179

listing, existing 316

rule actions, defining 323

variables, NerveCenter 301
Action Router tool 15, 269
adding nodes

IP Lookup 95
Administrator, NerveCenter 19
alarm-instance filters 62
alarm action 249

associating with a
transition 249

alarm actions 12, 18, 29, 269
Action Router 15, 269
Alarm Counter 271
Beep 274
Clear Trigger 275
Command 277, 301
Delete Node 278
EventLog 279

Fire Trigger 280
FireTrigger 14, 280
Forward Trap 284
Inform NerveCenter 286

Inform
Netcool/OMNIbus
289

Inform OpenView 286
Inform Platform 289
Inform variable bindings 234
Log to File 291
logging-Event Log 279
logging-Log to File 291
mailing-SMTP mail 311
Notes 292
Perl Subroutine 294-295, 301
send SMS 304
Send SMS 304
Send Trap 305, 308
Set Attribute 155, 308
SMTP Mail 311
SNMP Set 312-313
Alarm Counter action 271
Alarm Counter Action dialog 273
Alarm Counter alarm action 271
alarm definition
associating actions 249
defining a state 247, 249
severity 346

Alarm Definition List window 86,
90, 238, 260, 354, 356

Alarm Definition window 91,
239, 242, 260

Alarm Filter error messages 413
alarm scope 42, 244
alarm severity

filtering 70

Alarm Summary window
creating 241
defining 247, 249
entering notes 254

exporting behavior
models 353, 357

filtering 66, 68
severity 346

alarms 17, 27
correlation expressions 261
defining 241
deleting 337
documenting 254
enabling 259
examples 29, 50
filtering by IP range 63
filtering rules 79
IF-IfFramePVC 330
IF-IfStatus 327
IfLoad state diagram 51
interface-type 329
IPSweep, enabling 90
listing 238
monitoring loads 29
notes 254

performing actions
conditionally 315

property groups,
changing 338

scope, changing 339

state diagrams 29, 50

TcpRetransMon 50

using 237

assigning
property groups to

nodes 133, 143-145,
147, 155, 158

NerveCenter 6.2

Designing and Managing Behavior

Models

423

n i

AssignProperty Group()
function 133, 147, 175

associating

actions with transitions 251
attributes

nodes, changing 342

polls 37

severites used by
NerveCenter 345

severities 344

trap masks 40

triggers 39

variable bindings 205
authentication 102, 105

authentication password 102,
105

Authentication Protocol for
SNMP v3 Nodes 105

auto-classification 99, 107, 114-
115

-B -

base objects 205
Beep Action dialog 274
Beep alarm action 274
behavior model
exporting 353, 357
importing 364-365
IPSweep 85-86
behavior models 6, 17, 47
creating 47
creating multi-alarm 325
definition 27
design 27
diagram 47
Discovery 85
example 50
exporting 357
exporting to files 355
exporting to other

servers 353
files 355, 357, 364
importing 364
IPSweep 84, 90
multi-alarm 281, 325
predefined 18, 27

boolean expression, creating
alarm from 261

Boolean functions 261

built-in triggers 220, 225
CANNOT_SEND 223, 225
ERROR 220-223, 225
example 228
firing sequence 223
how NerveCenter fires 220
ICMP errors 221, 223-224

ICMP_ERROR 221-223,
225

ICMP_TIMEOUT 221, 223,
225

ICMP_UNKNOWN _
ERROR 225

INFORM_CONNECTION _
DOWN 223

INFORM_CONNECTION _
UP 223

INFORMS_LOST 223
list 225

list of 225

matching errors 224

NET_UNREACHABLE 221-
222,225

NODE_
UNREACHABLE
221-222, 226

order fired 223

PORT _
UNREACHABLE
221-222, 226

RESPONSE 223, 226

SNMP_
AUTHORIZATIONER

R 226
SNMP_BADVALUE 226

SNMP_DECRYPTION_
ERROR 226

SNMP_ENDOFTABLE 226
SNMP_ERROR 220, 223
SNMP_GENERR 226

SNMP_
NOSUCHNAME 226

SNMP_NOT_IN_TIME_
WINDOW 227

SNMP_READONLY 227

SNMP_TIMEOUT 220-221,
223,227

SNMP_TOOBIG 227

SNMP_UNAVAILABLE_
CONTEXT 227

SNMP_UNKNOWN_
CONTEXT 227

SNMP_UNKNOWN_
ENGINEID 227

SNMP_UNKNOWN_
USERNAME 227

SNMP_UNSUPPORTED_
SEC_LEVEL 227

SNMP_WRONG_
DIGEST 227

UNKNOWN_ERROR 227

-C -
CANNOT_SEND built-in
trigger 223, 225

CaseContainsString() 182
CaseContainsWord() 182
categorizing nodes 160
changing

alarm property 338

alarm scope 339

node attributes 342

node property group 339

object property 338

424

Designing and Managing Behavior

Models

NerveCenter 6.2

Index

object property group 338

poll property 338

properties 338

property groups 339

state icons size 248

transition icon sizes 252
classification 107

classifying SNMP version for
all nodes 110

classifying SNMP version for
one or more
nodes 109

confirming the SNMP version
foranode 111

how NerveCenter classifies
nodes 115

when NerveCenter classifies
nodes 114

classification of SNMP
version 99, 107

all nodes manually 110

confirming the version of a
node 111

one or more nodes
manually 109

Clear Trigger Action dialog 276
Clear Trigger alarm action 275
CLI 22
client

changing server port 61
Client

configuring IPSweep 86
Client, NerveCenter 21
Code (ICMP field) 221-222
colors, creating custom 350
Command Action dialog 89, 277
Command alarm action 277

variables 301

variables, NerveCenter 301

command line interface 22

conditional alarm actions 269,
315

conditions
Action Router rules 318
finding sequences 10
finding set of network 9
network, detecting 6, 28
persistent network 8
responding to network 12

conditions, tracking network 28

configuring SNMP v3 nodes 99,
102, 105, 111

ContainsString() 182
ContainsWord() 182
context 102, 105
copying

objects 334-335

property groups 335
corrective actions 14
correlating conditions 7

correlation expression list
window 262, 265

correlation expression notes
window 268

Correlation expression
overview 261

correlation expressions
about 261
copying 265
creating 262
creating alarm from 266
notes 268

Counter() function 299

create alarm using correlation
expression window 266

creating

Action Router rule
conditions 318

behavior models 47
colors, custom 350

multi-alarm behavior
models 325

poll conditions 166-167
properties 132

property groups, based on
existing 134

property groups, based on
MIBs 135

property groups,
manually 138

severities 348

trap masks 230

trigger functions 202

-D-

data sets
nodes 30
polls 37
severities 344
trap masks 39
triggers 39
data sources, other 219
Database Wizard

populating the node data
table 86

database, NerveCenter 16
default severities 346
DefineTrigger() function 175
DefineTrigger() function 175
defining
Action Router rule
conditions 319

alarms 241

node sets 6

nodes 84, 99, 117
nodes, manually 92

NerveCenter 6.2

Designing and Managing Behavior

Models

425

n i

Perl subroutines 295
polls 164
properties 129
property groups 129
rule actions 323
states 245, 247
transitions 249-250
trap masks 198
Delete Node alarm action 278
deleting
Action Router rules 337
alarms 337
nodes 337
objects 336

OID to property group
mappings 336

OpC masks 337

Perl subroutines 337

polls 337

property groups 336

severities 336

states 249

transitions 254

trap masks 337
delta() 170

Deserialize Manager error
messages 413

Destination Address (ICMP
field) 221, 224

detecting condition
persistence 8

detecting conditions 6, 28
digest keys 102, 105, 119
disconnecting 83

discovering nodes 84-85, 99,
117

customize IPSweep 86
Discovery behavior model 85
discovery of SNMP v3 agents

configuring NerveCenter 86

documentation
conventions 3
feedback 3
documenting
alarms 254
Perl subroutines 296
polls 186-187, 190

downstream alarm
suppression 300

DumpParentsToFile() 300

-E -
edit correlation expression

window 263, 265

elapsed (poll condition
function) 170

enabling
alarms 259
IPSweep alarm 90
objects 333
polls 191
trap masks 216

end_poll (poll condition
function) 171

ERROR built-in trigger 220-223,
225

error messages 220, 225
Alarm Filter 413
Deserialize Manager 413
Flatfile Managerr 413
ICMP 221, 223-224
Inform Product Manager 413
LogToFile Manager 414
PA Resync Manager 415
Poll Manager 414
Protocol Manager 414
Server Manager 417
SNMP 220, 223-224
Trap Manager 419
UNIX installations 420

user interface 411
error status

SNMP v3 operations 124
Event Log Action dialog 279
Event Log alarm action 279
EventLog alarm action 279
Expanded Color window 350

Expanded Rule Condition
page 322

Export Model/Object dialog 354,
356

Export Objects and Nodes
dialog 358, 361

exporting 353
behavior models 353, 357
behavior models, to files 355

behavior models, to other
servers 353

individual NerveCenter
objects 357, 360, 362

node relationships to
files 300

nodes 353

nodes to afile 360

nodes to other servers 357
objects 353, 362

objects to afile 360

objects to other servers 357
relationships node 300

-F-

filter 63, 66, 68

associating with server 77
filtering alarms

by IP range 63

by property group 74

by severity 70

IP range 66, 68

finding set of network
conditions 9

426

Designing and Managing Behavior

Models

NerveCenter 6.2

Index

Fire Trigger Action dialog 88,
281

Fire Trigger alarm action 280
FireTrigger alarm action 14
FireTrigger() function 177
FireTrigger() function 177

Flatfile Manager error
messages 413

Forward Trap Action dialog 285
Forward Trap alarm action 284
functions 297
Action Router rules 321
AssignPropertyGroup 175

AssignPropertyGroup() 133,
147

CaseContainsString() 182
CaseContainsWord() 182
ContainsString() 182
ContainsWord() 182
Counter() 299
DefineTrigger 175
DefineTrigger() 175
DumpParentsToFile() 300
Fire Trigger 177
FireTrigger() 177

In 179

In() 179
LoadParentsFromFile() 300

node relationship
functions 300

Perl subroutines 297
poll conditions 168

poll conditions, for 170
RemoveAllParents() 300
string matching 181
triggers 203

used in Perl subroutines 297

used in poll conditions 168

used in trap mask trigger
functions 203

variable bindings 204

-G-

getbulk 108
GetRequest 220, 224

-H -

heartbeat messaging 80
deactivating 82
interval 81

-1 -

ICMP error messages 221, 223-
224

ICMP fields 221-222, 224

ICMP requests 221, 224

ICMP_ERROR built-in
trigger 221-223, 225

ICMP_TIMEOUT built-in
trigger 221, 223, 225

ICMP_UNKNOWN_ERROR
built-in trigger 225

IF-IfColdWarmStart alarm 331
IF-IfFramePVC alarm 330
IF-IfNmDemand alarm 332
IF-IfStatus alarm 327

IF-SelectType Perl
subroutine 328

IfUpDownStatusByType
behavior model 325

Import Behavior Model
dialog 365

importing 364
behavior model files 364
behavior models 364

node files 364

node relationships from
files 300

nodes 353
object files 364
objects 353
relationships node 300
using ImportUtil 365
ImportUtil.exe 365
In(') function 179
in() function 179
Inform 290, 346
Inform Action dialog 288-289
Inform alarm action 286, 289
trap variable bindings 234
variable bindings 234

Inform Platform alarm
action 289

Inform Product Manager error
messages 413

INFORM_CONNECTION_
DOWN built-in trigger 223

INFORM_CONNECTION_UP
built-in trigger 223

INFORMS_LOST built-in
trigger 223

instances 205

integration with network
management
platforms 24

interface-type alarms 329
IP fields 224
IP filters 63

examples 68

subnet filter rules 66
IP Lookup 95
IPSweep 85-86
IPSweep alarm

definition 87

NerveCenter 6.2

Designing and Managing Behavior

Models

427

n i

enabling 90

modifying 86

state diagram 87
IPSweep behavior model 84
ipsweep.exe 63

-J-

jump_to (poll condition
function) 171

-K -

keys 102, 105
digest 119

-L-

levels of severities 345
listing
Action Router rules,
existing 316
alarms 238
polls 162
properties 129, 131
property groups 129-130
trap masks 193, 196
LoadParentsFromFile() 300

loads alarm, monitoring
interface 29

Log to Database alarm action
variables, NerveCenter 301
Log to File Action dialog 291
Log to File alarm action 291
variables, NerveCenter 301
logging 13
logging alarm data
Event Log 279
Log to File 291
logs
SNMP v3 operations 120

LogToFile Manager error
messages 414

looking for high traffic on four
interfaces 43

mail alarm actions
sending-SMTP mail 311
sending SMS 304
SMS 304
SMTP mail 311

main NerveCenter
components 15

managing NerveCenter
objects 333

mapping OIDs to property
groups 158

mask definition window 217,
231

Mask Definition window 199

Mask List window 196, 198,
216, 230

menus 182

Merge or Overwrite Property
Group window 137

MIB

sharing information 59
MIB base objects 312
MIB objects 160

MIB to property group
window 136

mod files 355, 357, 360-361, 364
modifying

IPSweep alarm 86
monitoring

interface loads alarm 29

nodes, a set of 29

viewing alarm notes 254

multi-alarm behavior
models 281, 325

multi-homed nodes 224

multiple NerveCenter
servers 229

-N -

NC AlarmCounters 179
NCContext 102, 105
NCUser 102, 105
NerveCenter
Action Router tool 15
Administrator 19
Client 21
data sources, other 219
database 16

functions for poll
conditions 170

node management 6
objects 30

Server 16

servers, multiple 24, 229
severities 343

NerveCenter built-in
triggers 220, 225

ICMP errors 221, 223-224
NerveCenter Client
starting 53

NerveCenter installation error
messages (UNIX) 420

NerveCenter user security for
SNMP v3 102, 105

NerveCenter variables 301

NET_UNREACHABLE built-in
trigger 221-222, 225

network conditions
detecting 6, 28
finding set of 9
persistent 8
responding to 12
tracking 28
network management platform

filtering by IP subnet 63, 66,
68

428

Designing and Managing Behavior

Models

NerveCenter 6.2

Index

map colors 345
sending Informs 346

network management
strategy 22

New Severity window 348

node classification 99, 107, 114-
115

all nodes manually 110

confirming the SNMP version
of anode 111

one or more nodes
manually 109

Node Definition window 93, 95,
144-145

Node List window 92, 95, 100,
103, 105, 109, 111, 144-
146, 340, 342

node relationship functions 300
node source - server status
filtering by subnet 63, 66, 68

populating the database 63,
66, 68, 86

Node status behavior models

adding to the database 85,
92

assigning property
groups 143, 158, 175

SNMP classification 107,
109-111, 114-115

SNMP settings 99, 102, 105
SNMP Test Version poll 111

NODE_UNREACHABLE built-
in trigger 221-222, 226

nodes 28, 30
assigning to property
groups 133, 143-145,
147, 155, 158

changing attributes 342
data set 30
defining sets 6

defining, manually 92
deleting 337
discovering 84, 99, 117

exporting relationships to
files 300

exporting to a file 360

exporting to other
servers 357

ICMP attributes 32-33
importing 364

importing relationships from
files 300

managing 6

monitoring a set of 29

multi-homed 224

property groups,
changing 339

relationship with poll 49

relationship with
properties 48

relationship with property
groups 48

relationships, exporting 300
relationships, importing 300

relationships, removing from
database 300

SNMP attribute 30
source 84
suppressing 340

not_present (poll condition
function) 172

notes 186, 210, 254, 292
alarms 254
Perl subroutines 296
polls 186-187, 190
Notes alarm action 292
notification 13

objects
copying 334-335
deleting 336
enabling 333
exporting to a file 360

exporting to other
servers 357

files 360-361, 364
importing 364
NerveCenter 30
properties, changing 338

property groups,
changing 338

types you can export 362
objects, database 16

OID to Property Group
dialog 159

OID to property group
mappings 158
deleting 336
OnResponse page 167
OpC masks
deleting 337
operations log 120
signing for errors 121
viewing 123
overview of NerveCenter SNMP

v3 support 99, 102, 105,
111

-P-
PA Resync Manager error

messages 415

parent child relationships,
nodes 300

password 102, 105

NerveCenter 6.2

Designing and Managing Behavior
Models

429

n i

passwords
SNMP v3 119
Perl
built-in triggers, use with 221
Counter() 299
defining subroutines 295
deleting subroutines 337
documenting 296
example 303
functions 297
In() 179
notes 296
pop-up menu 182
subroutines 151
variables, NerveCenter 301
Perl functions
AssignPropertyGroup 175
DefineTrigger 175
Fire Trigger 177
In 179
string matching 181
Perl subroutine
creating 295
defining 295

executing as an alarm
action 294

functions 297
variables 301

Perl Subroutine Action
dialog 150, 154, 294

Perl Subroutine alarm action 294

Perl Subroutine Definition
window 296

Perl Subroutine List window 295
Perl subroutines
built-in triggers 221
IF-SelectType 328
ping requests 221, 224

platform names, associated with
severities 346

poll condition 166
examples 184
functions used 168
poll condition functions 170
delta() 170
elapsed 170
end_poll 171
jump_to 171
not_present 172
present 173
previous 173
start_at 174
Poll Condition page 148
poll conditions 147
creating 166-167
DefineTrigger() 175
examples 184-186
FireTrigger() 177
functions 168, 170
In() 179
variables, NerveCenter 301
poll definition 164
copying 335
creating 164
defining 164, 166, 168, 184
deleting 337
entering notes 186
overriding node
suppression 341
poll condition 166, 168, 184
SNMP Test Version poll 111
suppressing or
unsuppressing 341
Poll Definition window 163-164,
188, 192
Poll List window 162, 164, 187,
191, 333, 341
Poll Manager error
messages 414

Poll Notes and Associations
dialog 189

Poll pop-up menu 334

polling
getbulk 108

polls 27, 37
attributes 37
built-in triggers 220
conditions, creating 167
data set 37
defining 164
deleting 337
documenting 186-187, 190
enabling 191
listing 162
notes 186-187, 190
pending list 220
ping requests 221, 224
property groups,

changing 338

relationship with nodes 49
SNMP requests 220, 224

suppressible, making 340-
341

using 161
pop-up menu for Perl 182

PORT_UNREACHABLE built-in
trigger 221-222, 226

predefined behavior models 18,
27

predefined NerveCenter
severities 346

present (poll condition
function) 173

previous (poll condition
function) 173

privacy 102, 105
privacy password 102, 105
properties 6, 28, 36
changing 338
creating 132
defining 129
filtering 139

430

Designing and Managing Behavior
Models

NerveCenter 6.2

Index

listing 131

relationship with nodes 48
Property dialog 338
property filter

about 139

creating 141

deleting 143

editing 143
property group

assigning to nodes 143, 158,
175

creating 133-135
Property Group dialog 146, 339

Property Group List
window 134-135, 138,
141, 143, 335

property groups 28, 36

assigning to nodes 133, 143-
145, 147, 155, 158

changing 338-339
copying 335
creating manually 138

creating,based on
existing 134

creating,based on MIBs 135
defining 129
deleting 336
filtering alarms 74
listing 130
property groups and
properties 36

property groups relationship with
nodes 48

Protocol Manager error
messages 414

-R-

RemoveAllParents() 300

responding to network
conditions 12

RESPONSE built-in trigger 223,
226

routing alarm actions 269
Rule Action page 323
rule actions, defining 323
rules for alarm filters 79

-S-

scope 42, 244
changing 339
Scope dialog 340
scripts See Perl 269
security 102, 105
SNMP v3 118
security for SNMP v3 102, 105

Security Level for SNMP v3
Nodes 102

Send SMS alarm action 304
Send Trap Action dialog 306
Send Trap alarm action 305, 308
Sequence Number (IP field) 224
server
associating filters 77
automatic connection 57
changing port on client 61
connecting 54
deleting 60
disconnecting from 83
manual connection 55
selecting active 60
sharing MIB information 59

Server Manager error
messages 417

Server Selection dialog 354, 359

server status

exporting behavior models
to 353

servers
alarm filtering rules 79
multiple 229

servers, multiple
NerveCenter 24

Set Attribute Action dialog 156,
310

Set Attribute alarm action 155,
308

severities 17, 344, 346
attributes 344-345

attributes used by
NerveCenter 345

creating 348

data set 344

default 346

deleting 336

levels 345

map colors in NMPs 345

platform names 346
Severity List window 348
smart polling 6

SMTP mail action dialog 304,
311

SMTP mail alarm action 311
SMTP Mail alarm action 311
SNMP

getbulk 108

SNMP error messages 220,
223-224

SNMP errors 220, 223-224
SNMP requests 220, 224
SNMP Set Action window 312
SNMP Set alarm action 312
variable bindings 313

NerveCenter 6.2

Designing and Managing Behavior

Models

431

n i

SNMP settings 117

node classification 114-115
SNMP v3

built-in triggers 226-227

Changing Authentication
Protocol 105

Changing Security Level 102

classification 107, 109-111,
114-115

digest keys 119
error status 124
node settings 99, 102, 105
operations log 120
passwords 119
security 102, 105, 118
security levels 118
security support 118
test poll 111

SNMP v3 support 117

node classification 99, 107,
114-115

test poll 126
SNMP_AUTHORIZATIONERR
built-in trigger 226
SNMP_BADVALUE built-in

trigger 226

SNMP_DECRYPTION_
ERROR built-in
trigger 226
SNMP_ENDOFTABLE built-in
trigger 226
SNMP_ERROR built-in
trigger 220, 223
SNMP_GENERR built-in
trigger 226
SNMP_NOSUCHNAME built-in
trigger 226
SNMP_NOT_IN_TIME_
WINDOW built-in
trigger 227
SNMP_READONLY built-in
trigger 227

SNMP_TIMEOUT built-in
trigger 220-221, 223, 227

SNMP_TOOBIG built-in
trigger 227

SNMP_UNAVAILABLE_
CONTEXT built-in
trigger 227

SNMP_UNKNOWN _
CONTEXT built-in
trigger 227

SNMP_UNKNOWN _
ENGINEID built-in
trigger 227

SNMP_UNKNOWN _
USERNAME built-in
trigger 227

SNMP_UNSUPPORTED_
SEC_LEVEL built-in
trigger 227

SNMP_WRONG_DIGEST built-
in trigger 227

Source Address (ICMP
field) 221

standalone operation 23

start_at (poll condition
function) 174

State Definition dialog 247
state diagrams
icon sizes 252
IF-IfColdWarmStart 331
IF-IfFramePVC alarm 330
IF-IfNmDemand 332
IfLoad 51
interface-type alarms 329
IPSweep 87
monitoring loads 29
states, defining 245, 247
TcpRetransMon 50

State/Transition Size
dialog 248, 252-253

states
defining 245, 247
deleting 249

icons, changing sizes 248

status, SNMP v3
operations 124

StopLookup 96

string matching functions 181
subnet filter 63, 66, 68
subobject scope alarms 43
subobjects 205

subroutines See Perl 269
suppressing nodes 340
suppressing polling 340-341

-T-

TcpRetransMon alarm 50
technical support 4

test poll 111
TestVersion poll 111

tips for using property groups
and properties 159

tools

Action Router tool 15
tracking conditions 28
transition 249

defining in an alarm 249

Transition Definition dialog 88,
149, 153, 155, 250-251

transition line color 253
transitions 17
actions 240
actions, associating 251
causing 14
defining 249-250
deleting 254
icon sizes, changing 252

Trap Manager error
messages 419

trap mask trigger function 198
defining 198
entering notes 210
examples 208

432

Designing and Managing Behavior

Models

NerveCenter 6.2

Index

Send Trap alarm action 305,
308

trigger function 198
variables used 207
trap mask trigger functions

In() 179
trap masks 27, 39
attributes 40
creating 230
data set 39
deleting 337
enabling 216
listing 193, 196
using 193
trap masks, defining 198
traps
Inform variable bindings 234
trigger function 198
built-in triggers 220, 223-225
clearing 275
delaying 271, 280
firing 271
firing from an alarm 280

functions used for trap
masks 203

variables used for trap
masks 207

Trigger Function page 233
trigger functions 203
creating 202
examples 208-210, 235
variables 207
variables, NerveCenter 301
triggers 18, 28
attributes 39
built-in 220, 225, 228
built-in, list of 225
dataset 39

sources 240

triggers fired by high-traffic
poll 244

Type (ICMP field) 221-222

-U-

understanding NerveCenter 5

UNKNOWN_ERROR built-in
trigger 227

user interface messages 411
user name 102, 105

using Action Router’s object
lists 321

-V-

v3TestPoll 126
variable bindings 39
attributes 205
functions 204
Inform alarm action traps 234
Inform traps 234

NerveCenter Inform
traps 234

values 205
variables 301
NerveCenter 301

Perl subroutine alarm
actions 301

trap masks 207
trigger functions 207
version of SNMP on a node 99

NerveCenter 6.2

Designing and Managing Behavior
Models

433

434 Designing and Managing Behavior NerveCenter 6.2
Models

	Introduction
	NerveCenter Documentation
	LogMatrix Technical Support

	Understanding NerveCenter
	What is NerveCenter?
	How NerveCenter Manages Nodes
	Defining a Set of Nodes
	Detecting Conditions
	Correlating Conditions
	Responding to Conditions

	Main NerveCenter Components
	The NerveCenter Server
	The NerveCenter Database
	NerveCenter Interfaces

	Role in Network Management Strategy
	Standalone Operation
	Using Multiple NerveCenter Servers
	Integration with Network Management Platforms

	Behavior Models and Their Components
	Behavior Models
	Detecting Conditions
	Tracking Conditions
	Monitoring a Set of Nodes

	NerveCenter Objects
	Nodes
	Property Groups and Properties
	Polls
	Trap Masks
	Alarms
	Alarm Scope

	NerveCenter and Perl
	Constructing Behavior Models
	How the Pieces Fit Together
	An Example of a Behavior Model

	Getting Started with the NerveCenter Client
	Starting the NerveCenter Client
	Connecting to a Server
	Connecting to a Server Manually
	Connecting to a Server Automatically
	Sharing MIB Information from Multiple Servers
	Selecting the Active Server
	Deleting a Server from the Server List
	Changing the Server Port on the Client

	Setting Up Alarm-Instance Filters
	Filtering Alarms by IP Range
	Filtering Alarms by Severity
	Filtering Alarms by Property Groups
	Associating a Filter with a Server
	Rules for Associating Filters with Alarms

	Specifying Heartbeat Messaging
	Modifying the Heartbeat Message Interval
	Deactivating Heartbeat Messaging

	Disconnecting from a Server

	Discovering and Defining Nodes
	Discovering Nodes
	Using IPSweep Behavior Model

	Defining Nodes Manually
	IPv6 and NerveCenter

	Configuring SNMP Settings for Nodes
	Manually Changing the SNMP Version Used to Manage a Node
	Changing the Security Level of an SNMPv3 Node
	Changing the Authentication Protocol for an SNMPv3 Node
	Classifying the SNMP Version Configured on Nodes
	Classifying the SNMP Version for One or More Nodes Manually
	Classifying the SNMP Version for All Nodes Manually
	Confirming the SNMP Version for a Node
	When NerveCenter Classifies Node SNMP Versions
	How NerveCenter Classifies a Node SNMP Versions

	NerveCenter Support for SNMPv3
	Overview of NerveCenter SNMPv3 Support
	NerveCenter Support for SNMPv3 Security
	NerveCenter Support for SNMPv3 Digest Keys and Passwords

	Viewing the SNMPv3 Operations Log
	Signing a Log for SNMPv3 Errors Associated with Your Client
	Signing a Log for SNMPv3 Errors Associated with a Remote Client or Administrator
	Viewing the SNMPv3 Operations Log

	SNMP Error Status
	Using the SNMP Test Version Poll
	Testing SNMPv1 and v2c Agents
	Testing SNMPv3 Agents
	How To Use the Test Version Poll

	Defining Property Groups and Properties
	Listing Property Groups and Properties
	Listing Property Groups
	Listing Properties

	Creating a Property
	Creating a New Property Group
	Based on an Existing Property Group
	Based on the Contents of MIBs
	Adding Properties Manually

	The nl-ping Property
	Filtering Properties
	Assigning a Property Group to a Node
	Using the Node Definition Window
	Using the Node List Window
	Using the AssignPropertyGroup() Function
	Using the Set Attribute Alarm Action
	Using OID to Property Group Mappings

	Tips for Using Property Groups and Properties
	Categorizing Nodes
	Move from the General to the Specific
	MIB Objects

	Using Polls
	Listing Polls
	Defining a Poll
	Writing a Poll Condition
	The Basic Procedure for Creating a Poll Condition
	Functions for Use in Poll Conditions
	Using the Pop-Up Menu for Perl
	Examples of Poll Conditions

	Documenting a Poll
	How to Create Notes for a Poll
	What to Include in Notes for a Poll

	Enabling a Poll

	Using Trap Masks
	About Trap Masks
	How NerveCenter Decodes SNMPv2c/v3 Traps
	How NerveCenter Decodes ICMP Events
	Listing Trap Masks
	Defining a Trap Mask
	Writing a Trigger Function
	Functions for Use in Trigger Functions
	Variables for Use in Trigger Functions
	Examples of Trigger Functions

	Documenting a Trap Mask
	How to Create Notes for a Trap Mask
	What to Include in Notes for a Trap Mask

	Enabling a Trap Mask

	Using Other Data Sources
	Built-In Triggers
	SNMP Requests
	ICMP Requests
	ICMP Responses
	Built-in Trigger Firing Sequence
	Matching Errors with Pending SNMP and Ping Requests
	Multi-homed Nodes
	Built-In Triggers
	An Example Using Built-In Triggers

	Another NerveCenter
	Creating a Trap Mask
	Variable Bindings for NerveCenter Informs
	An Example Trigger Function

	Using Alarms
	Listing Alarms
	Defining an Alarm
	Alarm Scope
	Defining States
	Defining a State
	Changing the Size of the State Icons
	Deleting a State

	Defining Transitions
	Defining a Transition
	Associating an Action with a Transition
	Changing the Size of Transition Icons
	Changing the Color of Transition Lines
	Deleting a Transition

	Documenting an Alarm
	How to Create Notes for an Alarm
	What to Include in Notes for an Alarm

	Enabling an Alarm
	Correlation Expressions

	Alarm Actions
	Action Router
	Alarm Counter
	Beep
	Clear Trigger
	Command
	Delete Node
	EventLog
	Fire Trigger
	Forward Trap
	Inform
	Inform Platform
	Inform Specific Numbers

	Log to File
	Notes
	Perl Subroutine
	Defining a Perl Subroutine
	Functions for Use in Perl Subroutines
	NerveCenter Variables
	Perl Subroutine Example

	Send SMS
	Send Trap
	Set Attribute
	SMTP Mail
	SNMP Set

	Performing Actions Conditionally (Action Router)
	Listing Existing Action Router Rules
	Creating an Action Router Rule
	Defining a Rule Condition
	Defining a Rule Action

	Creating Multi-Alarm Behavior Models
	IfUpDownStatusByType
	IF-IfStatus Alarm
	IF-SelectType Perl Subroutine
	Interface-type Alarms
	IF-IfFramePVC
	IfColdWarmStart Alarm
	IfNmDemand Alarm

	Managing NerveCenter Objects
	Enabling Objects
	Copying Objects
	Copying a Property Group
	Copying Other Objects

	Deleting Objects
	Using a Delete Button
	Using a Pop-Up Menu

	Changing an Object Property or Property Group
	Changing Poll or Alarm Properties
	Changing a Node Property Group

	Changing an Alarm Scope
	Suppressing Polling
	Suppressing a Node
	Making a Poll Suppressible

	Changing Other Node Attributes

	NerveCenter Severities
	Definition of a Severity
	Severity Attributes Used by NerveCenter
	Severity Attributes and Network Management Platforms

	Default Severities
	Creating a New Severity
	Creating Custom Colors

	Importing and Exporting NerveCenter Nodes and Objects
	Exporting Behavior Models to Other Servers
	Exporting Behavior Models to a File
	More About Exporting Behavior Models
	Exporting NerveCenterObjects and Nodes to Other Servers
	Exporting NerveCenterObjects and Nodes to a File
	More about Exporting Objects
	Importing Node, Object, and Behavior Model Files
	Importing Behavior Models or Nodes with ImportUtil

	Communications and Data
	Debugging a Behavior Model
	Enabling a Behavior Model's Components
	Checking Properties and Property Groups
	Checking a Poll's Property
	Checking a Poll's Poll Condition
	Checking an Alarm's Property

	Matching Triggers and Alarm Transitions
	Identities of Triggers and Transitions
	Rules for Matching
	Examples of Matching Triggers and Transitions

	Auditing Behavior Models
	Behavior Model Log

	Downstream Alarm Suppression
	Understanding How the Model Works
	Testing the Model
	Importing the New Model
	Identifying Parent-Child Relationships
	Making the Relationship Information Available to NerveCenter
	Testing the Alarm Suppression Model

	Understanding the Technical Details
	Alarms
	Perl Subroutines

	Error Messages
	Alarm Filter Manager Error Messages
	Deserialize Manager Error Messages
	Flatfile Error Messages
	Inform NerveCenter Error Messages
	LogToFile Manager Error Messages
	Poll Manager Error Messages
	Protocol Manager Error Messages
	PA Resync Manager Error Messages
	Server Manager Error Messages
	Trap Manager Error Messages
	NerveCenter installation Error Messages

	Index

