
OpenService, Inc. White Paper
NerveCenterTM: Integration with
Micromuse Netcool/OMNIbus
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

PublicationDate

http://www.open.com

Contents
Introduction . 1
Overview . 2

What is Netcool/OMNIbus? . 2
What is NerveCenter? . 4
How NerveCenter Complements Netcool/OMNIbus . 6

Components Required for Integration . 7
Micromuse Netcool/OMNIbus Components . 8
Open NerveCenter Components . 8

How the Integration Components Interact . 9
NerveCenter Configuration Settings . 12

NerveCenter Server Inform Port Settings . 12
Universal Platform Adapter Settings . 13
Inform Action Settings . 15

Netcool/OMNIbus Configuration Settings . 16
Object Server Data Management Settings . 16
NerveCenter Probe Settings . 17
Desktop settings . 21

Appendix A
Inform Messages . 29
Inform Data Sent from NerveCenter . 29
Debug Probe Output . 31

Appendix B
Sample Rules File . 33
Sample Nervecenter.rules File. 34
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

About Open Service, Inc.
Open (OpenService, Inc.) is the premier provider of network security management solutions that enable
enterprises and service providers to continuously protect and manage mission-critical business information. More
than 450 customers are using Open's SystemWatch and/or NerveCenter™ for network security management.
Open's products are available globally through a network of VARs and direct sales. A privately held company
based in Westborough, MA, Open is backed by venture capital and an equity stake taken by Veritas. For more
information, please call 800-892-3646, or visit the Open web site at http://www.open.com.

http://www.open.com
http://www.open.com

1

Introduction
Open NerveCenterTM can forward significant network events to Micromuse
Netcool/OMNIbus. Netcool/OMNIbus receives these events and distributes the
information to the operators, administrators, help desk systems, or other applications
responsible for monitoring the related devices or services.

This document contains the following sections.

Title Description

Overview on page 2 Introduces the NerveCenter and Netcool/OMNIbus
applications and discusses how NerveCenter
complements Netcool/OMNIbus.

Components Required for Integration
on page 7

Lists and describes each application’s components
required for integration.

How the Integration Components
Interact on page 9

Describes briefly how NerveCenter and
Netcool/OMNIbus communicate with each other.

NerveCenter Configuration Settings on
page 12

Explains what can or must be configured in
NerveCenter.

Netcool/OMNIbus Configuration
Settings on page 16

Explains what can or must be configured in
Netcool/OMNIbus.

Inform Messages on page 29 Summarizes the data that NerveCenter sends to
Netcool/OMNIbus. Describes how you can confirm
that the probe is correctly receiving NerveCenter
informs.

Sample Rules File on page 33 Includes a sample nervecenter.rules file provided by
Southernview Technologies, Inc.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

2

Overview
Recent trends within the communication industry have given rise to software tools
designed to provide immediate support for real-time business and technology
services. This type of service-level management is illustrated in Figure 1.

In the event of an
outage, administrators
can quickly determine
which device caused

the problem, which
customers and services
are impacted, and how

the condition affects
their service level

agreements.

Figure 1. Service-level Management

Internet, cellular, network, and other service providers all need a way to ensure the
availability of services, devices, and applications in any IT environment.
Service-oriented tools provide administrators the status of business and technology
services being provided to the users. These tools do not necessarily replace network
management platforms; rather, they can extend a platform’s capability to provide
real-time service-oriented views of the network.

The Micromuse Netcool/OMNIbus suite of tools has emerged as a viable solution for
enterprises concerned with the availability, reliability, and quality of direct
communication technologies. By partnering with key vendors like Open, Micromuse
enables network administrators to organize, measure, predict, and improve service
levels for applications, database systems, network devices, and business-critical
services such as virtual private networks or Internet connections. In the event of an
outage, administrators can quickly determine which device caused the problem, which
customers and services are impacted, and how the condition affects their service level
agreements.

What is Netcool/OMNIbus?

Netcool/OMNIbus is a suite of management tools that collect and distribute network
events to the administrators responsible for monitoring related services.
Netcool/OMNIbus uses specialized software agents, called probes, to intercept data
coming from network systems, devices, and applications. Micromuse has over 100
probes, each designed to identify, collect, and format data from a particular
management environment or network application. The Micromuse NerveCenter probe
was developed specifically to gather network and system data from NerveCenter
servers.

Fault conditions and
warning messages

Administrator takes
corrective action or provides
customer support

Isolate problem or potential
problem

Determine which services or customers
are affected

Notify administrators responsible for monitoring
services or customers
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

3

A probe formats events into Netcool alerts and forwards these alerts to the Object
Server, Netcool’s active database. The Object Server manipulates alerts based on
user-defined associations, and groups the alerts into logical units. The Object Server
then directs status information to the operators, administrators, help desk systems, or
other applications responsible for monitoring the related services. Administrators who
receive the alerts can compare each alert against existing service level agreements
and determine which services—and ultimately which users—are affected by particular
faults. Desktop tools enable administrators to design personalized views of service
availability.

Software agents called
probes relay network
events to the Object
Server. The Object
Server groups the

events and forwards
them to Netcool desktop

applications.

Figure 2. Netcool/OMNIbus

In addition to the Object Server, probes, and desktop tools, Netcool/OMNIbus
includes the following:

� Gateways allow event data to be shared with other software programs.

� Process Control systems enable you to configure and manage UNIX processes
remotely. Processes can be started in sequential order after any defined
dependencies have been met.

� Java Event List provides event lists and views of service availability from Web
browsers.

Micromuse also provides the following tools:

� Netcool/Reporter uses data from the Object Server and historical databases to
generate graphical reports that can be configured to match service agreement
specifications.

� Netcool/CNMview provides service-level information from remote Desktops at the
customer site.

� Netcool/Internet Service Monitors are active probes that provide availability
information about Internet services (HTTP, FTP, DNS, SMTP, POP-3, NNTP, and
RADIUS). Each Monitor periodically attempts to access a URL or perform a file
transfer. It then reports the time it took to get a response or indicates that the
service is unavailable.

Probe

Object Server

Customizable desktop tools
run on UNIX, Windows, or
Java-enabled Web browsersEvents
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

4

What is NerveCenter?

NerveCenter obtains data from SNMP agents running on managed nodes by
processing incoming SNMP traps and polling the nodes for specific MIB values.
NerveCenter interprets and correlates this data to detect predefined network
conditions and determine which actions should be performed.

Behavior Models

To correlate network data, NerveCenter relies on configurable models of network and
system behavior, or behavior models, for each type of managed resource. When a
predefined network condition is detected, NerveCenter generates alarm instances that
track the status of the interface, node, or enterprise being monitored. The alarm waits
for subsequent events or issues polls to determine if the condition warrants further
action. Each transition in an alarm can trigger actions, including notifying an
administrator or a network management platform, executing a program or Perl script,
modifying the node’s properties, changing SNMP values, and logging the critical data.

A behavior model is a
group of NerveCenter

objects that detect and
handle a particular
network or system
behavior. A typical

behavior model consists
of one or more alarms

with all their supporting
polls and masks.

Figure 3. A NerveCenter Behavior Model

Alarms

Alarms are key to the correlation of events. Each alarm defines a set of operational
states (such as Normal or Down) and transitions between the states. Transitions are
caused by trigger-generating objects such as polls, trap masks, Perl scripts, or other
alarms. When the alarm receives the proper trigger, one or more transitions occur. If
actions are associated with a transition, the NerveCenter Server performs these
actions each time the transition takes place.

The following diagram illustrates an alarm that monitors each interface on managed
nodes and determines whether device load is low, medium, or high. Load is the
amount of interface traffic compared to the media's capacity. The IfLoad alarm can
give an immediate impression of network and system utilization. By measuring traffic
against capacity, you can determine, for example, whether more file servers need to
be added to the network.

Alarm
- Correlates
trigger data
- Performs
actions

 Poll

 Alarm data

SNMP
agent MIB data

 Trap
maskSNMP traps

NerveCenter
Client or Web
Client console

Other alarms
and Perl
subroutines

Actions include notification, logging, executing
commands and scripts, and generating alarm
triggers that can transition the same alarm or
another alarm.

 Triggers
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

5

Figure 4. IfLoad Alarm

The alarm transitions to a corresponding state when it receives a MediumLoad trigger
or a HighLoad trigger. The HighLoad state fires a trigger after the alarm has received
its third HighLoad trigger, transitioning the alarm to the HighLoadPersists state.

Once the alarm has entered the MediumLoad, HighLoad, or HighLoadPersists state,
receiving a LowLoad trigger returns the alarm to Low and clears any alarm instances.

Inform Messages

Actions can be associated with alarm transitions. NerveCenter has several actions
that notify an administrator, network management platform, or another NerveCenter of
an alarm transition. One important notification action is the NerveCenter inform action.
An inform message contains the variable bindings associated with the event that
caused the alarm to transition.

NerveCenter can send
informs to

Netcool/OMNIbus when
specified events trigger

NerveCenter alarms.

NerveCenter sends informs to Netcool/OMNIbus when an alarm transition occurs and
the transition includes an inform with Netcool designated as the recipient. The
NerveCenter Server forwards the inform data to Netcool’s NerveCenter probe, which
formats the data and sends alerts to the Object Server.

You can configure NerveCenter to send informs to Netcool when certain network
conditions are detected, thereby greatly reducing the number of alerts sent to the
corresponding Netcool Event List. For example, in the previous alarm (see Figure 4),
NerveCenter sends an inform only when the IfLoad alarm transitions to the
HiLoadPersists state.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

6

How NerveCenter Complements Netcool/OMNIbus

NerveCenter extends Netcool’s ability to measure, predict, and improve service levels
in several ways.

Smart Polling

Netcool/OMNIbus is designed to respond to events, such as SNMP traps, coming
from managed resources. NerveCenter not only detects and filters SNMP traps, but it
can poll resources at predefined intervals for specific network and system data. This
information allows administrators to track network and system behavior and identify
potential problems before they occur.

Polling allows
administrators to track

network and system
behavior and identify

potential problems
before they occur.

NerveCenter uses a feature called smart polling to minimize unnecessary network
traffic. With smart polling, NerveCenter issues polls only when the outcome of the poll
can trigger an alarm. For example, if a behavior model correlates high traffic followed
by high error rates, a device is not polled for error rates unless it fulfills the high traffic
condition. Using this same technology, NerveCenter is able to suppress polling to
nodes that are unreachable because either they or their parent devices are down.

For service-level management, NerveCenter can help track the following statistical
information over local and wide area networks:

� Who is on the network, what tasks they are performing, and what tools they are
using

� What applications are in use at the application and device layers and how much
bandwidth they are consuming

� What is the total volume of data on different parts of the network at the busiest
time of the day and whether this traffic is seasonal

� How the traffic will grow with time, taking into account increases in the number of
devices or users, and changes to the applications used

This information is essential to guarantee application and network service levels to
both internal and external customers.

Intelligent Correlation

Event correlation is the mechanism by which NerveCenter evaluates a number of
pre-defined events and determines how the events are related, what may have
caused them, and whether the condition is serious enough to notify an administrator
or take other corrective action. NerveCenter’s complex correlation engine filters out
redundant or mundane events so that only important messages are sent to probes.
Reducing the number of messages sent to probes both facilitates network
management and limits network traffic.

By reducing the amount of raw data sent to administrators, event correlation makes it
easier for them to identify critical conditions quickly. Event correlation also results in
the delivery of important information that administrators can use to establish
baselines, monitor thresholds, determine network utilization patterns, track system
performance, identify potential bottlenecks and other critical conditions, and plan for
future network needs.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

7

Distributed Architecture

NerveCenter’s client-server architecture supports distributed polling across large
networks. NerveCenter can be configured so that all polling is accomplished on local
area networks rather than across a wide area network. Using this capability, you can
reduce bandwidth and increase scalability by limiting the information to be monitored
for each subnet and the number of nodes to be polled. NerveCenter servers running
at remote sites can notify a centrally located NerveCenter Server or management
platform of the noteworthy network conditions at those sites. Because the server can
run as a daemon on UNIX systems or as a service on Windows, the branch
NerveCenters can be managed remotely.

Other Advantages

NerveCenter offers the following additional advantages:

� NerveCenter has the ability to parse MIB values and obtain the variable bindings
related to network events. You can extend the MIB values monitored as new
devices are added to your network.

� NerveCenter’s alarm actions include the ability to execute commands and scripts
that can remedy the problem that caused the alarm, resulting in further reduction
of the number of events that need to be reported to Netcool/OMNIbus.

� NerveCenter includes a set of predefined behavior models that you can use to
monitor and manage your network. These behavior models contain all the
required mask, poll, alarm, and property group definitions for basic network
management using MIB-II objects. NerveCenter also ships with predefined
vendor-specific models for monitoring Cisco, Compaq, and Wellfleet devices.

� NerveCenter includes a Web Client that makes it easy to monitor alarms from any
machine that has a Web browser.

� NerveCenter includes tools for generating reports about the network.

Components Required for Integration
This section summarizes the main components required for NerveCenter integration
with Netcool/OMNIbus. The summary does not attempt to list all the components that
you should install for each product. Rather, it describes those components that are
involved with NerveCenter-Netcool communication or that should be configured
specifically for integration.

Note Make sure you have compatible versions of both product lines before
integrating NerveCenter with Netcool/OMNIbus. Contact your sales
representative for information about recent versions and patches.

For a full description of all components available for NerveCenter and
Netcool/OMNIbus, refer to each product’s documentation.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

8

Micromuse Netcool/OMNIbus Components

The Netcool/OMNIbus components listed in Table 1 must be configured for
integration:

Open NerveCenter Components

Open NerveCenter is a distributed client/server application that includes a server, files
used for storing NerveCenter data, user-interface software, and several additional
tools. The NerveCenter components listed in Table 2, all part of the standard package,
are required for integration:

Table 1. Micromuse Components Required for Integration

Component Description

Netcool/OMNIbus Object
Server

The Object Server is an active database that stores and
manages all Netcool events. Events are passed to the Object
Server from external programs such as probes and gateways.
The Object Server filters out redundant events and make
decisions about the data based on user-defined parameters.

Netcool/OMNIbus
NerveCenter probe

The NerveCenter probe is distributed by Micromuse and is
neither a Open product nor a component of NerveCenter. The
probe collects network data from NerveCenter and then formats
and forwards that data to the Object Server. The probe has
associated rules and properties that define how the probe
operates and how NerveCenter events are mapped to Netcool
alerts.

Note The NerveCenter probe is not included with a standard
Netcool/OMNIbus package but must be obtained
separately from Micromuse. Probes are identified by the
platform and version of NerveCenter you are using.

Netcool/OMNIbus desktop
tools

Desktop tools provide event lists and views of service
availability. By manipulating the data using Netcool utilities, you
can design personalized views of network services and devices
managed by NerveCenter.

Table 2. NerveCenter Components Required for Integration

Component Description

NerveCenter Server The Server carries out all the major tasks that NerveCenter
performs and manages NerveCenter communications and
processes.

Universal Platform Adapter NerveCenter’s Universal Platform Adapter establishes a
connection with Netcool/OMNIbus and relays events from the
NerveCenter Server to Netcool’s NerveCenter probe.

NerveCenter Administrator After installing NerveCenter, you use the NerveCenter
Administrator to configure various settings for the connected
Server. These settings include the host name and port number
of the machine on which NerveCenter’s Universal Platform
Adapter resides. This information is required for sending informs
to Netcool/OMNIbus.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

9

How the Integration Components Interact
For integration to occur, NerveCenter must be configured to send informs to
Netcool/OMNIbus, and Netcool/OMNIbus must be configured to receive and process
those informs. See NerveCenter Configuration Settings on page 12 and
Netcool/OMNIbus Configuration Settings on page 16 for details.

The following must be running:

� Netcool/OMNIbus Object Server

� Netcool/OMNIbus NerveCenter probe

� NerveCenter Server

� NerveCenter Universal Platform Adapter

You may also want to start the Netcool/OMNIbus desktop applications, especially the
Event List, to view messages and alerts.

Once the applications are running, the probe immediately creates a TCP socket and
listens for connections from the NerveCenter platform adapter process. When the
adapter sends a connection request, the probe confirms the connection.

The following illustrations show the components and their paths of communication for
a simple integration configuration.

Note The illustrations do not suggest the physical location of the components, which
can all reside on the same system or on different systems. However, it’s worth
noting that installing the NerveCenter probe on the same machine as the
NerveCenter Server and platform adapter can reduce network traffic, since all
messaging among those components is contained within a single system.

Figure 5. The Probe Connects with NerveCenter’s Platform Adapter

When the two applications have established a connection, the probe relays the
connection status to the Netcool Object Server, and the Netcool Event List viewer
displays the status messages received from the Object Server. The following sample
Event List window shows the messages received when the probe is started and
connects with the Universal Platform Adapter (paserver.exe).

NerveCenter Client The NerveCenter Client lets you monitor the network as well as
create and modify the behavior models managed by the
NerveCenter Server. In the Client, you set up alarm actions that
send NerveCenter informs to Netcool when defined network
conditions are detected.

Table 2. NerveCenter Components Required for Integration (continued)

Component Description

NerveCenter
platform adapter

Micromuse
NerveCenter
probe
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

10
Figure 6. Event List Messages Upon Connection

After the probe and adapter establish their connection, NerveCenter can send informs
to Netcool/OMNIbus. The NerveCenter Server issues an inform when a NerveCenter
alarm transition occurs and the transition includes an inform action targeted for
Netcool/OMNIbus. The Server sends the inform to the platform adapter, which passes
the inform data to Netcool’s NerveCenter probe.

Figure 7. NerveCenter Sends Informs to Netcool/OMNIbus

The probe receives the inform data and generates an identifier that uniquely identifies
the event. The probe also converts the inform to an alert format that the Object Server
can recognize and then forwards the alert to the Object Server.

The Object Server stores alerts in an alert table that is part of its active database. The
Object Server can manipulate alerts by associating them into classes, filtering them,
and assigning automated actions to them. Based on defined parameters, the Object
Server determines the destination for each alert and forwards the information to the
appropriate desktop applications.

The Event List displays the alerts forwarded from the Object Server, as seen in
Figure 8.

NerveCenter
Server

Managed nodes

Events

Informs

Netcool desktops with customized Event List

Alerts

NerveCenter
platform adapter

Micromuse
NerveCenter
probe

Netcool Object
Server
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

11
Figure 8. Netcool/OMNIbus Event List

Note You can double-click an alert in the list to see all the information received for a
particular inform. See Appendix A, Inform Messages for a description of the
data sent with NerveCenter informs.

A heartbeat message monitors the connection between the probe and the platform
adapter. If the probe goes down or comes back up, the probe’s new operational status
appears immediately in the Netcool Event List. Once the probe comes back up, the
platform adapter attempts to reestablish the connection every minute.

When the platform adapter goes down or comes back up, the following occur:

� The Netcool Object Server immediately sends the status update to the Event List,
which displays a message indicating the current connection status.

� After a configurable amount of time, the NerveCenter platform adapter notifies the
NerveCenter Server of the status, and the Server sends a message to all
connected clients.

While NerveCenter alerts are being monitored in Netcool/OMNIbus, you can also view
the original alarms in the NerveCenter Client or Web Client. Figure 9 shows a sample
Alarm Summary window in the NerveCenter Client.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

12
Figure 9. NerveCenter Client Alarm Summary Window

The Client has filters that reduce the alarms to those matching specified property
groups, severity levels, and IP subnets for associated servers. For more information
about monitoring alarms, refer to NerveCenter’s Monitoring Your Network online
guide.

NerveCenter Configuration Settings
This section explains which NerveCenter components are configured to integrate with
Netcool/OMNIbus and what should be configured for each component.

NerveCenter’s configuration involves specifying the communication ports that allow
the NerveCenter Server and adapter to transfer data to Netcool/OMNIbus. Secondly,
NerveCenter must be set up to detect noteworthy conditions and send inform actions
to Netcool/OMNIbus. Complete procedures for entering these settings are included in
the online guides that are shipped with NerveCenter. The guides also describe the
rights and privileges required for configuring the NerveCenter applications.

Note Make sure you have the correct version of all components before configuring
NerveCenter. Contact your sales representative for information about recent
versions and patches. You can download NerveCenter patches from the Open
Web site as long as you have an active maintenace contract.

NerveCenter Server Inform Port Settings

After installation, you enter settings in the NerveCenter Administrator to specify which
hosts are to receive NerveCenter informs. When setting up a Netcool/OMNIbus
recipient host, you must provide the host name and the port number to use for
sending informs to the Universal Platform Adapter. The default port is 32509.

Figure 10 shows the dialog box used for setting up informs.

Displays the number of alarm
instances based on severity level

Displays information about the current
alarm instances for the folder selected in the
left pane
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com
http://www.open.com
http://www.open.com

13
Figure 10. NerveCenter Inform Configuration

The host and port number entered here must match the host and port number
configured for the adapter (see Universal Platform Adapter Settings on page 13). If
you later change the host or port number associated with the platform adapter, you
must change the information entered here in the Administrator.

While setting up the inform configuration, you can specify a minimum severity level for
informs or limit the informs to those with particular property groups. Refer to the
Integrating NerveCenter with a Network Management Platform guide for more
information about inform settings.

Universal Platform Adapter Settings

During installation, the platform adapter is configured with default settings that specify
the adapter’s host machine and the ports used to communicate with the NerveCenter
Server and the NerveCenter probe. Depending on your configuration, you may need
to change the default settings.

Note If you install the Universal Platform Adapter on a different machine from the one
on which the probe is installed, you must change the adapter’s default -nhost
setting to the machine that is running the probe.

The command to change the platform adapter settings resembles the following:

paserver -o -p listeningport -n ON -nhost hostname -nport
sendingport
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

14
The command contains the switches shown in Table 3:

You can also enter settings when you start the platform adapter. For complete
procedures and settings, refer to the online book Integrating NerveCenter with a
Network Management Platform that is shipped with NerveCenter.

Figure 11 summarizes the port settings for NerveCenter-Netcool communication.

Figure 11. Ports for Communication Between NerveCenter and Netcool/OMNIbus

Table 3. Switches for Reconfiguring the NerveCenter Platform Adapter

Switch Description

-o Windows only, records values into the registry. Any options (other
than -scm) become a part of the standard configuration. To use this
switch, you should first stop the Universal Platform Adapter. You must
then restart the Universal Platform Adapter.

-p Defines the platform adapter’s listening port. The adapter uses this
port to communicate with the NerveCenter Server.

Note This number must match the port number specified in
NerveCenter Administrator for sending informs. The default is
32509.

-n ON|OFF Enables or disables NerveCenter integration with Micromuse
Netcool/OMNIbus.

-nhost Defines the machine on which the NerveCenter probe is located.

Note The default is the local host where the adapter is installed. If the
adapter and probe are on different machines, this value must
be changed.

-nport Defines the port the NerveCenter platform adaptor uses to
communicate with the probe. The default is 32510. See
Nervecenter.props file on page 17 for more information about probe
settings.

Note This number must match the number used by the probe to
communicate with NerveCenter, as specified in the probe’s
property file. Some early versions of the probe used port 10001;
these should be replaced with the current version.

Default ports for communication
between the NerveCenter Server and
platform adapter are 32509

Default ports for communication
between the NerveCenter platform
adapter and the probe are 32510

NerveCenter
Universal Platform
Adapter

NerveCenter
Server

Netcool
NerveCenter
Probe

-nport
setting

-p setting

Inform
setting

port
property
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

15
Inform Action Settings

After installation, you can customize or create new behavior models in the
NerveCenter Client. The alarms used in behavior models define the types of actions
performed when specific network conditions are detected. For each alarm you want to
forward to Netcool/OMNIbus, you must define an inform action in the corresponding
alarm.

Figure 12 shows a sample alarm along with the dialog box used to define transitions
and configure actions for the transitions. Also shown is the pop-up menu containing
the available actions.

Figure 12. IfLoad Alarm and Transition Definition Dialog Box

Figure 13 shows the dialog box used to define inform actions for Netcool/OMNIbus.

Figure 13. Inform Action Dialog Box
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

16
When creating an inform action, you have the option of providing a specific inform
number. This number becomes the $MesgID value sent with each inform and helps
Netcool/OMNIbus identify the type of event. If you don’t provide a specific number, the
message ID defaults to the value 1000 for any transition whose destination state has a
severity less than 9 (Warning). For severity levels of 9 or greater, the $MesgID
defaults to the value 1000 plus the destination state’s severity level.

Note Although the message that the inform action sends to its recipients contains the
same information as a trap, the message is not sent via UDP. Because the
delivery mechanism must be reliable, the message is sent via TCP.

You can define one or more informs for as many alarms as you want. Once you have
defined the inform action and enabled an alarm, the inform is sent each time the
associated transition occurs. For more information about designing behavior models
using the Client, refer to the Designing and Managing Behavior Models guide.

Netcool/OMNIbus Configuration Settings
This section explains which Netcool/OMNIbus components are configured to integrate
with NerveCenter and what should be configured for each component.

Netcool/OMNIbus configuration involves specifying the type of information you want
processed when Netcool receives a NerveCenter inform. You can also specify how
the Netcool/OMNIbus Object Server should classify and distribute alerts and any
automated actions to be performed.

The $OMNIHOME directory mentioned in this section is the directory where
Netcool/OMNIbus is installed. For example, the default $OMNIHOME directory for
Solaris 2.x and HP-UX 10.x is /opt/Omnibus.

Complete procedures for entering these settings are included in the guides that are
shipped with Netcool/OMNIbus. The Micromuse documentation also includes
information about the rights and privileges required for access.

Object Server Data Management Settings

After installing Netcool/OMNIbus, you create an interfaces file that specifies the server
name, host name, and port for the Object Server, the proxy server, the gateway if
installed, and the process control. Without this file, neither the probe nor any other
component can communicate with the Object Server.

Any changes to your configuration are made to this file using the Servers Editor (run
$OMNIHOME/bin/nco_xigen).
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

17
Figure 14. Servers Editor

NerveCenter Probe Settings

The NerveCenter probe transfers data between the NerveCenter Universal Platform
Adapter and the Netcool/OMNIbus Object Server. A probe has two associated files
that determine the probe’s behavior:

Both files are stored in the $OMNIHOME/probes/platform directory. As with the probe,
both files are written in a Micromuse proprietary scripting language.

You can design *.props and *.rules files of your own and command the probe to use
those files when you start the probe. Refer to the Netcool/OMNIbus Probe and
Gateway Reference manual for more information about probes. After making changes
to these files, you must stop and restart the probe before it can recognize the changes
you made.

Nervecenter.props file

The properties file contains default settings for the NerveCenter probe. You can
change the properties using the Properties Editor ($OMNIHOME/bin/nco_xprops). If
preferred, you can run the Properties Editor when the Object Server is not running.

Say you wanted to raise the severity level of messages logged from the NerveCenter
probe. Messages are logged based on the message and a logging level. There are
five message levels:

� Fatal

� Error

� Warning

Table 4. NerveCenter Probe Files

File Description

nervecenter.props Identifies the probe and displays the location of associated files,
the port that connects with the NerveCenter platform adapter,
and other information about the probe.

nervecenter.rules Defines the precise set of information relayed to the Object
Server.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

18
� Info

� Debug

To change the minimum severity level of messages that are logged, you could change
the message level value from “Warn” to “Error”.

The following illustration shows the nervecenter.props values in the Properties Editor.

Figure 15. Properties Editor

If all the properties are not listed in the Properties Editor, you can open the
nervecenter.props file directly using your text editor. In the text editor, you must
uncomment a line before any changes you make to the line take effect.

Caution The nervecenter.props file lists the port used by the probe to communicate
with the NerveCenter Universal Platform Adapter. For NerveCenter to
communicate with Netcool/OMNIbus, this port number must match the
-nport setting defined for the NerveCenter Universal Platform Adapter. If
they don’t match, you must change the adapter setting. See Universal
Platform Adapter Settings on page 13 for details.

You can set or override some probe property settings from the command line when
you start the probe. This is described in the Netcool documentation.

Nervecenter.rules file

The nervecenter.rules file defines the precise set of information relayed to the Object
Server. You can modify the rules file to specify how the probe maps NerveCenter
events to Netcool/OMNIbus alerts. Prior to reading the file, the probe maps the
message’s attributes to the fields of an event and creates a list of all attributes and
values for insertion into the Object Server’s status table. The rules allow you to
supersede and change this preformed alert.

The rules file uses tokens to indicate variables, such as the node that caused the
message to be sent. A token is identified by the $ symbol. The @ symbol identifies
field values that are transferred to the alerts table in the Object Server database. You
can define your own tokens and fields in the rules file.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

19
The default rules file is divided into two main sections, each section is part of an if ..
else statement. In the first section, the probe generates its own ProbeWatch events to
monitor the status of the probe and display messages contingent with the particular
case.

Probe Watch Code

The following sample shows this section:

if(match(@Manager, "ProbeWatch"))
{
switch(@Summary)
{
case "Running ...":
@AlertGroup = "probestat"
@Type = 2
case "Going Down ...":
@AlertGroup = "probestat"
@Type = 1
default:
}
@AlertKey = @Agent
@Summary = @Agent + " probe on " + @Node + ": " + @Summary
}

Message Code

The second section of the rules file manages the information transmitted when a
connection is established or rejected, when the connection is terminated, and when
an inform message is received from NerveCenter.

The following sample shows default statements that determine what appears in the
Event List when NerveCenter sends an inform:

case "Inform Netcool":
@Identifier = $MessageType + $ServerID + $NodeName + $IPAddr + $OSN
+ $OSS + $DSN + $DSS + $TrapGN + $TrapSN + $TrapEID
@Node = $NodeName
@NodeAlias = $IPAddr
@Summary = "See details"
@Severity = 2

The Identifier field maps to the data sent by NerveCenter for each inform and
uniquely identifies the inform event. The Identifier field also enables the elimination of
duplicate alerts. If the Netcool Object Server receives two informs with the exact same
identifier values, only the first inform is forwarded to the Event List. Netcool processes
the duplicate inform but does not display it as a separate event instance.

Suggestions for Customizing the Rules File

You can customize the rules file supplied by Micromuse to optimize your own network
management strategy. The Netcool/OMNIbus Probe and Gateway Reference manual
describes a host of statements and functions that help you manage network data sent
to the Object Server and relayed to the Event List. To modify inform data, you would
first define any tokens and fields you need and then add the statements and functions
to the code residing within the Inform Netcool case.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

20
For example, you can filter unnecessary events using the Netcool Discard function.
When used prudently, this function is an effective way to prevent an inform from being
sent to the Object Server. Other functions enable you to recover discarded alarms,
compare variables with strings, extract portions of strings or fields, perform
mathematical operations, and insert information into an event using a table format
consisting of keys and values.

Caution Make a backup copy of the default nervecenter.rules file before modifying
that file. Changes you make to the rules file affect the probe’s compatability
with incoming NerveCenter inform data. As with customizing any software,
you should know both the Netcool and NerveCenter products thoroughly
and test each change you make to the rules file before proceeding with
further changes.

When making changes to a rules file, you must follow the established
Netcool syntax. If the syntax in a rules file is incorrect, the probe cannot be
started. Netcool/OMNIbus includes a syntax probe that you can use to test
the syntax of a rules file.

You may want to make the following changes to the Inform Netcool section of the rules
file:

� Add a comment symbol (#) in front of the line that contains the following text:

details($*)

This line of code passes to the Object Server a set of variables ($*) and their
values for each inform. These variables are then displayed in the Alert Details
portion of an alert in the Event List. While this information is useful for the
development and debug of a rules file, the extra data can overload the Object
Server once you start processing large numbers of events. (Commenting this line
has no affect on the @ field values sent to the Object Server.)

� If you choose to keep the details() statement for one or more types of detected
conditions, you may want to change the message associated with the details. By
default, messages received from NerveCenter display as “See Details” in the
Event List. You can associate more meaningful messages with events by
replacing the @Summary value with some other text string or with a variable,
such as $MessageType.

� Define a class of alerts that you can later use to group NerveCenter informs. To do
this, you associate an arbitrary number with the class you define, for example:

@Class = number

� Change the severity level associated with informs. There are a total of five
possible levels. To change the severity from Warning to Major, for example, you
would replace the @Severity value with 4.

� Make more information available to the Event List by adding new fields to the
code. The following example would enable you to filter or group alerts by
NerveCenter Server:

@AlertKey = $ServerID

or, to filter or group alerts by the specific inform number you provided when
creating the inform action in NerveCenter, you could enter the following:

@AlertKey = $MesgID
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

21
� Change the data associated with informs by changing the variables listed in the
@Identifier field.

When changing the @Identifier field values, it’s important to make sure the
identifier is specific enough to filter unwanted duplicate alerts without overloading
network traffic. For example, adding more variables to the identifier code above
(see Message Code on page 19) would lessen the probability of exact duplicates,
resulting in fewer deletions. This change, however, would also generate more
messages managed by the Object Server. This may overload the Object Server
with events relating to conditions that may in fact be redundant.

On the other hand, an identifier that doesn’t contain enough fields might filter out
important, non-duplicated events.

For example, say you were to change the identifier definition to the following:

@Identifier = $MessageType + $ServerID + $NodeName+ $IPAddr

The above code excludes the variables that identify origin or destination state for
informs. As a result, the Object Server sends an alert to the Event List upon
receipt of an alarm instance for a managed node . The Object Server does not,
however, forward alerts for subsequent transitions of the same alarm instance to
different destination states. The subsequent informs have data identical to the first
instance and are therefore filtered out.

� Finally, you can enhance or change the summary information for the probe status
by changing or adding text in the Probe Watch section of the files.

For a list and description of all the variables that are sent with NerveCenter informs,
see Inform Messages on page 29. Sample Rules File on page 33 contains a sample
rules file you can use as a reference.

For other ways to configure the rules file, refer to the Netcool/OMNIbus Probe and
Gateway Reference manual.

Desktop settings

When you start the Netcool/OMNIbus desktop tools, the Conductor is the first window
you see. From the Conductor, you can access tools that filter events, customize how
the events are displayed in the Event List, associate informs with a particular class,
automate commands and actions for informs, and generate service-level views for
specified geographical regions.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

22
From the Conductor,
you can customize the

Event List, create filters,
configure classes, and

automate actions for
incoming NerveCenter

alerts.

Figure 16. Netcool/OMNIbus Conductor

The following sections describe the different ways you may want to customize your
desktop for NerveCenter events. Refer to the Netcool/OMNIbus Administration Guide
for complete information about these and any other settings.

Filtered Event Lists

You may want to create a new event list or modify an existing list to display only
informs received from NerveCenter. Creating or modifying a list involves creating a
new filter that displays certain types of alerts—in this case, informs sent from
NerveCenter. Filters limit the information that you receive on your desktop.

The Filter Builder enables you to filter incoming alerts according to the values defined
for your informs. Figure 17shows the Filter Builder used to create filters.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

23
Figure 17. Filter Builder

By stringing together logical OR or AND conditions, you can generate filters based on
different combinations of Event List fields.

Custom Views

Use the View Builder to customize the columns displayed in the Event List, change
the column headers, and organize events by a defined sorting order.

To customize the fields, you choose from the available fields the ones you want
displayed in the list. You can include fields, for example AlertKey, that you defined at
the probe level in the nervecenter.rules file.

Figure 18 shows sample settings in the View Builder. The settings displayed here add
the AlertKey field to the Event List and sort by this field, with a secondary sort on the
node name.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

24
Figure 18. View Builder

The results of these view settings are shown in Figure 19 in the Event List:

Figure 19. Configured and Sorted Event List

Alert classes

You can tag NerveCenter events with a class value, which is assigned in the
nervecenter.rules file. Once you have associated NerveCenter alerts with a specific
class, you can create and associate custom menus with the NerveCenter class of
alerts. This allows you to automate actions or commands for these events. For menus
associated with alerts, the menu options can include commands that reference fields
in the alert.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

25
For example, to define a class for NerveCenter events, you would first enter in the
nervecenter.rules file the class value, such as $Class = number, where number is an
arbitrary numerical value that you assign. For this example, we’ll use the number
7500. Afterward, from the Configuration Manager, you define a conversion for the
class and then define the class itself and link it with a menu.

Figure 20 shows the dialogs used to define a conversion and a class.

Figure 20. Defining a Conversion and a Class

After defining a class, you can create a menu specifically for that class. If there’s a
particular action, such as a ping that may need to be performed for NerveCenter
alerts, you can define the action as a menu item.

Figure 21 shows the Menus dialog box used to define menu items for a class.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

26
Figure 21. Associating Menu Items with the Class

When administrators receive NerveCenter informs tagged with the class you create,
they can select the menu items defined for the class from the Tools menu of any
window in which alerts are displayed.

Automated Actions

The Automation Builder allows you to automate actions or commands for certain types
of events. For example, you can notify an administrator of critical events after a
specific period of time has elapsed. You do this by creating triggers to detect particular
states, for example, an alert severity value of 4, and actions that define the responses
to those states. The triggers and states are stored in the Object Server and are
created using Object Server SQL.

Figure 22 shows the Automation Builder dialog box used to create and associate
actions. You can customize the predefined actions listed in the box or create new
actions.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

27
Figure 22. Automation Builder

NerveCenter also provides automated actions that can be performed when an alarm
transitions. Besides the inform action described in this paper, NerveCenter has 21
other actions designed for notification, logging data, or correcting a condition.

Objective View Map

With the Objective View Map Editor, you can map services and devices to
geographical regions. This gives you a service-level view of managed objects.

The Objective View displays map books, each containing a number of map pages with
graphical objects called symbols. Each page of a book might include symbols
representing management sites for a different region of a country or sites in different
countries. From these symbols, you can display the status of your services and
devices for the region or country.

When creating map pages, layers make it easy to create background-layer images,
second-layer annotations, and object-layer editable symbols that can be dynamically
manipulated to show status and associations.

Figure 23 shows a page containing a U.S. map in the background layer and a symbol
in the object layer. This particular symbol was associated with the NerveCenter class
in the Classes dialog box. Double-clicking the symbol displays a dialog in which you
can edit the appearance of the symbol and define associations.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

28
Figure 23. Map Page Symbol Associated with a Class and an Action

The action that you associate with a symbol determines what happens when you or
someone else double-clicks the icon in the Objective View map. For example, if you
select the Show List option, double-clicking the icon in the Objective View starts the
Event List with the filter and view of the associated entity.

The class you associate with a symbol determines the appropriate Tools menu for the
symbol when viewed in the Objective View.

Symbol defined for the
NerveCenter class and
inserted in the object
layer.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

Appendix A

Inform Messages
Inform messages, like all other NerveCenter and Netcool/OMNIbus communications,
use the TCP protocol. For every inform, the probe establishes a secure socket
connection with the NerveCenter Universal Platform Adapter. All messages share a
format consisting of a timestamp, a common header, and message data specific to the
type of message.

NerveCenter has predefined variables that it sends to the probe when processing an
inform action. You can run the probe in debug mode to confirm that the probe is
receiving the correct data from NerveCenter.

This appendix contains the following sections:

� Inform Data Sent from NerveCenter on page 29

Lists and describes the variables sent with NerveCenter inform messages.

� Debug Probe Output on page 31

Describes how you can confirm that the probe is correctly processing
NerveCenter informs.

Inform Data Sent from NerveCenter
The Inform Netcool message is the mechanism that NerveCenter uses to send events
to Netcool/OMNIbus. The following table describes the data sent with NerveCenter
informs. The first three items are contained in the inform header. The remaining items
are listed alphabetically.

Note Variables that are included by default in the Identifier field of the
nervecenter.rules file are listed as a Default Identifier value..

Table 1. Inform Data

Variable Description

$LDT Local date timestamp.

$MessageType The type of message being sent is Inform Netcool. There are seven
possible types of messages:

� Connection Request

� Connection Accepted

� Connection Rejected

� Exit Notification

� Heartbeat Query

� Heartbeat Response

� Inform Netcool

$ServerID The unique identifier for the NerveCenter Server that manages the
current alarm transition and alert. The identifier consists of
hostname or IP address. This identification becomes important
when there are multiple NerveCenter Servers sending informs to
the same Universal Platform Adapter.

$AlrmDN The alarm definition name for the alarm that transitioned and
generated the inform.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

30
$AlrmProp The property assigned to the alarm that transitioned and generated
the inform.

$BOI The base object instance for the interface that triggered the
transition and generated the inform. If the base object is associated
with an interface and, therefore, is listed as a table in the MIB
.ASN1 file, the instance corresponds to a row in that table.

$BON The base object name for the SNMP base object that triggered the
transition and generated the inform.

$DSN Default Identifier value. The destination state name (the name of
the state to which the alarm transitioned).

$DSS Default Identifier value. The destination state severity (the severity
level associated with the state to which the alarm transitioned).

$IPAddr Default Identifier value. The IP address of the node that caused the
event. If the node has more than one IP address, the number
provided denotes the IP address associated with the event.

$MesgID Default Identifier value. The specific number that you enter into the
NerveCenter Client alarm definition when you define the
Netcool/OMNIbus inform action. If no number is entered, the
message ID defaults to the value 1000 for any transition whose
destination state has a severity less than 9 (Warning). For severity
levels of 9 or greater, the $MesgID defaults to the value 1000 plus
the destination state’s severity level.

$NodeName Default Identifier value. The name of the node that caused the
event to be sent. The name consists of hostname or IP address.

$NPG The node property group assigned to the node associated with the
inform.

$OSN Default Identifier value. The originating state name (the name of
the state from which the alarm transitioned).

$OSS Default Identifier value. The originating state severity (the severity
level associated with the state from which the alarm transitioned).

$ROCom The read only community string of the node associated with the
inform.

$RWCom The read-write community string of the node associated with the
inform.

$TrapEID Default Identifier value. The trap’s enterprise ID. If the transition
was caused by a trigger fired from an SNMP trap, the enterprise ID
is included here. If the transition was not from a trap, this variable is
empty.

$TrapGN Default Identifier value. The trap’s generic number. If the transition
was caused by a trigger fired from an SNMP trap, the generic trap
number is included here. If the transition was not from a trap, this
variable defaults to -2.

$TrapSN Default Identifier value. The trap’s specific number. If the transition
was caused by a trigger fired from an SNMP trap, the specific trap
number is included here. If the transition was not from a trap, this
variable defaults to -2.

$TrigName The name of the trigger that caused the state transition.

Table 1. Inform Data (continued)

Variable Description
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

31
Debug Probe Output
By running the probe in debug mode, you can confirm that the probe is receiving the
correct data from NerveCenter. This helps you establish that:

� NerveCenter is communicating with the probe—it’s especially important to
determine this when NerveCenter and Netcool components are installed on
different machines.

� The probe is receiving the correct information from NerveCenter—this helps
identify whether you have the correct versions of both the probe and NerveCenter.

The command for running the probe in debug mode is:

$OMNIHOME/probes/nco_p_nervecenter -messagelevel debug &

This command forces Netcool/OMNIbus to log the parsed values received from the
probe to a file named nervecenter.log, located in the $OMNIHOME directory.

The NerveCenter inform variables are logged each time NerveCenter issues an inform
to the probe. Each log entry is appended to the nervecenter.log file. The log file lists
each variable received from NerveCenter along with the variable’s current value. You
can compare the variables and values against the NerveCenter inform data for each
of your inform actions.

$VarBinds (n) Variable binding pair for the nth variable binding, in text format:
attribute = value

Table 1. Inform Data (continued)

Variable Description
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

32

http://www.open.com

Appendix B

Sample Rules File
The nervecenter.rules file is the starting point for customizing the Netcool/OMNIbus
desktop, eliminating duplicate alerts in the Event List, and associating events with
fields that can be manipulated by the Object Server. This appendix contains a
customized nervecenter.rules file.

The sample rules file was modified to do the following:

� Define lookup tables for adding information to an event. The tables for this
example are located in $OMNIHOME/probes/platform and are accessed using
the lookup keyword.

� Create generic variable token definitions that can be assigned to database fields.

� Assign default values to database fields to ensure all fields contain a value. The
rules file later passes these fields to the Object Server when the probe receives
certain types of events.

� Create several different types of classes, along with associated token variables.
The class value is set depending on the type of event. This field is also used to
associate tools and actions in the Netcool desktop tool.

� Parse the node names, which follow a predefined set of naming conventions, and
extract certain values that can be expanded into more readable text.

� Define separate cases for events and make field assignments for each case.
Each case is based on an incoming $MesgID value, which the user provides
when creating the inform action in NerveCenter.

� Modify the Identifier field and add a value for the AlertKey field. The AlertKey
field forwards to the Object Server the name of the alarm, node, and interface if
applicable for an inform.

If you intend to develop your own nervecenter.rules file, you might first map out the
message you want for a single NerveCenter alarm and then create the case statement
for that $MesgID value. This makes it easy to format the @Summary field to include
the information you want displayed to the operator. The rules file can grow quite large;
working with one alarm case at a time makes customization easier.
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

34
Sample Nervecenter.rules File
The sample that follows shows the complete rules file.

Caution Make a backup copy of the default nervecenter.rules file before modifying it.
Changes you make to the rules file affect the probe’s compatability with
incoming NerveCenter inform data. As with customizing any software, you
should know both the Netcool and NerveCenter products thoroughly and
test each change you make to the rules file before proceeding with further
changes.

When making changes to a rules file, you must follow the established
Netcool syntax. If the syntax in a rules file is incorrect, the probe cannot be
started. Netcool/OMNIbus includes a syntax probe that you can use to test
the syntax of a rules file.

##
Copyright (C) 1998 Omnibus Transport Technologies Ltd.
All Rights Reserved
RESTRICTED RIGHTS:
This file may have been supplied under a license.
It may be used, disclosed, and/or copied only as permitted
under such license agreement. Any copy must contain the
above copyright notice and this restricted rights notice.
Use, copying, and/or disclosure of the file is strictly
prohibited unless otherwise provided in the license agreement.
Ident: $Id: nervecenter.rules 1.1 1998/07/07 09:23:42 nic Development $
###
 table interfaces= "/opt/Omnibus/probes/hpux10/Tables/interfaces.lookup"
 default="NoMatch"
 table fr= "/opt/Omnibus/probes/hpux10/Tables/fr.lookup"
 default="NoMatch"
 table bgp= "/opt/Omnibus/probes/hpux10/Tables/bgp.lookup"
 default="NoMatch"
 table junction= "/opt/Omnibus/probes/hpux10/Tables/junction.lookup"
 default="NoMatch"
 table abbreviations = "/opt/Omnibus/probes/hpux10/Tables/abbreviations.lookup"
 default="9999"
 table supportdefinitions =
"/opt/Omnibus/probes/hpux10/Tables/supportdefinitions.lookup"
 default="0"
 table exceptionscity = "/opt/Omnibus/probes/hpux10/Tables/exceptionscity.lookup"
 default="Unknown"
 table exceptionsdevfun = "/opt/Omnibus/probes/hpux10/Tables/exceptionsdevfun.lookup"
 default="Unknown"
##
Other Generic Definitions
$DISPLAYON = 1
$DISPLAYOFF = 0
$DONOTFORWARDEVENT = 0
$FORWARDEVENT = 1
$ACKFORWARDEVENT = 2
$UNDEFINED_SERVICE = 999
$UNDEFINED_CLASS = 9999
$NULL = 0
$UNKNOWN = "Unknown"
$UNDEFINED = "Undefined"
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

35
$CUSTOMER = "xxx"
$STARTEVENT = 1
$ENDEVENT = 0
#
Put ProbeWatch Specific messages here, ie to customise Agent names
!! This is not part of management system event processing
#
if(match(@Manager, "ProbeWatch"))
{
 switch(@Summary)
 {
 case "Running ...":
 @AlertGroup = "probestat"
 @Type = 2
 @Rise = $STARTEVENT
 case "Going Down ...":
 @AlertGroup = "probestat"
 @Type = 1
 @Rise = $ENDEVENT
 default:
 }
 @AlertKey = @Agent
 @Summary = @Agent + " probe on " + @Node + ": " + @Summary
} else
{
 switch($MessageType)
 {
 case "Connection Accepted":
 @Identifier = $MessageType + $ServerID
 @Summary = "Connection accepted from " + $ServerID
 @Severity = 0

 case "Connection Rejected":
 @Identifier = $MessageType + $ServerID
 @Summary = "Connection rejected from " + $ServerID
 @Severity = 3

 case "Exit Notification":
 @Identifier = $MessageType + $ServerID
 @Summary = "Exit notification received from " + $ServerID
 @Severity = 1

 case "Inform Netcool":
 @Agent = "NerveCenter-site"
 @Node = $NodeName
 @NodeAlias = $IPAddr
 @Summary = "??: " + $MesgID
 @Manager = "manager1"
 @Severity = 1
 @Type = 1

###

The Informs start here for main rules section (non ProbeWatch alerts).
!! This IS where management system event processing starts
#
Default User specific fields
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

36
@RemedyFlag = $DONOTFORWARDEVENT
@ProcessedFlag= $NULL
@LoggedFlag = $NULL
@DatabaseFlag = $DONOTFORWARDEVENT
@AlertClass = $NULL
@DevFuncCode = $UNKNOWN
@CustomerCode = $UNKNOWN
@CityCode = $UNKNOWN
@Location = $UNKNOWN
@Class = $UNDEFINED_CLASS
@DisplayFlag = $DISPLAYOFF
@Interface = $UNDEFINED
@Rise = $STARTEVENT
#
SupportClass is a reference indicating the Support for a particular event
#
$UNDEFINED_SUPPORT = "0"
$INTERNAL = "1"
$REMOTE = "2"
$BUSINESS = "3"
$OPERATIONS = "4"

@SupportClass = $UNDEFINED_SUPPORT
#
VendorClass is defined by the division of the Class by the value of 100
VendorClass table will look like:
#
10 Cisco
11 Bay
99 Other
#
$CISCO = "10"
$BAY = "11"
$OTHER = "99"

@VendorClass = $OTHER
#
AlertClass Definitions
$LINKFAILURE = "LinkFailure"
$ROUTINGFAILURE = "RoutingFailure"
$COMPONENTFAILURE = "CompentFailure"
$ENVFAILURE = "EnvironmentalFailure"
$NODEFAILURE = "NodeFailure"
$PERFORMANCE = "Performance"
$OTHERCLASS= "Other"

EventType Definitions
$TRAFFICDROP= "TrafficDrop"
$TRAFFICLOAD= "TrafficLoad"
$PACKETLOSS = "PacketLoss"
$BGPFAILURE = "BGPFailure"
$SERVICEFAILURE = "ServiceFailure"
$MEMORYFAILURE = "MemoryFailure"
$LINKDOWN = "LinkDown"
$NODEDOWN = "NodeDown"
$SECURITY = "Security"
$CPUFAILURE = "CPUFailure"
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

37
$LINKERROR = "LinkError"
$SNMPFAILURE = "SnmpFailure"

If the Node Name is NOT an IP address - parse out info from the name
#
if (regmatch(@Node, "^[a-zA-Z][a-zA-Z][a-zA-Z][0-9][0-9][a-zA-Z][a-zA-Z][a-zA-Z]")) {
 @DevFuncCode = extract(@Node, "([a-zA-Z][a-zA-Z][a-zA-Z]+)")
 $junction= lookup(@Node,junction)
 if (match($junction,"NoMatch")) {
 @SupportClass = lookup (@DevFuncCode, supportdefinitions)
 } else {
 @SupportClass = lookup ($junction, supportdefinitions)
 }
 @Class = lookup (@DevFuncCode, abbreviations)
 @CustomerCode = "abc"
 @CityCode = extract(@Node, ".*([a-zA-Z][a-zA-Z][a-zA-Z])")
 @VendorClass = int(@Class)/100
 @Location= $RWCom
 @DisplayFlag = $DISPLAYON
} else

#
if (regmatch(@Node, "^[a-zA-Z][a-zA-Z][0-9][0-9][a-zA-Z][a-zA-Z][a-zA-Z]")) {
 @DevFuncCode = extract(@Node, "([a-zA-Z][a-zA-Z]+)")
 @CustomerCode = "abc"
 @CityCode = extract(@Node, ".*([a-zA-Z][a-zA-Z][a-zA-Z])")
 @Class = lookup (@DevFuncCode, abbreviations)
 @VendorClass = int(@Class)/100
 @SupportClass = lookup (@DevFuncCode, supportdefinitions)
 @Location= $RWCom
 @DisplayFlag = $DISPLAYON
} else

#
if (regmatch(@Node, "^[a-zA-Z][a-zA-Z][a-zA-Z][0-9][a-zA-Z][a-zA-Z][a-zA-Z][a-zA-Z]")) {
 @DevFuncCode = extract(@Node, "([a-zA-Z][a-zA-Z][a-zA-Z]+)")
 @CustomerCode = "abc"
 @CityCode = extract(@Node, ".*([a-zA-Z][a-zA-Z][a-zA-Z])")
 @Class = lookup (@DevFuncCode, abbreviations)
 @VendorClass = int(@Class)/100
 @SupportClass = lookup (@DevFuncCode, supportdefinitions)
 @Location= $RWCom
 @DisplayFlag = $DISPLAYON
} else

#
if (regmatch(@Node, "^yes[0-9][0-9][0-9]i[0-9][0-9][a-zA-Z][a-zA-Z][a-zA-Z]")) {
 @DevFuncCode = extract(@Node, "([a-zA-Z][a-zA-Z][a-zA-Z]+)")
 @CustomerCode = "abc"
 @CityCode = extract(@Node, ".*([a-zA-Z][a-zA-Z][a-zA-Z])")
 @Class = lookup (@DevFuncCode, abbreviations)
 @VendorClass = int(@Class)/100
 @SupportClass = lookup (@DevFuncCode, supportdefinitions)
 @Location= $RWCom
 @DisplayFlag = $DISPLAYON
} else
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

38
{
#
Pick up the odd nodes
 @DevFuncCode = lookup(@Node, exceptionsdevfun)
 $junction= lookup(@Node,junction)
 if (match($junction,"NoMatch")) {
 @SupportClass = lookup (@DevFuncCode, supportdefinitions)
 } else {
 @SupportClass = lookup ($junction, supportdefinitions)
 }
 @CustomerCode = "abc"
 @CityCode = lookup(@Node, exceptionscity)
 @Class = lookup (@DevFuncCode, abbreviations)
 @VendorClass = int(@Class)/100
 @Location= $RWCom
 @DisplayFlag = $DISPLAYON
}

#
Check to see if @Class was not set (Normally because not found in any lookup
if (int(@Class) == 0) {
 @Class = $UNDEFINED_CLASS
 @VendorClass = $OTHER
}

 # Next Enterprise: NetLabs_NerveCenter .1.3.6.1.4.1.78
 switch($MesgID)
 {
 case "3004":
 # NC_alarm1
 @AlertKey = $AlrmDN + $NodeName
 @AlertGroup = $AlrmDN + "FreeBusy"
 @Summary = "NC: " + $AlrmDN + ": NODE: " + $NodeName + " CPU Utilization
back to normal"
 @Severity = "2"
 @AlertClass = $COMPONENTFAILURE
 @EventType = $CPUFAILURE
 @Rise = $ENDEVENT
 case "3007":

 # NC_alarm2
 details($VarBind1)

 @AlertKey = $AlrmDN + $NodeName
 @AlertGroup = $AlrmDN + "FreeBusy"
 @Summary = "NC: " + $AlrmDN + ": NODE: " + $NodeName + " CPU Utilization
 >= 75% <= 90%"
 @Severity = "3"
 @AlertClass = $COMPONENTFAILURE
 @EventType = $CPUFAILURE
 @Rise = $STARTEVENT
 case "100000":
 # NC_alarm3
 @AlertKey = $AlrmDN + $NodeName
 @AlertGroup = $AlrmDN + "UpDown"
 @Summary = "NC: " + $AlrmDN + ": NODE: " + $NodeName + " unreachable."
 @Severity = 4
 @AlertClass = $NODEFAILURE
 @EventType = $NODEDOWN
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

39
 @Rise = $STARTEVENT
 case "100001":
 # NC_alarm4
 @AlertKey = $AlrmDN + $NodeName
 @AlertGroup = $AlrmDN + "UpDown"
 @Summary = "NC: " + $AlrmDN + ": NODE: " + $NodeName + " unreachable.
 Problem with network path to node."
 @Severity = 4
 @AlertClass = $NODEFAILURE
 @EventType = $NODEDOWN
 @Rise = $STARTEVENT
 case "100003":
 # NC_alarm5
 @AlertKey = $AlrmDN + $NodeName
 @AlertGroup = $AlrmDN + "UpDown"
 @Summary = "NC: " + $AlrmDN + ": NODE: " + $NodeName + " Down."
 @Severity = 5
 @AlertClass = $NODEFAILURE
 @EventType = $NODEDOWN
 @Rise = $STARTEVENT
 case "100004":
 # NC_alarm6
 @AlertKey = $AlrmDN + $NodeName + $INTERFACE
 @AlertGroup = $AlrmDN
 @Summary = "NC: " + $AlrmDN + ": High Error Rate (>5%) on NODE: " +
 $NodeName + " interface " + $INTERFACE + "."
 @Severity = 4
 @AlertClass = $PERFORMANCE
 @EventType = $LINKERROR
 @Rise = $STARTEVENT
 case "100008":
 # NC_alarm7
 details($VarBind1)
 @AlertKey = $AlrmDN + $NodeName + $INTERFACE
 @AlertGroup = $AlrmDN + "UpDown"

 $LookupKey = $NodeName + $INTERFACE
 $SpecialInfo = lookup ($LookupKey, interfaces)

 if(match($SpecialInfo,"NoMatch")) {
 $Exclamation = ""
 $SpecialInfo = ""

 @Severity = 4
 } else {

 $Exclamation = "Hot!! "
 @Severity = 5
 }
 @Summary = $Exclamation + "NC: " + $AlrmDN + ": Node " + $NodeName +
 " Interface: " + $INTERFACE + " is Down " + $SpecialInfo
 @Interface = $INTERFACE
 @AlertClass = $LINKFAILURE
 @EventType = $LINKDOWN
 @Rise = $STARTEVENT
 case "100011":
 # NC_alarm8

 details($VarBind1)
 @AlertKey = $AlrmDN + $NodeName + $INTERFACE
 @AlertGroup = $AlrmDN + "UpDown"

 $LookupKey = $NodeName + $INTERFACE
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

40
 $SpecialInfo = lookup ($LookupKey, interfaces)
 if(match($SpecialInfo,"NoMatch")) {
 $Exclamation = ""
 $SpecialInfo = ""

 @Severity = 4
 } else {

 $Exclamation = "Hot!! "
 @Severity = 5
 }
 @Summary = $Exclamation + "NC: " + $AlrmDN + ": Node " + $NodeName +
 "Interface: " + $INTERFACE + " is Flapping " + $SpecialInfo
 @Interface = $INTERFACE
 @AlertClass = $LINKFAILURE
 @EventType = $LINKDOWN
 @Rise = $STARTEVENT
 case "100016":
 # NC_alarm9
 @AlertKey = $AlrmDN + $NodeName + $INTERFACE
 @AlertGroup = $AlrmDN + "UpDown"
 @Summary = "NC: " + $AlrmDN + ": Node: " + $NodeName + " Session: " +
 $INTERFACE + " is Up."
 @Severity = 2
 @AlertClass = $ROUTINGFAILURE
 @EventType = $BGPFAILURE
 @Rise = $ENDEVENT
 case "100017":
 # NC_alarm10
 @AlertKey = $AlrmDN + $NodeName
 @AlertGroup = $AlrmDN + "Reboot"
 @Summary = "NC: " + $AlrmDN + ": NODE: " + $NodeName + " has rebooted."
 @Severity = 3
 @AlertClass = $NODEFAILURE
 @EventType = $NODEDOWN
 @Rise = $STARTEVENT
 case "100063":
 # NC_alarm11

 details($*)
 @AlertKey = $AlrmDN + $NodeName
 @AlertGroup = $AlrmDN + "LowOK"
 @Summary = "NC: " + $AlrmDN + ": NODE: " + $NodeName +
 "Low Memory! Current " + $VarBind1
 @Severity = 4
 @AlertClass = $PERFORMANCE
 @EventType = $MEMORYFAILURE
 @Rise = $STARTEVENT
 case "100064":
 # NC_alarm12

 details($*)
 @AlertKey = $AlrmDN + $NodeName
 @AlertGroup = $AlrmDN + "LowOK"
 @Summary = "NC: " + $AlrmDN + ": NODE: " + $NodeName +
 "Returned to normal memory utilization. Current memory = " + $VarBind1
 @Severity = 2
 @AlertClass = $PERFORMANCE
 @EventType = $MEMORYFAILURE
 @Rise = $ENDEVENT
 default:
Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

41
 @Summary = "Unknown specific trap number (" + $MesgID + ") received for
 enterprise " + $enterprise-name
 @Severity = 1
 # details ($TrapEID, $MesgID, $ServerID, $NodeName, $INTERFACE, $NPG,
 $AlrmDN, $AlrmProp)
 }
###

This is the end of the main rules section
#
###
 #
 # The identifier is built here to take into account the AlertKey
 #
 @Identifier = $ServerID+":"+$NodeName+":"+$MesgID+":"+@AlertKey+":"+@Rise
 @Initial_Severity = @Severity

default:
}

details($*)
}

Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

http://www.open.com

Open Service, Inc | 110 Turnpike Road, Suite 308 | Westborough, MA 01581
 www.open.com | 508.599.2000 | info@open.com

42

http://www.open.com

	Contents
	Introduction
	Overview
	What is Netcool/OMNIbus?
	What is NerveCenter?
	Behavior Models
	Alarms
	Inform Messages

	How NerveCenter Complements Netcool/OMNIbus
	Smart Polling
	Intelligent Correlation
	Distributed Architecture
	Other Advantages

	Components Required for Integration
	Micromuse Netcool/OMNIbus Components
	Open NerveCenter Components

	How the Integration Components Interact
	NerveCenter Configuration Settings
	NerveCenter Server Inform Port Settings
	Universal Platform Adapter Settings
	Inform Action Settings

	Netcool/OMNIbus Configuration Settings
	Object Server Data Management Settings
	NerveCenter Probe Settings
	Nervecenter.props file
	Nervecenter.rules file

	Desktop settings
	Filtered Event Lists
	Custom Views
	Alert classes
	Automated Actions
	Objective View Map

	Appendix A: Inform Messages
	Inform Data Sent from NerveCenter
	Debug Probe Output

	Appendix B: Sample Rules File
	Sample Nervecenter.rules File

