

NerveCenter 6.1 AddVarbinds API

Linux & Solaris

Version 6.1

June 2014 NCAVB61-01

Copyright

Portions Copyright ©1989-2014 LogMatrix, Inc. / OpenService, Inc. All rights reserved.

Disclaimers

LogMatrix, Inc. ("LogMatrix") makes no representations or warranties, either expressed or implied, by or

with respect to anything in this manual, and shall not be liable for any implied warranties of

merchantability or fitness for a particular purpose or for any indirect, special or consequential damages.

These applications are available through separate, individual licenses. Not every feature or application

described herein is licensed to every customer. Please contact LogMatrix if you have licensing questions.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or

by any means, photocopying, recording or otherwise, without prior written consent of LogMatrix. While

every precaution has been taken in the preparation of this book, LogMatrix assumes no responsibility for

errors or omissions. This publication and the features described herein are subject to change without

notice.

The program and information contained herein are licensed only pursuant to a license agreement that

contains use, reverse engineering, disclosure and other restrictions.

Trademarks

LogMatrix is registered in the U.S. Patent and Trademark Office. NerveCenter and the LogMatrix Logo

are trademarks of LogMatrix, Inc.

All other products or services mentioned in this manual may be covered by the trademarks, service marks,

or product names as designated by the companies who market those products.

Contacting LogMatrix

LogMatrix, Inc.

2 Mount Royal Ave, Suite 250

Marlborough, MA 01752

Phone 508-597-5300

Contact email: info@logmatrix.com

Website: www.logmatrix.com

Forum: http://community.logmatrix.com/LogMatrix

Blog: www.logmatrix.com/blog

Documentation: docs.logmatrix.com/NerveCenter/6.1.00

mailto:info@logmatrix.com
http://community.logmatrix.com/LogMatrix
http://www.logmatrix.com/blog
http://docs.logmatrix.com/NerveCenter/6.1.00/

NerveCenter 6.1 AddVarbinds API Page 3

NerveCenter AddVarbinds API
The AddVarbinds API provides the ability for enhancing the data being processed by Alarms, Poll

Functions and Trap Masks. Through this API, data retrieved by polls and data received from event

notifications can be enriched and passed on to other elements of your site’s management solution.

In Part One, which follows immediately, this document presents usage examples for the AddVarbinds

API and then in Part Two provides a reference guide on the API’s functions.

Availability:

The AddVarbinds API is available in the same manner across NerveCenter’s supported platforms.

The API is included as part of the NC5.2, NC6.0, and NC6.1 releases and does not require further

component acquisition or download.

If your site is using versions of NerveCenter prior to these NC6.1, contact your NerveCenter sales

representative and enquire on how your NerveCenter systems can be upgraded.

Compatibility:
There is no change for the AddVarbinds API between NerveCenter versions 6.0 and 6.1.

NerveCenter Alarm Models, Trap Masks, Polls and Perl Subroutine Actions that take advantage

of this API do not need review for their usage of this API when upgrading from NC6.0 to NC6.1.

Part One: Working with the AddVarbinds API

Example: Enhancing the common LinkDown SNMP Trap
Network devices such as servers, routers, switches, workstations and even notebooks, when equipped

with an SNMP Agent, give off the standard set of SNMP Traps. LinkUp, LinkDown, ColdStart,

AuthenticationFailure are the commonly seen traps these devices give off to your network management

infrastructure.

Running NerveCenter’s nclistener in a terminal window might show the live receipt of these kinds of

notifications. Here is an example of nclistener running on a workstation named nervecenter.

nervecenter{gmoberg}501: /opt/OSInc/bin/nclistener

nclistener Version 6.1.00 (GA) (6100 BLD25), Linux(el5)/x86-64 (64-bit) Copyright (C) 1989-2014 LogMatrix Inc.

Listening for SNMP Notifications

2014-06-14 14:32:49

SNMPv2c Trap { from(10.1.50.202:4) trapOID(linkDown) ticks(870550781) community(public)}
 #vb1: {ifIndex.75497818, 75497818/Integer32}

 #vb2: {ifAdminStatus.75497818, 1/Integer32}

 #vb3: {ifOperStatus.75497818, 2/Integer32}

2014-06-14 15:22:08
SNMPv2c Trap { from(10.1.50.202:4) trapOID(linkUp) ticks(870846834) community(public)}

 #vb1: {ifIndex.75497818, 75497818/Integer32}

NerveCenter 6.1 AddVarbinds API Page 4

 #vb2: {ifAdminStatus.75497818, 1/Integer32}
 #vb3: {ifOperStatus.75497818, 1/Integer32}

Here, one LinkDown and one LinkUp notification is received by the management station. The content of

these two traps matches the definition for each as found in the IF-MIB module of RFC2863. Each

notification reports the alert itself – LinkUp or LinkDown – and then three pieces of data pertaining to

this occurrence of the alert.

Here are the definitions from RFC2863:

-- definition of interface-related traps.

linkDown NOTIFICATION-TYPE

 OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }
 STATUS current

 DESCRIPTION

 "A linkDown trap signifies that the SNMP entity, acting in
 an agent role, has detected that the ifOperStatus object for

 one of its communication links is about to enter the down

 state from some other state (but not from the notPresent
 state). This other state is indicated by the included value

 of ifOperStatus."
 ::= { snmpTraps 3 }

linkUp NOTIFICATION-TYPE
 OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }

 STATUS current

 DESCRIPTION
 "A linkUp trap signifies that the SNMP entity, acting in an

 agent role, has detected that the ifOperStatus object for

 one of its communication links left the down state and

 transitioned into some other state (but not into the

 notPresent state). This other state is indicated by the

 included value of ifOperStatus."
 ::= { snmpTraps 4 }

Catching these alert notifications in NerveCenter is easy using its Trap Mask functionality. The

NerveCenter sample database contains simple Trap Mask examples for these two events.

But, let’s say your processes need to add information to such an event. Perhaps the requirement is that

the network management infrastructure needs to record these events, including the name of the reporting

device, a formatted timestamp and the name of the NerveCenter server receiving the notification.

Including items such as these is where the AddVarbinds API is put to use.

To implement the solution for this example’s requirements, the first step is to add the three values to the

trap data when a linkUp or linkDown trap is received. In the Trap Mask dialog for the linkDown event

type, the following lines of Perl code could be used.

TrapMask Function for LinkDown.

1. Add varbinds to the notification’s data payload.
AddVarbind($NodeName); # Add the name of the node reporting the event.

AddVarbind($NCHostName); # Add the name of this management station.

AddVarbind(NCTimeStamp()); # Add the current date & time.
2. Fire alert trigger

FireTrigger("linkDown");

NerveCenter 6.1 AddVarbinds API Page 5

The first three lines invoke the AddVarbind() function. These three lines add the three required data

elements, one at a time. $NodeName, $NCHostName are built-in values, automatically provided by

NerveCenter when a Trap Mask Function is called. And the third call to AddVarbind() is set to first call

the NCTimeStamp() function, thereby having AddVarbind() receive the value returned – the formatted

date & time.

NCTimeStamp() is a function that is provided automatically in all your Perl activities within NerveCenter. The code is shown below

and gives an example of how to build a regular timestamp. If you need a different form of a timestamp, copy this to make your own.

NCTimeStamp
Prints the Current date and time in the format “[yyyy-mm-dd hh:mm:ss]”.

Ex: 5 seconds after 3:12pm on June 30th, 2014 is “[2014-06-30 15:12:05]”.
sub NCTimeStamp {

 ($sec, $min, $hour, $mon, $year, $wday, $yday, $isdst) = localtime(time);

 $year += 1900;
 $mon += 1;

 sprint(“[%d-%02d-%02d %02d:%02d:%02d]”, $year, $mon, $day, $hour, $min, $sec);

}

You could repeat this logic for the Trap Mask that handles the very similar LinkUp notifications. Nearly

the same Perl code would be used.

The next step is to create an Alarm, where “linkDown” and “linkUp” trigger events are used to drive state

transitions. The Alarm’s transitions can be used to test our AddVarbind work by adding actions where

the augmented data is re-emitted as an output from NerveCenter.

Since we’re already talking about Traps, let’s use the ‘Send Trap’ action. Setting up the ‘Send Trap’

action to issue the trap back to localhost allows the same nclistener to display our modifications.

However, it is important to change the name of the trap from linkDown to something else. Otherwise an

infinite loop situation would be set up.

Here is the output from nclistener upon the occurrence of the next linkDown event. The first event is the

incoming linkDown notification. The second is the result of the re-packaging performed by the above

Perl logic and the issuing with a ‘Send Trap’ action. The re-packaged notification has been sent as an

enterprise-specific trap, number #111. This avoids sending a redundant linkDown event back to our

NerveCenter Server.

2014-06-14 13:41:21
SNMPv2c Trap { from(10.1.50.202:4) trapOID(linkDown) ticks(878882203) community(public)}

 #vb1: {ifIndex.75497794, 75497794/Integer32}

 #vb2: {ifAdminStatus.75497794, 1/Integer32}
 #vb3: {ifOperStatus.75497794, 2/Integer32}

2012-06-14 13:41:24
SNMPv1 Trap { from(10.1.50.107:44984) agent(10.1.50.202) generic(6 "enterpriseSpecific") specific(111) enterprise(openservice)

ticks(764863027) community(public)}

 #vb1: {ifIndex.75497794, 75497794/INTEGER}
 #vb2: {ifAdminStatus.75497794, 1/INTEGER}

 #vb3: {ifOperStatus.75497794, 2/INTEGER}

 #vb4: {osincVarbindValue.1, 3Com-SS3-4500-Unit1/OCTET STRING[15]}
 #vb5: {osincVarbindValue.2, nervecenter/OCTET STRING[5]}

 #vb6: {osincVarbindValue.3, [2014-06-30 13:41:22]/OCTET STRING[20]}

NerveCenter 6.1 AddVarbinds API Page 6

The first event above is a linkDown notification from a 3Com SuperStack3 switch at 10.1.50.202. Our

Trap Mask handler for linkDown events is called, adds its three varbinds and then fires a ‘linkDown’

trigger. This causes an Alarm we have prepared to transition and call a ‘Send Trap’ action. This dutifully

emits the event and, as the nclistener output shows, the data now contains our AddVarbind values in

addition to the original notification’s data payload. “3Com-SS3-4500-Unit1” is the name of the device at

10.1.50.202 (aka “$NodeName”), “nervecenter” is the name of the management station (aka

“$NCHostName”), and the time has been added using our required format.

Working with Varbinds
As this example has shown, SNMP provides data as part of its event notifications. The data contained in

the event is provided as an orderly arranged set of items. The order and arrangement of the items is

specified by the rules of SNMP and by the definition of the event within an SNMP MIB module. The

definition, for example, of the linkDown trap notification specifies three pieces of data are to be included.

The ordering given for such event definitions, exemplified by the linkDown definition in IF-MIB, also

infers the data’s ordering when the event occurs.

SNMP calls these data items Variable Bindings, or varbinds for short. To refer again to our first

example, the linkDown event is defined to contain three varbinds: ifIndex, ifAdminStatus and

ifOperStatus. Our use of the AddVarbinds API grew a linkDown notification’s initial set of three to six

varbinds.

Although we have not yet seen an example of SNMP polling, it too uses the organization of arranging a

message’s contained data into varbinds. And as we shall see in the next example, the AddVarbinds API

can be used for enriching poll responses, just as it was used above for enriching a notification event’s

data.

What is a varbind?
SNMP operates by very specific rules, including how it packages data. A varbind is the packaging of a

single data item. The packaging includes more than just the value. Every varbind is a set of three items:

a name, a data type indicator, and the value. If you return to the nclistener output in our first example,

you’ll find these per-varbind elements. Note how each varbind, such as “ifOperStatus.75497794,

2/INTEGER” or “osincVarbindValue.2, nervecenter/OCTET STRING[5]”, contains these elements.

Specifically,

 “ifOperStatus.75497794” and “osincVarBindValue.2” are names,

 “INTEGER” and “OCTET STRING[5]” are type labels, and

 “2” and “nervecenter” are values.

Let’s look at what SNMP means by a varbind’s name and data type.

SNMP Naming
SNMP uses object identifiers, OIDs, as names. OIDs are numeric sequences, commonly expressed

textually as a sequence of numbers where each is separated by a period. “1”, “100”, “1.2”, “100.300”,

NerveCenter 6.1 AddVarbinds API Page 7

“1.3.5.7.0.9” are all examples of OIDs. To be valid, an OID must be at least one value in length and each

element of the OID sequence must be a non-negative integer. Thus “” (an empty value), “-100”,

“1.2.3.abc” and “1.-33.8” are not valid OIDs.

Because OIDs are cumbersome to read and write they are often replaced with recognizable names. MIB

modules are the means whereby OIDs are defined and given a human-readable name. In SNMP, names

are to start with a lowercase letter and then may contain any number of upper or lower case letters,

numbers and hyphens.

Here are some example OIDs and their textual name.

Table 1 Sample OID-to-Name mappings

OID Name Defined in

1.3.6.1.2.1.1 system SNMPv2-MIB

1.3.6.1.2.1.1.5 sysName SNMPv2-MIB

1.3.6.1.2.1.2.2.1.2 ifDescr IF-MIB

1.3.6.1.2.1.17.1.4 dot1dBasePortTable BRIDGE-MIB

1.3.6.1.6.3.1.1.5.3 linkDown IF-MIB

Most tools hide OIDs and replace them with their textual names. Many parts of NerveCenter do this.

Running nclistener in two terminal session windows at the same time can show the replacement it is

doing. Running “nclistener –oids” indicates that OIDs should be shown. Running without “-oids”

indicates the OIDs should be replaced with their textual names.

Here is an example of two ncicmplistener applications reporting the same SNMPv2c linkDown trap.

Note how the second nclistener shows the OIDs for the varbinds and the TrapOID value whereas the first

nclistener translate these items to text names.

[gmoberg@nervecenter ~]$ /opt/OSInc/bin/nclistener

nclistener Version 6.1.00 (GA) (6100 BLD25), Linux(el5)/x86-64 (64-bit) Copyright (C) 1989-2014 LogMatrix Inc.

Listening for SNMP Notifications

2014-06-14 15:49:15
SNMPv2c Trap { from(10.1.50.202:4) trapOID(linkDown) ticks(905695918) community(public)}

 #vb1: {ifIndex.75497578, 75497578/Integer32}

 #vb2: {ifAdminStatus.75497578, 1/Integer32}
 #vb3: {ifOperStatus.75497578, 2/Integer32}

NerveCenter 6.1 AddVarbinds API Page 8

[gmoberg@nervecenter ~]$ /opt/OSInc/bin/nclistener -oids

nclistener Version 6.1.00 (GA) (6100 BLD25), Linux(el5)/x86-64 (64-bit) Copyright (C) 1989-2014 LogMatrix Inc.

Listening for SNMP Notifications

2012-06-14 15:49:15

SNMPv2c Trap { from(10.1.50.202:4) trapOID(1.3.6.1.6.3.1.1.5.3) ticks(905695918) community(public)}

 #vb1: {1.3.6.1.2.1.2.2.1.1.75497578, 75497578/Integer32}
 #vb2: {1.3.6.1.2.1.2.2.1.7.75497578, 1/Integer32}

 #vb3: {1.3.6.1.2.1.2.2.1.8.75497578, 2/Integer32}

The same OID tagging and translation action applies to polling. Requests made to an SNMP Agent

specify what data is looked up and returned. To do this, the request specifies an OID. When the SNMP

Agent replies, it packages the requested data into a varbind, naming the object’s OID, type and value.

Here are two lookups of the MIB object “sysName”. Both are performed with NerveCenter’s ncget

utility. The first shows the name translation, as usual. The second uses the “-oids” parameter and thus

shows the raw OIDs.

[gmoberg@nervecenter ~]$ ncget -v2c 10.1.50.201 public sysName.0

Sending to 10.1.50.201 161/udp

Normal SNMPv2c reply
 #vb1: {sysName.0, 3Com-SS3-4500-Unit1/OCTET STRING[15]}

[gmoberg@nervecenter ~]$ ncget -oids -v2c 10.1.50.201 public sysName.0

Sending to 10.1.50.201 161/udp

Normal SNMPv2c reply
 #vb1: {1.3.6.1.2.1.1.5.0, 3Com-SS3-4500-Unit1/OCTET STRING[15]}

Automatic OID Generation
Recognizing that OIDs are onerous to deal with, the AddVarbinds API has been set up to allow for

automatic OID generation. While the API permits that OIDs can be specified as needed, it optionally

allows for them to be omitted from calls. The result of omitting an OID is an auto generation of one

quietly within the API’s implementation.

The MIB object osincVarbindValue is used as the base name for automatic OID generation. (This name

has the OID translation “1.3.6.1.4.1.78.11.1.1.10.1.1.2”). Whenever a varbind is added via the API and

no OID is named, this object is used as the base and given an incremental value as its suffix. For

example, if the API is used to add the three varbinds “one”, “two” and “three” without naming any OID,

the first will be automatically assigned the name “osincVarbindValue.1”, the second

“osincVarbindValue.2” and the third “osincVarbindValue.3”.

Thus the Perl code

AddVarbind(“one”);
AddVarbind(“two”);

AddVarbind(“three”);

NerveCenter 6.1 AddVarbinds API Page 9

could lead to the following, if this augmenting of a SNMP trap was re-transmitted as a SNMP Trap

 #vb1: {osincVarbindValue.1, one/OCTET STRING[3]}
 #vb2: {osincVarbindValue.2, two/OCTET STRING[3]}

 #vb3: {osincVarbindValue.3, three/OCTET STRING[5]}

This automatic OID generation is restarted for every trap occurrence or poll response. The first added

varbind, whether this occurs for a Poll Function, Trap Mask Function or a Perl Subroutine Action, where

the auto generation is used, will start anew with osincVarbindValue.1 and move to .2 and then .3 with

each successive call to the AddVarbinds API.

SNMP Data Types
The second part of the varbind packaging is the data type identification.

SNMP defines a set of data types. The original version of SNMP (ca. 1990) introduced INTEGER,

Counter, Gauge, OctetString, Object Identifier, and Opaque. SNMP v2 (ca. 1994) added Counter64,

Unsigned32 and improved the definition of TEXTUAL-CONVENTION. SNMP v2 also provided

replacements for several of v1’s types: Counter became Counter32, Gauge became Gauge32, and

INTEGER is matched with Integer32. (SNMPv3 supports the same set as v2 without change.)

These data types are used for describing the information conveyed using SNMP. For example, if a

message contains data about how quickly an interface on a device is receiving traffic, the data for that rate

would arrive accompanied with a data type identifier. This allows the message receiver to understand

how to interpret the associated value. In this example, the data type identifier would likely be

“Integer32”. As another example, if the hostname of a device is retrieved over SNMP, the returned value

(ex: “SalesDeptPrinter4”) would likely be defined as being an “Octet String”.

Table 2 shows the set of SNMP types and their history. The “Data Types” column names each defined

data type. The “SNMP Version” columns show which of SNMPs three versions supports each data type.

The “ASN.1 BER Tag” column shows the encoding value used for type identification when an SNMP

message is sent on the network.

Note that the SNMP version columns are for historical reference only. Your use of the AddVarbinds API

does not require adherence to this table. For example AddCounter64Varbind can be invoked for

augmenting the return from an SNMP v1 poll or a v1 trap as well as a v2 or v3 poll or trap.

Table 2 SNMP Data Types

Data Types SNMP Version ASN.1 BER
Tag

Note
v1

RFC1155

(Official)

v2

RFC1442

(Historic)

v2 and v3

RFC2578

(Official)
INTEGER Yes Yes Yes 0x02 Signed 32-bit integer,

Enumerations
Integer32 No Yes Yes Signed 32-bit integer
OCTET
STRING

Yes Yes Yes 0x04

BITS No No Yes
OBJECT

IDENTIFIER
Yes Yes Yes 0x06

NerveCenter 6.1 AddVarbinds API Page 10

IpAddress Yes Yes Yes 0x40 IPv4 only
Counter Yes Yes Allowed 0x41 Non-negative, non-decreasing 32-bit
Counter32 No No Yes
Gauge Yes Yes Allowed 0x42 Non-negative 32-bit values.
Gauge32 No Yes Yes
Unsigned32 No No Yes
TimeTicks Yes Yes Yes 0x43 Non-negative, non-decreasing 32-bit values
Opaque Yes Yes Deprecated,

Allowed
0x44 SMIv1 MIB Modules only

NsapAddress No Yes No 0x45 Deprecated
Counter64 No Yes Yes 0x46 Non-negative, non-decreasing 64-bit values
UInteger32 No Yes No 0x47 Deprecated
BIT STRING No Yes No ? Deprecated

NerveCenter 6.1 AddVarbinds API Page 11

Part Two: The AddVarbinds API Reference

AddVarbind

AddVarbind($value);

AddVarbind(“Printer”);

AddVarbind(“Connected @ 12:30:15 08/31/2012”);

AddVarbind($oid, $type, $value);

AddVarbind(“1.3.6.1.2.1.2.2.1.13”,” integer”, 110);

The base call of the API, AddVarbind(), can be used in either of two manners. The two can be used

interchangeably and repeatedly by a Poll Function, Trap Mask Function or Perl Subroutine Action.

AddVarbind() appends the provided $value as an additional varbind to the current varbind set, labeling it

with the an $oid value and identifying the value’s data type according to a value assigned to $type. In the

first format, $oid is automatically created and $type is set to “string”.

AddVarbind($value)

The first format, AddVarbind($value), accepts a single parameter, which is the always accepted as a

character string. $value needs to be defined. This form of AddVarbind(), then, is equivalent to

AddStringVarbind($value). The OID for this form is automatically created as described in the Automatic

OID Generation section.

Defined and undefined variables:

The Perl language supports that variables can be defined or not defined. Writing “my $name;” declares

“$name” as a scalar variable; but no value has been assigned. Thus, $name is undefined.

In order to define a variable, it needs to be assigned to a value. “my $name = ‘fred’;” or “$name =

‘roger’;” are examples of defining the variable $name.

To set a variable to the undefined state, either do not give it a value or else use the ‘undef’ keyword. For

example “undef $name;” forces $name back to be undefined. Also “$name = undef;” will set $name to

be undefined.

The keyword “defined” can be used to test whether a variable is defined or not defined. For example

“print ‘My name is $name.\n” if defined $name;” will print “My name is joe.” if $name is set to “joe” but

will not print anything if $name is not defined.

Throughout the AddVarbind API, it is important to pass only defined values to the API’s functions. If

you write “my $system; AddVarbind($system);”, the call will detect the undefined value and return

without adding anything.

NerveCenter 6.1 AddVarbinds API Page 12

AddVarbind($oid, $type, $value)

The second form, AddVarbind($oid, $type, $value), requires three defined parameters. This format

provides the most flexibility of all the calls in the API. All the other calls, except for TraceAddVarbinds,

map to this call, each providing one or more simplifications. Thus, this call is the least likely to be used

yet provides the broadest range of possible uses.

Example #1 Usage of AddVarbind($oid, $type, $value)

AddVarbind(“1.2.3”, “string”, “east coast domain”);

my $rate = delta(ifEntry.ifInOctets) / $elapsed;

AddVarbind(“1.3.19.20”, “integer”, $rate);

The value of $oid needs to be an object identifier (ex: “1.3.6.1.2.1.1.1.0”). The value assigned to $oid can

be any validly formed OID (ex: not “1.a.2.3” [the ‘a’ is invalid, each element of the OID sequence must

be a non-negative integer]). The OID does not need to be known to the NerveCenter MIB. OIDs can be

either statically defined or else generated at runtime. An empty $oid value or an undefined $oid similarly

result in the function terminating without performing any action.

The requirement of the $oid parameter defined above is universal in the AddVarbinds API. Thus,

the requirement is also valid for AddIntegerVarbind($oid, $value), AddStringVarbind($oid,

$value), AddGaugeVarbind($oid, $value) and any other likewise equivalent calls.

Example #2 Usage examples of $oid parameter for AddVarbind()

my $value = 6;

my $type = “integer”;

my $oid = undef;

AddVarbind($oid, $type, $value); # This will fail because $oid is undefined

$oid = “”;

AddVarbind($oid, $type, $value); # This will fail because $oid is an empty value

$oid = “abc”;

AddVarbind($oid, $type, $value); # This will fail because $oid is not a value OID

$oid = “100.200”;

AddVarbind($oid, $type, $value); # Successful usage

The $type value identifies the SNMP Data type. This value needs to be one of the following strings:

“integer”, “string”, “oid”, “ipaddress”, “counter”, “gauge”, “counter64”, or “unsigned” as shown in Table

3. An empty value or a value outside of this range will result in the function returning without

performing any operation.

NerveCenter 6.1 AddVarbinds API Page 13

Table 3 AddVarbinds API Data Type naming

Data Types SNMP AddVarbinds API

naming v1

RFC1155
FC1442

(Historic)
v2/v3 RFC2578

INTEGER Yes Yes Yes “integer”
Integer32 No Yes Yes
OCTET
STRING

Yes Yes Yes “string”

BITS No No Yes
OBJECT

IDENTIFIER
Yes Ye Yes “oid”

IpAddress Yes Yes Yes “ipaddress”
Counter Yes Yes Allowed “counter”
Counter32 No No Yes
Gauge Yes Yes Allowed “gauge”

or
“unsigned”

Gauge32 No Yes Yes
Unsigned32 No No Yes
TimeTicks Yes Yes Yes “timeticks”
Opaque Yes Yes Deprecated, Allowed “string”
NsapAddress No Yes No -
Counter64 No Yes Yes “counter64”
UInteger32 No Yes No -
BIT STRING No Yes No -

The $value parameter needs to be set to a value that is appropriate for the named $type value. For

example a $value of “Marketing Dept.” would not work if the setting of $type is “integer”.

AddVarbinds

AddVarbinds(@values);

AddVarbinds(“Gateway”, “Connection Lost”, $NodeName, $IPAddress);

my @items = (‘link failure’, $NodeName, ‘priority’);

AddVarbinds(@items);

AddVarbinds((‘service’, ‘customer interface’, ‘traffic limit exceeded’));

AddVarbinds() provides a means of quickly adding a collection of values to a varbind set. Each

element in the list is added as an individual varbind. The additions are performed in the order provided.

Each of the elements of the list must be a defined value.

The implementation of AddVarbinds() is simply a loop that calls AddVarbind($value) for each item

in given Perl list variable.

NerveCenter 6.1 AddVarbinds API Page 14

AddIntegerVarbind

AddIntegerVarbind($value)

AddIntegerVarbind(5);

AddIntegerVarbind($elapsed);

AddIntegerVarbind($oid, $value)

AddIntegerVarbind(“1.2.3.4.5”, 100);

AddIntegerVarbind(“1.2.3.4.6” , -11234);

AddIntegerVarbind() adds $value as a varbind to the current varbind set as an integer and labeled with

the given $oid. In the first form of the call, the varbind is added using an OID that is automatically

generated by NerveCenter.

The value contained in $value needs to be defined and set to an integer value.

Due to Perl’s weak data type mechanism, $value can be set to a string (ex: my $rate = “33”;) or a number

(ex: my $rate = 33;)

Examples of AddIntegerVarbind:

AddIntegerVarbind(0);

my $rate = 33;

AddIntegerVarbind(“100”, $rate);

$rate = “33”;

AddIntegerVarbind($rate);

AddIntegerVarbind(“10.20.30”, “100”);

AddIntegerVarbind(“1.3.6.1.4.1.78.0.100”, “0”);
AddInteger Varbind(“-100”);

AddIntegerVarbind($value)

Appends a varbind to the current set where $value represents a whole number. The varbind will be of

type “integer” and will be set to the current contents of $value. $value needs to be defined and $value

should be set to a whole number.

AddIntegerVarbind($oid, $value)

Appends a varbind to the current set, where $oid names the object-identifier to be used for the new

varbind. $value needs to be set to a whole number. $oid needs to be set to a object-identifier.

This call is the equivalent of AddVarbind($oid, “integer”, $value);

NerveCenter 6.1 AddVarbinds API Page 15

AddStringVarbind

AddStringVarbind($value)

AddStringVarbind(“Printer Paper Alert”);

my $tray = “Lower paper drawer”;

AddStringVarbind($tray);

AddStringVarbind($oid, $value)

AddStringVarbind(“1.2.3.4.5”, “Lobby Conference Room”);

AddStringVarbind(“1.2.3.4.6” , $NodeName);

The AddStringVarbind() functions append the provided $value to the current varbind set, labeling the

addition as an OCTET STRING – one of SNMP’s data types.

The contents of $value can be any valid Perl string. This includes the empty string, “” (a string of zero

length, as produced with ‘my $name = “”; ‘), but does not include an undefined value. Thus “my $name

= undef;” creates a situation where passing $name to AddStringVarbind() would case the function to fail.

AddStringVarbind($value)

Appends a new varbind to the current varbind set, automatically creating the new varbind’s OID and

setting the type to “string”. The call is the equivalent of AddVarbind($value) ; both of these calls add the

varbind, accepting $value as a character string.

AddStringVarbind($oid, $value)

Appends a new varbind to the current varbind set, using $oid as the OID value and the contents of $value

as the varbind’s value – taken to be a character string. The call is the equivalent of AddVarbind($oid,

“string”, $value).

NerveCenter 6.1 AddVarbinds API Page 16

AddGaugeVarbind

AddGaugeVarbind($value)

AddGaugeVarbind(100);

my $temperature = 300;

AddStringVarbind(“Kelvin”);

AddGaugeVarbind($temperature);

$temperature = $temperature – 273 ;

AddStringVarbind(“Celsius”);

AddGaugeVarbind($temperature);

$temperature = (5 / 9) * $temperature + 32 ;

AddStringVarbind(“Fahrenheit”);

AddGuageVarbind($temperature);

AddGaugeVarbind($oid, $value)

AddGaugeVarbind(“1.2.3.4.5”, 1000000);

AddGaugeVarbind, AddCounterVarbind and AddUnsignedVarbind are a family of calls that work

identically. In each case the value assigned into the varbind is an unsigned, 32-bit integer. The range,

then, is 0 up to 4,294,967,295, inclusive.

The role of SNMP’s Gauge data type, as opposed the Counter and Unsigned data types, is to represent an

object where the object’s value should move between a high and low. The value of a gasoline engine’s

fuel tank moves between ‘F’ and ‘E’ for example. The Kelvin temperature scale is a good second

example.

Counter, by comparison, is to represent a value that only increases. The odometer of a car is a suitable

example. Counters can only increase in value or be reset to zero.

Unsigned, the third of these SNMP data types, simply represents an arbitrary value where the range is

constrained to non-negative whole numbers.

NerveCenter 6.1 AddVarbinds API Page 17

An oddity of SNMP is that the Gauge, Gauge32, and Unsigned32 data types share the same

encoding mark. The Basic Encoding Rules (BER) used by SNMP tag these data types with the

value 0x42 (hex), as shown in Table 2. Therefore a management application receiving varbinds of

these types are left to guess which data type (Gauge, Gauge32, Unsigned32) was intended.

AddGaugeVarbind($value)

Appends a new varbind to the current varbind set, where the contents of $value are expected to represent

that of an unsigned, 32-bit integer. The OID for the added varbind is automatically generated by the API

and the type value is set to “gauge”.

AddGaugeVarbind($oid, $value)

Appends a new varbind to the current varbind set, where the contents of $value are expected to represent

that of an unsigned, 32-bit integer and the OID for varbind will be set according to the contents of $oid.

The varbind’s type will be set to “gauge”. The call is the equivalent of “AddVarbind($oid, “gauge”,

$value);” .

AddCounterVarbind

AddCounterVarbind($value)

AddCounterVarbind(1843);

my $allowance = ifEntry.ifInOctets + 10000;

AddCounterVarbind($allowance);

AddCounterVarbind($oid, $value)

AddCounterVarbind(“1.3.6.1.4.1.78.3.4.5”, $numTrapsReceived);

The two AddCounterVarbind() functions append a single varbind to the current varbind set. The $value

provided in either call is taken to be an unsigned, 32-bit integer.

AddCounterVarbind($value)

Appends a new varbind to the current varbind set. The OID of the new varbind is automatically

generated and the varbind’s type is set to “counter”.

NerveCenter 6.1 AddVarbinds API Page 18

AddCounterVarbind($oid, $value)

Appends a new varbind to the cvurrent set. The OID is set to the contents of $oid; the varbind’s type is

set to “counter”, and the varbind’s value is set to the contents of $value.

The call is the equivalent of AddVarbind($oid, “counter”, $value);

AddCounter64Varbind

AddCounter64Varbind($value)

AddCounter64Varbind(1843);

my $reallybignumber = “100200300400500600700”;

AddCounter64Varbind($reallybignumber);

AddCounter64Varbind($oid, $value)

AddCounterVarbind(“1.3.6.1.4.1.78.14.30.44”, $numPollsIssued);

The two AddCounter64Varbind() functions append a single varbind to the current varbind set. The

$value provided in either call is taken to be an unsigned, 64-bit integer.

AddCounter64Varbind is identical to AddCounterVarbind except that the contents of $value can contain

far larger values.

Care must be taken with how 64-bit signed and unsigned values are handled by your Perl code.

The Perl interpreter, upon recognizing these values as numeric will convert them to Perl’s

floating point data type. You will then lose the initial representation. To avoid this, have your

Perl logic handle these large values as if they are character strings.

AddCounter64Varbind($value)

Appends a single varbind to the current set of varbinds. The $value is expected to be a non-negative

whole number. The OID for the varbind is automatically generated by the API. The type for the varbind

is set to “counter64”.

NerveCenter 6.1 AddVarbinds API Page 19

AddCounter64Varbind($oid, $value)

Appends a single varbind to the current set of varbinds. The $value is expected to be a non-negative

whole number. The OID for the varbind is set according to the contents of $oid. The type for the varbind

is set to “counter64”.

The call is the equivalent of AddVarbind($oid, “counter64”, $value);

AddIPAddressVarbind

AddIPAddressVarbind($value)

AddIPAddressVarbind(“192.168.1.1”);

my $ipaddress = “10.1.1.4”;

AddCounter64Varbind($ipaddress);

AddIPAddressVarbind($oid, $value)

AddCounterVarbind(“1.3.6.1.4.1.78.0.11”, $ipaddress);

The AddIPAddress() calls add a single varbind to the current varbind set. The contents of $value must be

an IPv4 Address of the form “xxx.xxx.xxx.xxx”. Do not pass a hostname as $value, use Perl’s name

resolution calls to convert a hostname to an IPv4 address first. Also, do not pass an IPv6 value as the

contents of $value.

These two calls add the varbind as being an “ipaddr”, one of SNMP’s data types as seen in Table 2 and

Table 3. This data type supports only IPv4 addresses. SNMP does not support IPv6 addresses using this

data type.

AddIPAddressVarbind($value)

Adds one varbind, in the form of an IPv4 Address, to the current varbind set. The contents of $value are

to be a character string of the form “xxx.xxx.xxx.xxx” (ex: “100.101.254.3” or “18.4.49.200”). The OID

is automatically generated and the type is set to “ipaddr”.

AddIPAddressVarbind($oid, $value)

Adds one varbind, in the form of an IPv4 Address, to the current varbind set. The contents of $value are

to be a character string that represents a single IPv4 Address. The value of $oid is taken to the varbind’s

OID value. The type is set to “ipaddr”.

The call is the equivalent of AddVarbind($oid, “ipaddr”, $value);

NerveCenter 6.1 AddVarbinds API Page 20

AddOIDVarbind

AddOIDVarbind($value)

AddOIDVarbind(“192.168.1.1”); # Yes, IPAddrs look like OIDs

AddOIDVarbind(“1.2.3.4.5”);

my $cisco = “1.3.6.1.4.1.9”;

AddOIDVarbind($cisco);

AddOIDVarbind($oid, $value)

AddOIDVarbind(“1.3.6.1.4.1.78.0.1”, “1.3.6.1.4.1.78”);

The two AddOIDAddress() calls add a single varbind to the current varbind set. The contents of $value

must be an OID sequence, prepared as a character string. For example, “1.3.6.1.4.1”.

For either call the contents of $value need to be a dot-delimited numeric sequence. Each element of the

sequence must be valid, as discussed in the section SNMP Naming.

AddOIDVarbind($value)

Adds $value in the form of an OID varbind to the current varbind set. The OID for the varbind is

automatically generated and the type is set to “oid”.

AddOIDVarbind($oid, $value)

Adds $value in the form of an OID varbind to the current varbind set. The OID for the varbind is taken

from $oid and the value of the varbind is taken from $value.

The call is the equivalent of AddVarbind($oid, “oid”, $value);

NerveCenter 6.1 AddVarbinds API Page 21

AddTimeTicksVarbind

AddTimeTicksVarbind($value)

AddTimeTicksVarbind(system.sysUpTime);

AddTimeTicksVarbind(400);

my $oneMinuteFromNow = system.sysUpTime + (100 * 60);

AddTimeTicksVarbind($oneMinuteFromNow);

AddTimeTicksVarbind($oid, $value)

AddTimeTicksVarbind(“1.3.6.1.4.1.78.0.2”, “12345”);

AddTimeTicksVarbind() calls add a single varbind to the current varbind set. The contents of $value

must be within the range of an unsigned, 32-bit integer.

The SNMP TimeTicks data type represents a span of time, measured in hundredths of a second. 100 ticks

equals 1 second.

The ‘sysUpTime’ MIB variable from the ‘system’ group reports the life span of the reporting SNMP

Agent using TimeTicks.

AddTimeTicksVarbind($value)

Adds a single varbind to the current varbind set. The contents of $value represents a time period,

measured in 100ths of a second. The range is a non-negative whole number up to the maximum allowed

for a 32-bit unsigned integer. The OID is autogenerated by the API and the type is set to “timeticks”.

AddTimeTicksVarbind($oid, $value)

Adds a single varbind to the current varbind set. The OID is set to $oid and the varbind’s value is set to

$value.

The call is the equivalent of AddVarbind($oid, “timeticks”, $value);

NerveCenter 6.1 AddVarbinds API Page 22

AddUnsignedVarbind

AddUnsignedVarbind($value)

AddUnsignedVarbind(0);

AddUnsignedVarbind(1000000);

my $year = 2012;

AddUnsignedVarbind($year);

AddUnsignedVarbind($oid, $value)

AddUnsignedVarbind(“1.2.3.4.5”, 1000000);

The AddUnsignedVarbind() calls add a single varbind to the varbind set. In each case the value assigned

into the varbind is an unsigned, 32-bit integer. The range, then, is 0 up to 4,294,967,295, inclusive.

AddUnsignedValue($value)

Appends one varbind to the current varbind set. The contents of $value are taken to be an unsigned 32-bit

integer. The varbind’s OID it auto-generated by the API and the type is set to “unsigned”.

AddUnsignedValue($oid, $value)

Appends one varbind to the current varbind set. The contents of $value are taken to be an unsigned 32-bit

integer. The varbind’s OID is set to $oid and the type is set to “unsigned”.

The call is the equivalent of AddVarbind($oid, “unsigned”, $value);

NerveCenter 6.1 AddVarbinds API Page 23

TraceAddVarbinds

AddTraceVarbinds($setting)

NerveCenter 6.1 AddVarbinds API Page 24

LogMatrix Technical Support
LogMatrix is committed to offering the industry's best technical support to our customers and partners.

You can quickly and easily obtain support for NerveCenter, our proactive IT management software.

Professional Services

LogMatrix offers professional services when customization of our software is the best solution for a

customer. These services enable us, in collaboration with our partners, to focus on technology, staffing,

and business processes as we address a specific need.

Educational Services

LogMatrix is committed to providing ongoing education and training in the use of our products. Through

a combined set of resources, we can offer quality classroom style or tailored on-site training.

Contacting the Customer Support Center

Telephone Support

Phone: 1-800-892-3646 or 1-508-597-5300

E-mail support

E-mail: techsupport@logmatrix.com.

Electronic Support

LogMatrix has a Web-based customer call tracking system where you can enter questions, log problems,

track the status of logged incidents, and check the knowledge base.

When you purchased your product and/or renewed your maintenance contract, you would have received a

user name and password to access the LogMatrix Call Tracking System using SalesForce. You may need

to contact your contracts or NerveCenter administrator for the username and password for your account

with SalesForce.

If you have not received or have forgotten your log-in credentials, please e-mail us with a contact name

and company specifics at techsupport@logmatrix.com.

We are committed to providing ongoing education and training in the use of our products. Through a

combined set of resources, we offer quality training to our global customer base.

Online Access

For additional NerveCenter support information, please go the LogMatrix website www.logmatrix.com

for access to the following sections of information.

 Patches and Updates – latest installation files, patches and updates including documentation for

NerveCenter.

 Software Alerts – latest software alerts relative to NerveCenter.

mailto:%20techsupport@logmatrix.com
mailto:techsupport@logmatrix.com
http://www.logmatrix.com/

NerveCenter 6.1 AddVarbinds API Page 25

User Community Access

You can seek as well as share advice and tips with other NerveCenter users at

http://community.logmatrix.com/LogMatrix/ .

Documentation
On-line documentation for all versions of NerveCenter is available at

http://docs.logmatrix.com/NerveCenter/ .

http://community.logmatrix.com/LogMatrix/
http://docs.logmatrix.com/NerveCenter/

