
Designing and Managing Behavior Models
UNIX and Windows
Version 5.1.06

Copyright
Portions ©1989-2011 LogMatrix, Inc. All rights reserved.

Disclaimers
LogMatrix, Inc. (“LogMatrix”) makes no representations or warranties, either expressed or implied, by or with respect to anything in this

manual, and shall not be liable for any implied warranties of merchantability or fitness for a particular purpose or for any indirect, special or

consequential damages.

These applications are available through separate, individual licenses. Not every feature or application described herein is licensed to every

customer. Please contact LogMatrix if you have licensing questions.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, photocopying,

recording or otherwise, without prior written consent of LogMatrix. While every precaution has been taken in the preparation of this book,

LogMatrix assumes no responsibility for errors or omissions. This publication and the features described herein are subject to change without

notice.

The program and information contained herein are licensed only pursuant to a license agreement that contains use, reverse engineering,

disclosure and other restrictions.

Trademarks
LogMatrix is registered in the U.S. Patent and Trademark Office. NerveCenter and the LogMatrix Logo are trademarks of LogMatrix, Inc.

All other products or services mentioned in this manual may be covered by the trademarks, service marks, or product names as designated by

the companies who market those products.

LogMatrix, Inc.

4 Mount Royal Ave, Suite 250

Marlborough, MA 01752

Toll Free +1 (800) 892-3646

Phone +1 (508) 597-5300

Fax +1 (774) 348-4953

info@logmatrix.com

http://www.logmatrix.com

http://www.logmatrix.com

C
Contents
1 Introduction
Overview of this Book. 2
NerveCenter Documentation . 4

Using the Online Help . 4
Printing the Documentation . 4
The NerveCenter Documentation Library . 5
UNIX Systems . 6
Document Conventions . 6
Documentation Feedback . 8

LogMatrix Technical Support . 8
Professional Services . 8
Educational Services . 8
Contacting the Customer Support Center. 9

For Telephone Support . 9
For E-mail Support . 9
For Electronic Support . 9
For Online KnowledgeBase Access . 9
For User Community Access . 9

2 Understanding NerveCenter
What is NerveCenter? . 12
How NerveCenter Manages Nodes . 13

Defining a Set of Nodes . 13
Detecting Conditions . 14
Correlating Conditions . 14

Detecting the Persistence of a Condition . 15
Finding a Set of Conditions. 16
Looking for a Sequence of Conditions . 17

Responding to Conditions . 19
Notification . 20
Logging . 20
Causing State Transitions . 21
Designing and Managing Behavior Models iiiVersion 5.1

ContentsC
Corrective Actions . 21
Action Router . 22

Main NerveCenter Components . 23
The NerveCenter Server . 23
The NerveCenter Database . 24

Objects in the Database . 24
Behavior Models . 25
Predefined Behavior Models . 26

The NerveCenter User Interface . 27
The NerveCenter Administrator . 28
The NerveCenter Client . 29
The NerveCenter Web Client . 30
The Command Line Interface. 30

Role in Network Management Strategy . 31
Standalone Operation. 32
Using Multiple NerveCenter Servers. 33
Integration with Network Management Platforms . 34
Integration with NMPs for Node Information . 35

3 Behavior Models and Their Components
Behavior Models. 38

Detecting Conditions . 39
Tracking Conditions . 39
Monitoring a Set of Nodes. 41

NerveCenter Objects. 42
Nodes . 42
Property Groups and Properties. 45
Polls . 46
Trap Masks . 49
Alarms . 51
Alarm Scope . 53

NerveCenter and Perl . 56
Constructing Behavior Models . 58

How the Pieces Fit Together . 59
An Example of a Behavior Model . 62

4 Getting Started with the NerveCenter Client
Starting the Client . 66
Connecting to a Server . 67
Designing and Managing Behavior Models Version 5.1iv

Contents C
Connecting to a Server Manually . 68
Connecting to a Server Automatically . 71
Sharing MIB Information from Multiple Servers . 73
Selecting the Active Server . 74
Deleting a Server from the Server List. 75
Changing the Server Port on the Client . 76

Setting Up Alarm-Instance Filters . 77
Filtering Alarms by IP Range. 78

IP Subnet Filter Exclusion Rules . 81
IP Subnet Filter Examples. 83

Filtering Alarms by Severity . 85
Filtering Alarms by Property Groups . 89
Associating a Filter with a Server . 92
Rules for Associating Filters with Alarms . 94

Multiple Filters are ORed Together . 94
Multiple Conditions in a Single Filter are ANDed Together . 94

Specifying Heartbeat Messaging . 95
Modifying the Heartbeat Message Interval . 95
Deactivating Heartbeat Messaging. 97

Disconnecting from a Server . 98

5 Discovering and Defining Nodes
Discovering Nodes. 100

Using a Network Management Platform Discovery Mechanism. 101
Using IPSweep Behavior Model . 102

Modifying the IPSweep Alarm . 103
Enabling the IPSweep Alarm . 106

Defining Nodes Manually . 108
IPv6 and NerveCenter . 113

6 Configuring SNMP Settings for Nodes
Manually Changing the SNMP Version Used to Manage a Node . 116
Changing the Security Level of an SNMPv3 Node. 118
Changing the Authentication Protocol for an SNMPv3 Node. 120
Classifying the SNMP Version Configured on Nodes . 122

Classifying the SNMP Version for One or More Nodes Manually . 124
Classifying the SNMP Version for All Nodes Manually . 125
Confirming the SNMP Version for a Node . 125

Testing SNMPv1 and v2c agents . 126
Designing and Managing Behavior Models vVersion 5.1

ContentsC
Testing SNMPv3 agents . 127
When NerveCenter Classifies Node SNMP Versions . 128
How NerveCenter Classifies a Node SNMP Versions . 129

7 NerveCenter Support for SNMPv3
Overview of NerveCenter SNMPv3 Support . 132

NerveCenter Support for SNMPv3 Security . 134
NerveCenter Support for SNMPv3 Digest Keys and Passwords . 135

SNMPv3 Operations Log . 136
Signing a Log for SNMPv3 Errors Associated with Your Client . 137
Signing a Log for SNMPv3 Errors Associated with a Remote Client or Administrator. . . . 138
Viewing the SNMPv3 Operations Log . 140

SNMP Error Status . 141
Using the SNMP Test Version Poll . 144

Testing SNMPv1 and v2c Agents . 144
Testing SNMPv3 Agents . 144
How To Use the Test Version Poll . 145

8 Defining Property Groups and Properties
Listing Property Groups and Properties . 148

Listing Property Groups . 148
Listing Properties. 149

Creating a Property . 150
Creating a New Property Group . 151

Based on an Existing Property Group . 152
Based on the Contents of MIBs . 153
Adding Properties Manually . 155

The nl-ping Property . 156
Filtering Properties . 156
Assigning a Property Group to a Node . 160

Using the Node Definition Window . 160
Using the Node List Window . 162
Using the AssignPropertyGroup() Function . 163

In a Poll Condition . 163
In a Trigger Function . 165
In a Perl Subroutine . 167

Using the Set Attribute Alarm Action . 169
Using OID to Property Group Mappings. 171

Tips for Using Property Groups and Properties . 172
Designing and Managing Behavior Models Version 5.1vi

Contents C
Categorizing Nodes . 172
Move from the General to the Specific . 172
MIB Objects . 173

9 Using Polls
Listing Polls . 176
Defining a Poll . 178
Writing a Poll Condition . 180

The Basic Procedure for Creating a Poll Condition . 182
Functions for Use in Poll Conditions . 184

NerveCenter Functions for Poll Conditions . 185
AddNode() Function . 186
AssignPropertyGroup() Function . 187
DefineTrigger() Function . 187
FireTrigger() Function. 189
in() Function. 191
NC::AlarmCounters . 191
String-Matching Functions . 193

Using the Pop-Up Menu for Perl . 194
Examples of Poll Conditions . 196

Example 1 . 196
Example 2 . 197
Example 3 . 197
Example 4 . 198
Example 5 . 198

Documenting a Poll . 199
How to Create Notes for a Poll. 199
What to Include in Notes for a Poll . 201

Enabling a Poll. 203

10 Using Trap Masks
About Trap Masks . 206
How NerveCenter Decodes SNMPv2c/v3 Traps . 207
How NerveCenter Decodes ICMP Events. 208
Listing Trap Masks . 208
Defining a Trap Mask . 211
Writing a Trigger Function . 216

Functions for Use in Trigger Functions . 217
Variable-Binding Functions . 218
Designing and Managing Behavior Models viiVersion 5.1

ContentsC
AddNode() Function. 220
Variables for Use in Trigger Functions . 221
Examples of Trigger Functions . 221

Example 1. 221
Example 2. 222
Example 3. 222
Example 4. 222
Example 5. 223
Example 6. 223

Documenting a Trap Mask . 224
How to Create Notes for a Trap Mask. 224
What to Include in Notes for a Trap Mask . 227

Enabling a Trap Mask. 229

11 Using Other Data Sources
Built-In Triggers . 232

SNMP Requests . 232
ICMP Requests . 233
ICMP Responses . 233

Multiple Errors Examples. 234
Built-in Trigger Firing Sequence. 235
Matching Errors with Pending SNMP and Ping Requests . 235
Multi-homed Nodes . 236
Built-In Triggers . 237
An Example Using Built-In Triggers . 240

Another NerveCenter . 241
Creating a Trap Mask . 242
Variable Bindings for NerveCenter Informs . 245
An Example Trigger Function . 246

12 Using Alarms
Listing Alarms . 249
Defining an Alarm . 251
Alarm Scope . 254
Defining States . 256

Defining a State . 257
Changing the Size of the State Icons . 259
Deleting a State . 260

Defining Transitions . 261
Designing and Managing Behavior Models Version 5.1viii

Contents C
Defining a Transition . 262
Associating an Action with a Transition . 263
Changing the Size of Transition Icons . 265
Changing the Color of Transition Lines. 266
Deleting a Transition . 267

Documenting an Alarm . 267
How to Create Notes for an Alarm. 268
What to Include in Notes for an Alarm . 270

Enabling an Alarm. 272
Correlation Expressions . 274

13 Alarm Actions
Action Router. 285
Alarm Counter . 287
Beep . 291
Clear Trigger . 292
Command. 294
Delete Node . 296
EventLog . 296
Fire Trigger . 300
Inform . 305
Inform Platform . 308
Inform Specific Numbers . 310
Log to Database . 311
Log to File . 312
Microsoft Mail . 314
Notes . 315
Paging . 317
Perl Subroutine . 318

Defining a Perl Subroutine . 320
Functions for Use in Perl Subroutines . 323

AddNode() Function . 324
Counter() Function . 325
Node Relationship Functions . 325

NerveCenter Variables . 326
Perl Subroutine Example . 329

Send Trap. 330
Set Attribute. 334
SMTP Mail . 336
SNMP Set . 337
Designing and Managing Behavior Models ixVersion 5.1

ContentsC
14 Performing Actions Conditionally (Action Router)
Listing Existing Action Router Rules . 342
Creating an Action Router Rule . 344

Defining a Rule Condition. 345
Functions for Use in Action Router Rule Conditions . 347
Using Action Router Object Lists . 348

Defining a Rule Action . 350

15 Creating Multi-Alarm Behavior Models
IfUpDownStatusByType . 354

IF-IfStatus Alarm. 356
IF-SelectType Perl Subroutine . 357
Interface-type Alarms . 358
IF-IfFramePVC . 359
IfColdWarmStart Alarm . 360
IfNmDemand Alarm . 361

16 Managing NerveCenter Objects
Enabling Objects. 364
Copying Objects . 365

Copying a Property Group. 366
Copying Other Objects . 367

Deleting Objects . 368
Using a Delete Button . 369
Using a Pop-Up Menu . 370

Changing an Object Property or Property Group . 370
Changing Poll or Alarm Properties . 371
Changing a Node Property Group . 372

Changing an Alarm Scope . 373
Suppressing Polling . 374

Suppressing a Node . 374
Making a Poll Suppressible . 375

Changing Other Node Attributes . 376

17 NerveCenter Severities
Definition of a Severity. 378

Severity Attributes Used by NerveCenter . 379
Designing and Managing Behavior Models Version 5.1x

Contents C
Severity Attributes and Network Management Platforms . 380
Level . 380
Platform Name . 380

Default Severities. 381
Creating a New Severity . 382
Creating Custom Colors . 384

18 Importing and Exporting NerveCenter Nodes and Objects
Exporting Behavior Models to Other Servers . 389
Exporting Behavior Models to a File. 391
More About Exporting Behavior Models . 393
Exporting NerveCenter Objects and Nodes to Other Servers . 394
Exporting NerveCenter Objects and Nodes to a File. 397
More about Exporting Objects. 399
Importing Node, Object, and Behavior Model Files . 401
Importing Behavior Models or Nodes with ImportUtil . 403

A Communications and Data

B Debugging a Behavior Model
Enabling a Behavior Model's Components . 412
Checking Properties and Property Groups . 412

Checking a Poll's Property . 412
Checking a Poll's Poll Condition . 413
Checking an Alarm's Property . 413

Matching Triggers and Alarm Transitions . 414
Identities of Triggers and Transitions. 415
Rules for Matching . 416

Name Rule. 416
Subobject Rule . 416
Node Rule . 417
Property Rule. 417

Examples of Matching Triggers and Transitions . 418
Example 1 . 418
Example 2 . 419
Example 3 . 420

Auditing Behavior Models . 421
Behavior Model Log . 422
Designing and Managing Behavior Models xiVersion 5.1

ContentsC
C Downstream Alarm Suppression
Understanding How the Model Works . 426
Testing the Model . 432

Importing the New Model . 432
Identifying Parent-Child Relationships . 434
Making the Relationship Information Available to NerveCenter . 437
Testing the Alarm Suppression Model . 438
Running Node Availability Reports . 439

Understanding the Technical Details . 441
Alarms . 443

DwnStrmSnmpStatus Alarm . 443
DwnStrmIcmpStatus Alarm . 451

Perl Subroutines. 456
SS_IcmpError Perl Subroutine . 456
SetNodeStatus Perl Subroutines . 457
TestParentStatus Perl Subroutine . 458
TestParentSetNode Perl Subroutine . 461

D Error Messages
User Interface Messages . 466
Error Messages . 468

Action Manager Error Messages . 469
Alarm Filter Manager Error Messages . 473
Deserialize Manager Error Messages . 473
Flatfile Error Messages . 473
Inform NerveCenter Error Messages. 474
Inform OV Error Messages . 474
LogToDatabase Manager Error Messages. 476
LogToFile Manager Error Messages . 477
Poll Manager Error Messages . 477
Protocol Manager Error Messages. 477
PA Resync Manager Error Messages . 478
Server Manager Error Messages . 480
Trap Manager Error Messages. 484
NerveCenter installation Error Messages (UNIX) . 485
OpenView Configuration Error Messages (UNIX). 487

Index. 489
Designing and Managing Behavior Models Version 5.1xii

1
Designing and Managing Behavior ModelsIntroduction
Welcome to Designing and Managing Behavior Models. This chapter introduces the audience and
purpose of this guide, and how you can best use it.

This chapter includes the following sections:

Section Description

Overview of this Book on page 2 Includes an overview of the contents of this guide and what you need
to know before you use the guide.

NerveCenter Documentation on
page 4

Lists and describes the components of the LogMatrix NerveCenter
support system, including printed guides, online guides, help, and
links to the LogMatrix NerveCenter Web site and the LogMatrix
technical support Web site.

LogMatrix Technical Support on
page 8

Describes how to access the NerveCenter knowledge base and other
LogMatrix support services.
Designing and Managing Behavior Models 1Version 5.1

Introduction1
Overview of this Book

Designing and Managing Behavior Models describes how NerveCenter works and how you can
monitor your network most effectively. This book is written for users operating the NerveCenter
Client and the NerveCenter Web Client.

Designing and Managing Behavior Models contains the following chapters:

Title Description

Chapter 2, Understanding
NerveCenter

Explains what the NerveCenter components do, how
NerveCenter manages nodes, and how it can fit into a network
management strategy.

Chapter 3, Behavior Models and Their
Components

Explains how to approach behavior model design, provides
detailed definitions of the NerveCenter objects used in building
behavior models, and illustrates how those objects interact.

Chapter 7, NerveCenter Support for
SNMPv3

Provides an overview of NerveCenter support for SNMPv3, the
operations log, SNMP error status messages, and test polls.

Chapter 4, Getting Started with the
NerveCenter Client

Explains how to use the NerveCenter Client to connect to a
server, set up alarm instance filters, and configure heartbeat
messaging.

Chapter 5, Discovering and Defining
Nodes

Discusses how to add node definitions to the NerveCenter
database through auto-discovery or by manual definition.

Chapter 6, Configuring SNMP Settings
for Nodes

Describes how to change the SNMP version, security level, and
authentication protocols that NerveCenter uses to manage nodes.

Chapter 8, Defining Property Groups
and Properties

Provides suggestions on how to use property groups effectively,
the mechanics of listing property groups and properties, creating
properties and property groups, and assigning property groups to
nodes.

Chapter 9, Using Polls Explains polls in detail, from defining a poll and poll conditions,
to documenting and enabling it.

Chapter 10, Using Trap Masks Explains how to define, enable, and use trap masks and triggers.

Chapter 11, Using Other Data Sources Discusses how NerveCenter can receive information from other
sources, including a second NerveCenter Server, NerveCenter
triggers, and HP IT/Operations.

Chapter 12, Using Alarms Explains alarms in detail, from defining it, to setting states and
transitions, documenting, and enabling alarms.

Chapter 13, Alarm Actions Discusses how to use each of the NerveCenter alarm actions.
Designing and Managing Behavior Models Version 5.12

Overview of this Book 1
Chapter 14, Performing Actions
Conditionally (Action Router)

Explains how to determine what Action Router rules have
already been defined, and how to create new rules.

Chapter 15, Creating Multi-Alarm
Behavior Models

Presents an example of a multi-alarm (or multi-tier) behavior
model.

Chapter 16, Managing NerveCenter
Objects

Explains how to perform additional operations on NerveCenter
objects, such as copying, deleting, and changing attributes.

Chapter 17, NerveCenter Severities Describes severities and how NerveCenter uses them, the
predefined severities supplied with NerveCenter, and how to
create new severities.

Chapter 18, Importing and Exporting
NerveCenter Nodes and Objects

Explains how to export NerveCenter objects, nodes, and
behavior models to a file and how to import those files back into
a NerveCenter database.

Appendix A, Communications and
Data

Outlines the general data flow into, through, and out of
NerveCenter in the course of operation.

Appendix B, Debugging a Behavior
Model

Describes how to debug NerveCenter behavior models.

Appendix C, Downstream Alarm
Suppression

Describes how the latest downstream alarm suppression model
works, how to test it, and its technical implementation details.

Appendix D, Error Messages Lists various types of NerveCenter error messages and the steps
you can take to resolve them.

Title Description
Designing and Managing Behavior Models 3Version 5.1

Introduction1
NerveCenter Documentation

This section describes the available NerveCenter documentation, which explains important
concepts in depth, describes how to use NerveCenter, and provides answers to specific questions.

The documentation set is provided in online (HTML) format, as well as PDF for printing or
on-screen viewing. See the following topics for more information:

 Using the Online Help on page 4

 Printing the Documentation on page 4

 The NerveCenter Documentation Library on page 5

 UNIX Systems on page 6

 Document Conventions on page 6

 Documentation Feedback on page 8

Using the Online Help

You can view the documentation with browsers such as Microsoft Internet Explorer or Firefox.
Refer to the NerveCenter Release Notes for the browser versions supported with this release.

TIP

For in-depth instructions on using the online documentation, click the Help button
 in the upper right of the Help window.

Printing the Documentation

The NerveCenter documentation is also available as Portable Document Format (PDF) files that
you can open and print. All PDF files are located in your installpath/doc directory.

NOTENOTENOTENOTE

You must have Adobe Acrobat Reader to open or print the PDF files. You can
download the Reader free from Adobe’s Web Site at www.adobe.com.
Designing and Managing Behavior Models Version 5.14

http://www.adobe.com

NerveCenter Documentation 1
The NerveCenter Documentation Library

The following documents ship with NerveCenter.

Book Title Description Application Audience PDF for Print

NerveCenter Release
Notes

Describes new NerveCenter
features and includes late-breaking
information, software support,
corrections, and instructions.

All All relnotes.pdf

Installing NerveCenter Helps you plan and carry out your
NerveCenter upgrades and new
installations. Use the Release
Notes in conjunction with this
book.

All Installation team install.pdf

Managing NerveCenter Explains how to customize and
tune NerveCenter after it has been
installed.

NerveCenter
Administrator

Administrator managing_
nervecenter.pdf

Integrating
NerveCenter with a
Network Management
Platform

Explains how to integrate
NerveCenter with network
management platforms.

NerveCenter
Administrator

Administrator integratingNC.
pdf

Learning How to
Create Behavior
Models

Provides step-by-step instructions
and examples for creating
behavior models.

NerveCenter Client Users with
administrative
privileges

learningModel.
pdf

Designing and
Managing Behavior
Models

Explains behavior models in
depth, how to create or modify
models, and how to manage your
models.

NerveCenter Client Users with
administrative
privileges

designingModels.p
df

Monitoring Your
Network

Explains how NerveCenter works
and how you can most effectively
monitor your network.

NerveCenter Client
and Web Client

Users monitoringNet.
pdf

Behavior Models
Cookbook

Describes each behavior model
shipped with LogMatrix
NerveCenter.

NerveCenter Client Users with
administrative
privileges

modsCookbook.
pdf

Quick reference cards Quick reference cards provide
convenient reference material for
common NerveCenter tasks.

NerveCenter Client
and Administrator

All quickreference. pdf
Designing and Managing Behavior Models 5Version 5.1

Introduction1
UNIX Systems

On UNIX systems, NerveCenter man pages provide command reference and usage information that
you view from the UNIX shell as with other system man pages. When you specify documentation
during NerveCenter installation, the script installs nroff-tagged man pages and updates your
system’s MANPATH environment variable to point to the NerveCenter man page directory.

Document Conventions

This document uses the following typographical conventions:

CAUTION

A caution warns you if a procedure or description could lead to unexpected results,
even data loss, or damage to your system. If you see a caution, proceed carefully.

Element Convention Example

Key names, button names, menu names, command
names, and user entries

Bold Press Tab

Enter ovpa -pc

 A variable you substitute with a specific entry

 Emphasis

 Heading or Publication Title

Italic Enter ./installdb -f IDBfile

Code samples, code to enter, or application output Code iifInOctets > 0

Messages in application dialog boxes Message Are you sure you want to
delete?

An arrow (>) indicates a menu selection > Choose Start > Programs >
OpenService NerveCenter

A link to a section in the same book Blue Italic For more information, see
Correlating Conditions.

A link to a section in a different book

Note: If you are using a PDF viewer, you may
need to use the Go to Previous View button to
return to the original PDF file.

Green Italic For more information, see
Correlating Conditions in
Monitoring Your Network
with NerveCenter.
Designing and Managing Behavior Models Version 5.16

NerveCenter Documentation 1
NOTENOTENOTENOTE

A note provides additional information that might help you avoid problems, offers
advice, and provides general information related to the current topic.

TIP

A tip provides extra information that supplements the current topic. Often, tips
offer shortcuts or alternative methods for accomplishing a task.

If toolbar buttons are available, they are displayed in the margin next to the step in which you can
use them. other shortcuts are noted as tips. Also, shortcut (accelerator) keys are displayed on
application menus next to their respective options.
Designing and Managing Behavior Models 7Version 5.1

Introduction1
Documentation Feedback

LogMatrix, Inc. is committed to providing quality documentation and to helping you use our
products to the best advantage. If you have any comments or suggestions, please send your
documentation feedback to:

Documentation
LogMatrix, Inc.
4 Mount Royal Ave, Suite 250
Marlborough, MA 01752

documentation@logmatrix.com

LogMatrix Technical Support

LogMatrix is committed to offering the industry's best technical support to our customers and
partners. You can quickly and easily obtain support for NerveCenter, our proactive IT management
software.

Professional Services

LogMatrix offers professional services when customization of our software is the best solution for
a customer. These services enable us, in collaboration with our partners, to focus on technology,
staffing, and business processes as we address a specific need.

Educational Services

LogMatrix is committed to providing ongoing education and training in the use of our products.
Through a combined set of resources, we can offer quality classroom style or tailored on-site
training.
Designing and Managing Behavior Models Version 5.18

mailto:documentation@logmatrix.com

LogMatrix Technical Support 1
Contacting the Customer Support Center

For Telephone Support

Phone: 1-800-892-3646 or 1-508-597-5300

For E-mail Support

E-mail: techsupport@logmatrix.com.

For Electronic Support

LogMatrix has a Web-based customer call tracking system where you can enter questions, log
problems, track the status of logged incidents, and check the knowledge base.

When you purchased your product and/or renewed your maintenance contract, you would have
received a user name and password to access the LogMatrix Call Tracking System using
SalesForce. You may need to contact your contracts or NerveCenter administrator for the username
and password for your account with SalesForce.

If you have not received or have forgotten your log-in credentials, please e-mail us with a contact
name and company specifics at techsupport@logmatrix.com.

We are committed to providing ongoing education and training in the use of our products. Through
a combined set of resources, we offer quality training to our global customer base.

For Online KnowledgeBase Access

For additional NerveCenter support information, please go the LogMatrix website
www.logmatrix.com for access to the following sections of information:

 Patches and Updates - latest installation files, patches, and updates including
documentation for NerveCenter.

 Software Alerts - latest software alerts relative to NerveCenter.

 KnowledgeBase Search - search the NerveCenter KnowledgeBase for answers to your
questions whether relating to the installation, usage, or operation of NerveCenter.

For User Community Access

You can seek as well as share advice and tips with other NerveCenter users at
http://community.logmatrix.com/LogMatrix/
Designing and Managing Behavior Models 9Version 5.1

mailto: techsupport@logmatrix.com
mailto:techsupport@logmatrix.com
http://www.logmatrix.com
www.logmatrix.com/forum
http://community.logmatrix.com/LogMatrix/

Introduction1
Designing and Managing Behavior Models Version 5.110

2
Designing and Managing Behavior ModelsUnderstanding NerveCenter
This chapter explains:

 What type of product NerveCenter™ is

 How NerveCenter manages nodes

 What the NerveCenter main components are

 What roles NerveCenter can play in a network or system management solution

For information on these topics, see the sections shown in the table below.

Section Description

What is NerveCenter? on page
12

Explains that NerveCenter is an advanced event automation solution.

How NerveCenter Manages
Nodes on page 13

Explains how NerveCenter isolates and responds to emerging network
and system problems.

Main NerveCenter Components
on page 23

Discusses NerveCenter’s client/server architecture. Explains how
NerveCenter tracks network conditions using finite state machines
called alarms, where these alarms get their input, and how alarm
transitions can result in actions.

Role in Network Management
Strategy on page 31

Explains how NerveCenter can be used stand-alone, integrated with
other NerveCenter systems, or integrated with other LogMatrix or
third-party products.
Designing and Managing Behavior Models 11Version 5.1

Understanding NerveCenter2
What is NerveCenter?

As corporations have focused attention on keeping their corporate networks available at all times,
they have invested heavily not only in redundant hardware, but also in network management
software. Unfortunately, many network management tools whose purpose is to identify network
faults can overwhelm operators with raw network data. Only after manually sifting through this raw
data and identifying the real problems can operators take the appropriate corrective actions.

NerveCenter is different. It is able to isolate and respond to network conditions proactively. In
addition, NerveCenter is a highly-scalable, cross-platform solution.

At the heart of NerveCenter is its event correlation engine. For each device that it is monitoring,
NerveCenter creates one or more finite state machines—or alarms—that define operational states it
wants to detect. NerveCenter also defines rules that effect transitions between the operational
states. These rules can be very simple; for example, a state transition can be caused by the receipt of
a generic Simple Network Management Protocol (SNMP) trap. Or they can be quite complex and
take advantage of NerveCenter’s support for Perl expressions.

These state machines enable NerveCenter to correlate data from multiple sources over time before
it concludes that a problem exists. As a simple example, if NerveCenter receives a link-down trap
for an interface, it does not immediately report a problem; instead, it waits for a link-up trap for that
interface. If NerveCenter receives a link-up trap within a given amount of time, it can ignore both
traps. Otherwise, it can report that a particular communication link is down.

Once NerveCenter has identified a problem, it can take automatic corrective actions. A variety of
actions can be associated with state transitions, including notifying an administrator, executing a
program or script that corrects the problem, or notifying a network management platform of the
network condition.

In addition to being an advanced event automation solution, NerveCenter is also a highly scalable
client/server application. It can run co-resident with a network management platform (such as
Hewlett Packard’s OpenView Network Node Manager) and manage thousands of nodes. Or the
server can be distributed as a background process at tens or even hundreds of remote offices.

Finally, NerveCenter is a cross-platform solution. NerveCenter automatically correlates events,
identifies problems, and takes corrective actions across network devices running an SNMP agent,
UNIX systems, and Windows workstations and servers. The capability for NerveCenter
components on Windows systems to work with components on UNIX systems enables you to
install NerveCenter on the type of system—hardware and operating system—that is most
appropriate for a job. For instance you might install NerveCenter on a Windows system to monitor
a small network of 1000 nodes or fewer, and you might install NerveCenter on a symmetric
multiprocessor UNIX server to manage several thousand nodes. You could monitor and configure
both of these systems from a Windows or UNIX workstation.
Designing and Managing Behavior Models Version 5.112

How NerveCenter Manages Nodes 2
How NerveCenter Manages Nodes

To perform its job of event automation, NerveCenter relies on the definition of behavior models.
These models are constructed from NerveCenter objects (which we’ll discuss in detail later) and
define:

 Which nodes the behavior model will affect

 How NerveCenter will detect certain conditions on these nodes

 How NerveCenter will correlate the conditions it detects

 How NerveCenter will respond to network problems

The following sections elaborate on the tasks that NerveCenter performs in order to automate event
handling:

 Defining a Set of Nodes on page 13

 Detecting Conditions on page 14

 Correlating Conditions on page 14

 Responding to Conditions on page 19

Defining a Set of Nodes

NerveCenter can get the list of devices to monitor from a network management platform, discover
them on the network, or import this information from another NerveCenter database.

NerveCenter assigns to each managed node a set of properties, and these properties determine
which behavior models apply to a node. Properties typically describe the type of the device—for
example, a router—or are named after objects in the management information base (MIB) used to
manage the node.

Once NerveCenter assigns a set of properties to a node, NerveCenter automatically applies to that
node all of the models that refer to those properties. If NerveCenter detects that a node has been
deleted or that its properties have changed, the product immediately retires or updates the set of
models that are actively managing that node. This dynamic process enables NerveCenter to adapt at
once to changes in network configuration reported by the management platform or by
NerveCenter’s own discovery mechanism.

It is also possible to assign properties to nodes manually to further refine the set of models that
NerveCenter uses to manage a node. For example, you may want to distinguish a backbone router
from a campus router to regulate how much and how often status information is collected.
Designing and Managing Behavior Models 13Version 5.1

Understanding NerveCenter2
Detecting Conditions

As is discussed in the section Role in Network Management Strategy on page 31, NerveCenter can
collect network and system data from a variety of sources. However, most frequently NerveCenter
obtains data from Simple Network Management Protocol (SNMP) agents running on managed
nodes. This means that NerveCenter detects most conditions by:

 Receiving and interpreting an SNMP trap

 Polling an SNMP agent for data and analyzing that data

One of the criticisms of SNMP-based enterprise management platforms over the years has been
that, because SNMP trap delivery is unreliable, the platform must poll agents and this polling
generates too much network traffic. NerveCenter helps alleviate this problem by enabling you to
determine the interval at which a poll is sent and to turn a poll off. Even more important is
NerveCenter’s smart polling feature. NerveCenter sends a poll to a node only if the poll:

 Is part of a behavior model designed to manage that node

 Can cause a change in the alarm’s state.

Also, because of NerveCenter’s client/server architecture, NerveCenter servers can be distributed
so that all polling is done on LANs, and not across a WAN. Furthermore, use of SNMP v2c and v3
features allow SNMP to be utilized both reliably and securely.

Correlating Conditions

Event correlation involves taking a number of detected network conditions, often a large number,
and determining:

 How these conditions, or some subset of them, are related

 The underlying cause of a set of conditions, or the problem to which they have led

For instance, NerveCenter may look at a large number of events and identify a subset of events that
relate to SNMP authentication failures on a managed node. NerveCenter may then determine that
the authentication failures were far enough apart that no problem exists, or it may find that several
failures occurred within a short period of time, indicating a possible security problem. In the latter
case, NerveCenter might notify administrators of the potential problem. In this way, administrators
receive one notice about a potential security problem rather than having to browse through a long
list of detected conditions and identify the problem themselves.

Detected conditions can be correlated in many ways. In fact, once you start working with
NerveCenter, you will help determine how these conditions are correlated yourself. However, there
Designing and Managing Behavior Models Version 5.114

How NerveCenter Manages Nodes 2
are some typical ways in which NerveCenter finds relationships between conditions. Several of
these methods are discussed in the following sections:

 Detecting the Persistence of a Condition on page 15

 Finding a Set of Conditions on page 16

 Looking for a Sequence of Conditions on page 17

Detecting the Persistence of a Condition

Probably the simplest method of correlating detected conditions is to search for the persistence of a
problem. For example, a network administrator might want to know if an SNMP agent sends a link-
down trap and that trap is not followed within three minutes by a link-up trap. NerveCenter can
track such a link-down condition using a state diagram similar to the one shown below.

FIGURE 2-1. State Diagram for Detecting a Link-Down Condition
Let’s say that NerveCenter has this state diagram in memory and is tracking a particular interface
for a link-down condition.

 The first time NerveCenter sees a link-down trap concerning that interface, the current state
becomes DownTrap, and NerveCenter starts a three-minute timer.

 If NerveCenter receives a link-up trap within three minutes of the link-down trap, the current
state reverts to Ground (normal) because NerveCenter is looking for a persistent link-down

Start timer

Delete
timer

Link-up
trap

Timer goes
off

Inform
management
platform

Link-up
trap

Ground

DownTrap

LinkDown

Link-down trap
Designing and Managing Behavior Models 15Version 5.1

Understanding NerveCenter2
condition. In addition, NerveCenter stops the timer. However, if three minutes expire before
a link-up trap arrives, the current state becomes LinkDown, and NerveCenter informs a
network management platform that the link is down.

 The current state remains LinkDown until a link-up trap does arrive. At that point, the
current state reverts to Ground, and the process begins again.

Finding a Set of Conditions

Another common type of event correlation is the identification of a set of conditions. For example,
let’s say that you’re monitoring the interfaces on a router. To be notified when a low-speed interface
goes down or when a high-speed interface goes down, you might use the following state diagram.

FIGURE 2-2. State Diagram for Detecting a Router Interface Problem
What causes state transitions in this situation? NerveCenter can poll the SNMP agent on the router
for the values of the following interface attributes: ifOperStatus, ifAdminStatus, ifSpeed,
ifInOctets, and ifOutOctets.

If the poll successfully returns values for these attributes, NerveCenter can then evaluate the
expression shown below in pseudocode:

if ifOperStatus is down && ifAdminStatus is up &&
(ifInOctets > 0 || ifOutOctets > 0)

if ifSpeed < 56K
move to lowSpeedProblem state

else
move to highSpeedProblem state

else
move to ground state

This code is looking for two sets of conditions. The first set is:

Ground

Interface
back up

Interface
back up

Low-speed
interface down

High-speed
interface down

Low-speed
Problem

High-speed
ProblemE-mail Page
Designing and Managing Behavior Models Version 5.116

How NerveCenter Manages Nodes 2
 The operational state of the interface is down.

 The administrative status of the interface is up.

 Traffic has been passed on this interface. (If no traffic has been passed, the interface is just
coming up.)

 The interface’s current bandwidth is less than 56K.

If this set of conditions is met, a problem exists on an interface that is probably used for a dial-up
connection.

The second set of conditions is the same as the first, except that the last condition is that the
interface’s current bandwidth is greater than or equal to 56K. If this set of conditions is met, a
problem exists on a higher speed interface.

If neither of these sets of conditions is met, the current state should return to, or remain at, Ground.

NerveCenter may detect many conditions concerning an interface before it finds the set of
conditions it is looking for. The administrator need not see information about each of these
conditions. He or she will be emailed or paged if the interface goes down.

Looking for a Sequence of Conditions

NerveCenter also enables you to correlate conditions by looking for sequences of conditions. This
type of correlation is possible because, in NerveCenter, each state in a state diagram can look for a
different set of conditions. For instance, let’s look at a state diagram that NerveCenter uses to track
the status of a node and its SNMP agent. The diagram includes states for the following conditions:

 The node and its SNMP agent are up.

 The node is up, but its agent is down.

 The node is unreachable.

 The node is down.
Designing and Managing Behavior Models 17Version 5.1

Understanding NerveCenter2
FIGURE 2-3. State Diagram for Determining Node Status

Ground

Error

Unreachable Unknown Agent Down

Device Down

Net unreachable

Node unreachable

Node unreachable

Node unreachable

Net unreachable

Net unreachable

Port unreachable

Port unreachable

SNMP Timeout

SNMP Timeout

ICMP timeout

ICMP timeout ICMP timeout

Node up
Designing and Managing Behavior Models Version 5.118

How NerveCenter Manages Nodes 2
NOTENOTENOTENOTE

A more realistic state diagram for tracking the status of a node would include
transitions from the terminal problem states back to Ground.

When checking the status of a node and its SNMP agent, NerveCenter begins by polling the node to
see if the node’s SNMP agent will return the value of the MIB attribute sysObjectID. If the agent
returns this value, the current state remains Ground. However, NerveCenter makes Error the
current state if:

 The node, or the network the node is on, is unreachable

 The node is reachable, but the SNMP agent doesn’t respond

Similarly, NerveCenter changes the current state to Unknown if it detects for a second time that the
node is unreachable or the node’s SNMP agent isn’t responding.

Once the current state becomes Unknown, though, NerveCenter begins looking for a different set
of conditions. NerveCenter checks to see whether the node will respond to an ICMP ping. If it will,
NerveCenter knows that the node is up, but its SNMP agent is down. If it receives another network-
or node-unreachable message, NerveCenter knows that the node is unreachable. And if the ping
times out, NerveCenter knows that the node is down.

This ability of different states to monitor different conditions gives you the ability to correlate
sequences of conditions. That is, a sequence of two SNMP timeouts followed by a Node up
indicates that the node is up but its agent is down. And a sequence of two Node unreachables
followed by an ICMP timeout indicates that the node is down.

Responding to Conditions

NerveCenter not only enables you to detect network and system problems, but is able to respond
automatically to the conditions it detects. To set up these automated responses, you associate
actions with state transitions.

The possible actions you can define are discussed in the following sections:

 Notification on page 20

 Logging on page 20

 Causing State Transitions on page 21

 Corrective Actions on page 21

 Action Router on page 22
Designing and Managing Behavior Models 19Version 5.1

Understanding NerveCenter2
Notification

If a particular network or system condition requires the attention of an administrator, the best action
to take in response to that condition is to notify the appropriate person. NerveCenter lets you notify
administrators of events in the following ways:

 You can send an audible alarm (a beep) to workstations running the NerveCenter Client.

 You can send email to an administrator using either a Microsoft Exchange Server client or
SMTP mail.

 You can page an administrator.

 You can send information about a network or system condition to another NerveCenter
server. This capability is useful if you have a number of NerveCenter servers at different
sites and want these servers to forward information about important events to a central
server.

 You can send information about a network or system condition to a network management
platform such as IBM Tivoli’s Netcool/OMNIbus or Hewlett Packard’s OpenView Network
Node Manager. Administrators can then be notified of a problem found by NerveCenter
using the other management tool’s console.

For more information on integrating NerveCenter with other network management products,
see the section Role in Network Management Strategy on page 31.

Logging

If you want to keep a record of an event that takes place on your network, you must explicitly log
information about the event at the time it occurs. NerveCenter provides three actions that provide
for such logging:

 Log to File

 Log to Database (Windows only)

 EventLog

Log to File writes information about an event to a file. Log to Database writes information about an
event to the NerveCenter database. The EventLog action writes information about an event to an
event or system log.

When you assign a logging action to a behavior model, you have the choice of logging default data
or customizing what data you deem relevant. This saves disk space and streamlines information
used later for analysis and reporting.
Designing and Managing Behavior Models Version 5.120

How NerveCenter Manages Nodes 2
Causing State Transitions

In some behavior models, one alarm needs to cause a transition in another. The action that enables
such communication between alarms is called Fire Trigger. This action creates a NerveCenter
object called a trigger that can cause a state transition in the alarm from which it was fired or in
another alarm.

The Fire Trigger action also lets you specify a delay, so you can request that a trigger be fired in one
minute or five hours. This feature is especially useful when you’re looking for the persistence of a
condition. Let’s say that you want to look for three intervals of high traffic on an interface within a
two-minute period. When your poll detects the first instance of high traffic, and your alarm moves
out of the Ground state, you can fire a trigger with a two-minute delay that will return your alarm to
the Ground state—unless a second and third instance of high traffic are detected.

If a third instance of high traffic is detected, you should cancel the trigger you fired on a delayed
basis. You do this by adding the Clear Trigger action to the transition from the second high-traffic
state to the third.

NerveCenter also includes a Send Trap action. You define the trap to be sent, including the variable
bindings, and associate the action with a state transition. When the transition occurs, the trap is
sent. The trap can be caught by a NerveCenter trap mask—in which case you can use Send Trap
somewhat like Fire Trigger, to generate a trigger—or by any application that processes SNMP
traps.

Corrective Actions

There are a number of NerveCenter actions that you can use to take corrective actions when a
particular state transition occurs. These are:

 Command

 Perl Subroutine

 Set Attribute

 Delete Node

 SNMP Set

The Command action enables you to run any script or executable when a particular transition
occurs.

The Perl Subroutine action enables you to execute a Perl script as a state-transition action. You first
define a collection of Perl scripts and store them in the NerveCenter database; then, you choose one
of your stored scripts for execution during a state transition.
Designing and Managing Behavior Models 21Version 5.1

Understanding NerveCenter2
The Set Attribute action enables you to set selected attributes of the NerveCenter objects used to
build behavior models.

The Delete Node action deletes the node associated with the current state machine from the
NerveCenter database. This action is useful if you use a behavior model to determine which nodes
you want to monitor and manage.

The SNMP Set alarm action changes the value of a MIB attribute when an alarm transition occurs.

Action Router

The Action Router enables you to specify actions that should be performed when a state transition
occurs and other conditions are met. To set up these conditional actions, you add the Action Router
action to your state transition. Then, you use the Action Router tool to define rules and their
associated actions.

For example, let’s assume that you want to be notified about a state transition only if the transition
puts the alarm in a critical state. You can define the following rule:

$DestStateSev eq ‘Critical’

Then define the action you want taken if the severity of the destination state is Critical, for
example, a page. You will be paged if:

 The Action Router action is associated with the current state transition

 The destination state for the transition is Critical

Action Router rules can be constructed using many variables that NerveCenter maintains; for
instance, you can also construct rules based on:

 The name of the alarm

 The day of the week

 The time of day

 The name or IP address or group property of the node being monitored

 The name of the trigger that caused the state transition

 The name of the alarm’s property

 The name or severity of the origin state

 The contents of a trap

 The contents of the varbind data associated with a trap or a poll
Designing and Managing Behavior Models Version 5.122

Main NerveCenter Components 2
Main NerveCenter Components

NerveCenter is a distributed client/server application and includes the following components:

 Server

 Database

 Clients

For information about these components, see the following sections:

 The NerveCenter Server on page 23

 The NerveCenter Database on page 24

 The NerveCenter User Interface on page 27

The NerveCenter Server

The NerveCenter Server is responsible for carrying out all of the major tasks that NerveCenter
performs. For example, it handles the polling of SNMP agents, creates NerveCenter objects such as
the finite alarms mentioned earlier, and makes sure that state transitions occur at the appropriate
times. The server also performs all actions associated with state transitions.

The server can run as a daemon on UNIX systems and as a service on Windows systems. This
capability to run in the background has important implications with regard to using NerveCenter at
remote sites. You can install the server and database at a remote office and have that server manage
the local network, yet control the server (via the NerveCenter Client) from a central location.
Servers located at remote sites can forward noteworthy information to a server at the central
location as required.
Designing and Managing Behavior Models 23Version 5.1

Understanding NerveCenter2
The NerveCenter Database

The NerveCenter database is primarily a repository for the NerveCenter objects that make up a set
of behavior models. The principal objects used in these models are:

 Nodes

 Property groups and properties

 Polls

 Trap masks

 Alarms

For brief explanations of what these objects are and how they are used, see Objects in the Database
on page 24.

A set of objects that define many useful behavior models ships with NerveCenter and is available
as soon as you’ve installed the product. For a list of these predefined behavior models, see the
section Predefined Behavior Models on page 26.

On UNIX systems, the NerveCenter database is implemented as a flat file. On Windows systems,
the database can be either a Microsoft Access database or a Microsoft SQL Server database.

Objects in the Database

This section contains brief definitions of the basic objects used in the construction of behavior
models.

 Nodes - A node represents either a workstation or a network device, such as a router. Each
node has an attribute called its property group that controls which behavior models
NerveCenter will employ in managing the node.

NOTENOTENOTENOTE

Strictly speaking, a node is not part of a behavior model; rather, it is the entity
managed by a behavior model.

 Property groups and properties - As mentioned above, each node has a property group.
This property group is simply a container for a set of properties, which are strings that
typically either describe the type of node or name an object in the MIB used to manage the
node. It is actually a node’s properties, rather than its property group, that determine whether
a particular behavior model will be used to manage that node.
Designing and Managing Behavior Models Version 5.124

Main NerveCenter Components 2
 Polls - A poll defines what MIB variables NerveCenter should request the values of, how
those values should be evaluated, and what action the poll should take. If the poll takes an
action, it will be to fire a trigger, which may cause a state transition in one of NerveCenter’s
finite state machines.

 Trap masks - A trap mask describes an SNMP trap and contains the name of a trigger. If
NerveCenter receives an SNMP trap that matches the description given in the trap mask,
NerveCenter fires a trigger with the name defined in the trap mask. If NerveCenter receives
a trap that does not match a trap mask, it discards that trap.

 Alarms - NerveCenter’s finite state machines are called alarms. Each alarm defines a set of
operational states (such as Normal and Down) and transitions between the states. Transitions
are effected by the receipt of the proper trigger and can have actions associated with them. If
actions are associated with a transition, the server performs these actions each time the
transition takes place.

Behavior Models

Once a set of managed nodes has been defined, NerveCenter’s monitoring activities are controlled
by a set of behavior models. A behavior model is the group of NerveCenter objects required to
detect and take action upon a single network condition, such as high traffic on an interface.

The central object in each behavior model is a deterministic finite state machine called an alarm.
For instance, the alarm shown in Figure 2-4 tracks the level of traffic on an interface.

FIGURE 2-4. Alarm State Diagram
The possible states in this alarm are low, medium, and high. And these states have the severities
Normal, Medium, and High, respectively. (The color of each state denotes its severity.) The gray
rectangles in the alarm represent state transitions.
Designing and Managing Behavior Models 25Version 5.1

Understanding NerveCenter2
What about the inputs and outputs of the state machine? The inputs are called triggers and can
come from several sources. For example, one predefined NerveCenter poll queries the SNMP agent
on a device for the level of traffic on, and the capacity of, each interface on the device. If the level
of use exceeds a certain percentage of the capacity for an interface, the poll fires the trigger
mediumLoad, which can cause a state transition in an alarm.

The outputs of an alarm are called alarm actions. These actions are associated with the transition
from one state to another by the designer of a behavior model, and NerveCenter performs these
actions each time the transition occurs. There are many possible actions, including the following:

 Sending an audible alert to the workstation on which the NerveCenter Client is being run

 Executing a program or script

 Deleting a node from the NerveCenter database

 Informing a network management platform of a condition

 Logging information to a disk file

 Sending mail to an administrator

 Paging an administrator

 Sending an SNMP trap

 Setting a MIB attribute

Predefined Behavior Models

When you install NerveCenter and create a new database, that database contains the objects that
make up a number of predefined behavior models. These include behavior models for:

 Detecting authentication failures

 Monitoring the error rate on network interfaces

 Monitoring link-up and link-down traps

 Monitoring the amount of traffic on network interfaces

 Indicating the status of network interfaces: up, down, and so on

 Detecting errors that inhibit accurate SNMP device management

 Determining whether a device is down, unreachable, or up with/without an agent

 Giving early warning concerning TCP connection saturation

 Verifying that the current TCP retransmission algorithm is the most efficient
Designing and Managing Behavior Models Version 5.126

Main NerveCenter Components 2
 Categorizing devices based on TCP retransmission activity

 Logging information about SNMP traps

NerveCenter also includes predefined behavior models that you can import to monitor specific
vendors’ devices and additional models for troubleshooting, interface status, data collection, and
downstream alarm suppression. For more information about behavior models, see Behavior Models
and Their Components in Designing and Managing Behavior Models.

The NerveCenter User Interface

The principal clients of the NerveCenter server are:

 The NerveCenter Administrator

 The NerveCenter Client

 The NerveCenter Web Client

 The NerveCenter command line interface

The NerveCenter Administrator is used to configure NerveCenter once it has been installed. The
NerveCenter Client and the NerveCenter Web Client are used to monitor a network for problems.
The NerveCenter Client is also used to create new behavior models. The command line interface
can be used to perform a limited number of operations on NerveCenter objects.

For additional information on these interfaces, see the following sections:

 The NerveCenter Administrator on page 28

 The NerveCenter Client on page 29

 The NerveCenter Web Client on page 30

 The Command Line Interface on page 30
Designing and Managing Behavior Models 27Version 5.1

Understanding NerveCenter2
The NerveCenter Administrator

Figure 2-5 shows the graphical user interface (GUI) for the NerveCenter Administrator.

FIGURE 2-5. NerveCenter Administrator
Users with NerveCenter Administrator privileges can use this interface to:

 Configure NerveCenter’s discovery mechanism

 Configure the number of retries and the retry interval for SNMP polling

 Configure NerveCenter’s mail and paging actions

 Manage NerveCenter log files

 Configure NerveCenter to work with a network management platform
Designing and Managing Behavior Models Version 5.128

Main NerveCenter Components 2
The NerveCenter Client

The figure below shows the GUI for the NerveCenter Client.

FIGURE 2-6. NerveCenter Client
Two types of users run the NerveCenter Client. Users with NerveCenter User privileges can run the
client to:

 Monitor active alarms

 Filter alarms for the alarm summary windows

 View an alarm’s history

 Reset alarms

 Monitor the state of managed nodes

 Generate reports

For complete information on using the NerveCenter Client to perform the tasks listed above and
others, see Monitoring Your Network.

Users with NerveCenter Administrator privileges can perform all the tasks that users with User
privileges can. In addition, they can use the client to:

 Create new behavior models

 Customize the predefined behavior models

 Modify, copy, or delete any object in the NerveCenter database
Designing and Managing Behavior Models 29Version 5.1

Understanding NerveCenter2
The NerveCenter Web Client

The following figure shows the GUI for the NerveCenter Web Client.

FIGURE 2-7. NerveCenter Web Client
The NerveCenter Web Client, unlike the NerveCenter Client, is meant to be used only for
monitoring a network, not for creating behavior models. It enables you to:

 Monitor active alarms

 View an alarm’s history

 Reset alarms

 Monitor the state of managed nodes

For complete information on using the NerveCenter Web Client to perform the tasks listed above
and others, see Monitoring Your Network.

The Command Line Interface

You can use NerveCenter’s command line interface (CLI) to delete, list, or set (enable or disable)
alarms, trap masks, nodes, and polls from a Windows Command Prompt or a UNIX shell. You can
also connect to, display the status of, and disconnect from NerveCenter servers using the CLI. You
can issue commands manually or from a script.
Designing and Managing Behavior Models Version 5.130

Role in Network Management Strategy 2
Role in Network Management Strategy

NerveCenter can play a variety of roles in an overall network management strategy. The role that
NerveCenter plays in your strategy depends largely on the size of your network and on what other
products you are using to manage your network and systems:

 If you are managing a small network, NerveCenter can be used as a standalone system. It
can discover the workstations and network devices on the network, detect and correlate
network conditions, respond automatically to conditions, and display in a window
information about active alarms. See the section Standalone Operation on page 32 for
further information.

 For larger networks, multiple NerveCenters can be used in concert. For example, let’s say
that a company has a central site and three remote sites. Local NerveCenter systems could be
set up to manage the remote sites, and the local NerveCenter servers could forward
important information to the NerveCenter server at the central site. See the section Using
Multiple NerveCenter Servers on page 33 for further information.

 NerveCenter can be used in conjunction with a network management platform such as
Hewlett Packard OpenView Network Node Manager or IBM Tivoli Netcool/OMNIbus
which manages systems, networks, intranets, and databases. NerveCenter can be configured
to receive messages from or send messages to these network management platforms. See the
section Integration with Network Management Platforms on page 34 for further information.

 NerveCenter is also tightly integrated with Hewlett Packard’s OpenView Network Node
Manager. In this situation, NerveCenter is responsible for SNMP trap handling, all polling
activity, event correlation, and automated responses to conditions. See the section
Integration with NMPs for Node Information on page 35 for further information.
Designing and Managing Behavior Models 31Version 5.1

Understanding NerveCenter2
Standalone Operation

At smaller sites, you can use NerveCenter alone for your network management tasks. As we’ve
seen, NerveCenter is very strong in the areas of event correlation and automated actions. In
addition, NerveCenter includes an alarm console, as shown in Figure 2-8.

FIGURE 2-8. NerveCenter’s Alarm Console
This console displays information about every current alarm instance. In addition, if you double-
click on a line in the event console, you are taken to an Alarm History window that displays
information about all of the alarm transitions that have occurred for the alarm instance you selected.

At small installations, no discovery mechanism is necessary; you can add nodes to NerveCenter
manually. At somewhat larger sites, however, such a mechanism is helpful, and NerveCenter
provides one in its Discovery behavior model.
Designing and Managing Behavior Models Version 5.132

Role in Network Management Strategy 2
Using Multiple NerveCenter Servers

Because one NerveCenter server can inform another NerveCenter server or management platform
of a network condition, it’s possible to set up NerveCenter servers at remote sites that notify a
centrally located NerveCenter server or management platform of the noteworthy network
conditions at those remote sites.

FIGURE 2-9. Distributed NerveCenter Servers
This is a reliable solution because the remote NerveCenter servers use TCP/IP to notify the
centrally located NerveCenter server of network conditions and retransmit messages as necessary
to ensure their delivery.

There are a couple of advantages to this type of setup:

 Only a small amount of data is transmitted over the WAN. Any bandwidth intensive
monitoring is conducted on a LAN and is managed by a remote NerveCenter server.

 The remote NerveCenter servers can be run in lights-out mode, which means:

 NerveCenter runs as a Windows service or as a UNIX daemon

 You can monitor and configure NerveCenter from a remote location

 You can modify all NerveCenter parameters without shutting NerveCenter down

 No display or operators are required at a site

Central site NerveCenter client
and server

NerveCenter
server

NerveCenter
server

NerveCenter
server

Remote Site A Remote Site B Remote Site C
Designing and Managing Behavior Models 33Version 5.1

Understanding NerveCenter2
 The central NerveCenter can further correlate and filter conditions across remote
NerveCenter Server domains.

Integration with Network Management Platforms

A network management platform (NMP) is an operations and problem-management solution for
use in a distributed multi-vendor environment. Intelligent distributed agents on managed nodes
monitor system and application log files and SNMP data. The agents apply filters and thresholds to
monitored data and forward messages about conditions of interest to a central management station.
When the management station receives these messages, it can automatically take corrective
action—such as broadcasting a command to a set of systems—or an operator can initiate this
response.

You can integrate NerveCenter with the following network management platforms:

 Hewlett Packard OpenView Network Node Manager

 IBM Tivoli Netcool/OMNIbus

Additionally, with OpenView Network Node Manager, you can direct NerveCenter to take its node
information from the management platform and configure NerveCenter to take over all polling
activity and event processing. See the section, Integration with NMPs for Node Information on
page 35, for more information.

You can integrate your NerveCenter installation with the NMP so that the NMP can send messages
to NerveCenter for correlation or processing. After the messages arrive, NerveCenter correlates the
conditions described in these messages with related conditions—from the NMP or from other
sources—and can respond with any of its alarm actions, as appropriate. In addition, NerveCenter
can send a message to an NMP in response to any network condition, whether the condition was
originally detected by the NMP or not.

NMPs alone can detect a condition and invoke an action in response. However, you must integrate
the NMP with NerveCenter if you want to:

 Correlate conditions detected by the NMP on different devices

 Correlate different types of conditions detected by the NMP on the same device

 Correlate conditions detected by the NMP with other types of events or conditions on the
same device or across different devices
Designing and Managing Behavior Models Version 5.134

Role in Network Management Strategy 2
Integration with NMPs for Node Information

If you’re working at a larger site and need a topology map and more event history than
NerveCenter provides, you can use NerveCenter with Hewlett Packard’s OpenView Network Node
Manager.

When used with OpenView Network Node Manager, NerveCenter can take its node information
from the management platform and can be configured to take over all polling activity and event
processing. NerveCenter’s main task is to minimize the number of events that appear in the
platform’s event browser. NerveCenter does this by:

 Filtering out unimportant events

 Correlating related events and notifying the platform only of the underlying problem

 Handling problems through automated actions so that no notification is necessary

Figure 2-10 below shows an OpenView event browser that contains a flurry of events all caused by
the same problem. Figure 2-11 shows what might appear in the browser if NerveCenter were used
to screen and correlate the conditions and pass on only important information to the platform event
browser.

FIGURE 2-10. Too Many Events
Designing and Managing Behavior Models 35Version 5.1

Understanding NerveCenter2
FIGURE 2-11. The Important Events
NerveCenter can also set the colors of nodes in the network management platform’s map based on
the severity of NerveCenter alarm states.
Designing and Managing Behavior Models Version 5.136

3
Designing and Managing Behavior ModelsBehavior Models and Their

Components
Chapter 2, Understanding NerveCenter introduced behavior models and the objects from which
they’re built. This chapter explains how to approach the design of a behavior model, provides
detailed definitions of the NerveCenter objects used in building behavior models, and illustrates
how these objects interact. For information on these topics, see the sections listed in the table
below.

Section Description

Behavior Models on page 38 Explains the basic design of a behavior model and which
NerveCenter objects you use at each stage of the design.

NerveCenter Objects on page 42 Provides detailed information about the basic objects
used in the construction of behavior models.

NerveCenter and Perl on page 56 Explains how the multiple Perl threads work for use with
behavior models.

Constructing Behavior Models on page 58 Explains and illustrates the relationships between the
objects in a behavior model.
Designing and Managing Behavior Models 37Version 5.1

Behavior Models and Their Components3
Behavior Models

For NerveCenter to detect a network condition or correlate network conditions, someone must
specify how NerveCenter is to detect and react to one or more conditions. Such a specification is
called a behavior model. Some behavior models ship with NerveCenter—these are called
predefined behavior models—and others you must write to handle site-specific conditions.

When writing a behavior model, you must answer the following questions:

 What condition or conditions do I want to detect?

Although NerveCenter can receive status information from a number of sources, the most
common source of such information is an SNMP agent on a managed node. Therefore, in
most cases, you must decide whether the behavior model will be poll driven or event driven.
That is, will you poll the agent’s MIB for status information, look for SNMP traps, or both?

NerveCenter provides two objects—polls and trap masks—that enable you to get
information from SNMP agents. For an overview of these objects, see the section Detecting
Conditions on page 39.

 What network conditions, or states, do I want to keep track of?

Each behavior model includes at least one alarm, and the definition of each alarm consists
primarily of a state diagram. For example, an alarm that tracks the status of a managed
node’s SNMP agent might have the following terminal states:

 Normal

 Device Unreachable

 Agent Down

 Device Down

The state of such an alarm changes as related polls and trap masks gather new information.

For an overview of alarms, see the section Tracking Conditions on page 39.

 What set of nodes do I want to manage?

A particular behavior model may not be intended for all managed devices. NerveCenter
enables you to specify the set of devices that a model will manage using the following
objects: nodes, property groups, and properties.

For an overview of the roles these objects play in a behavior model, see the section
Monitoring a Set of Nodes on page 41.
Designing and Managing Behavior Models Version 5.138

Behavior Models 3
Detecting Conditions

In the typical situation where your behavior model is either polling, or looking for a trap from, an
SNMP agent, you detect network conditions by creating polls and trap masks.

A poll contains a poll condition that refers to a single MIB base object. For example, the following
poll condition looks at an attribute of the ip base object (1.3.6.1.2.1.4):

if (ip.ipForwarding == 1) {
FireTrigger(“gatewayFound”);

}

When NerveCenter polls an agent on a device, NerveCenter evaluates the poll condition against
information stored in the agent’s MIB. In the case of the poll condition shown above, NerveCenter
would check the value of the ipForwarding attribute and compare it to 1. If the value of
ipForwarding is 1—indicating that the device is a gateway—the poll generates a trigger. In this
case, the trigger is gatewayFound. Every poll must be capable of generating at least one trigger.

A trap mask describes the contents of an SNMP trap. This description can be very general, such as
“generic trap 4.” Or it can be very specific and include an enterprise OID, a specific trap number,
and the contents of the trap’s variable bindings. In either case, if the NerveCenter server receives an
SNMP trap that matches the description given in a trap mask, that trap mask generates a trigger.
Like the triggers generated by polls, this trigger can affect the state of one or more alarms.

Tracking Conditions

NerveCenter tracks each detected network condition using one or more alarms. The scope of an
alarm is variable: an alarm can represent the state of an interface on a device, the device itself, or an
entire enterprise. Many instances of an alarm can exist simultaneously.

Each alarm is basically a finite state machine. It consists of a series of states and transitions
between the states. Each transition is initiated by one or more input events and can produce one or
more output events. This state machine is represented in NerveCenter by a state transition diagram.

For example, you could use the state diagram in Figure 3-1 to monitor the traffic on an interface.
Designing and Managing Behavior Models 39Version 5.1

Behavior Models and Their Components3
FIGURE 3-1. Monitoring the Load on an Interface
In this diagram, the states are low, medium, and high, and the transitions are LowLoad,
MediumLoad, HighLoad, and HiLoadPersists. The initial state of the interface-traffic alarm is low.
The instantiation of an alarm instance and a transition to the medium state occur when the alarm
manager receives the trigger mediumLoad from a poll that is gathering information about an
interface. Note that the trigger name and the transition name are the same.

When a transition occurs, not only does the alarm’s state change, but NerveCenter can perform
actions. These actions are defined as part of the transition and can include such things as sending e-
mail to an administrator or notifying a network management platform that a condition has been
detected. For an overview of NerveCenter’s alarm actions, see the section Responding to
Conditions on page 19.
Designing and Managing Behavior Models Version 5.140

Behavior Models 3
Monitoring a Set of Nodes

In addition to creating the polls, trap masks, and alarms that define how to detect a network
condition, track its severity, and respond to it, you must define which devices you want to monitor
for this condition. NerveCenter uses a simple mechanism, involving three types of objects, to
define this set of devices. The three types of objects are:

 Nodes

 Property groups

 Properties

Nodes represent workstations and network devices and contain property groups, which in turn
contain strings called properties. Polls and alarms are assigned properties. Given this situation,
NerveCenter can enforce the following rules:

 A poll can be sent to a particular node only if the node’s property group contains the poll’s
property.

 An alarm can be instantiated for a node only if the node’s property group contains the
alarm’s property.

For more detailed information about the NerveCenter objects used to construct behavior models,
see NerveCenter Objects on page 42.
Designing and Managing Behavior Models 41Version 5.1

Behavior Models and Their Components3
NerveCenter Objects

The upcoming sections provide details about the data structures of the NerveCenter objects used in
the construction of behavior models. These sections not only list each object’s data members, but
explain how each member affects the way a behavior model functions (where appropriate). It’s
important to understand these details before you attempt to:

 Design a behavior model

 Create one these objects

The objects are discussed in the following sections:

 Nodes on page 42

 Property Groups and Properties on page 45

 Polls on page 46

 Trap Masks on page 49

 Alarms on page 51

Nodes

In NerveCenter terminology, a node is either a workstation or a network device such as a router.
NerveCenter monitors and manages a set of nodes, and each behavior model manages a subset of
those nodes.

A node object has the data set shown in Table 3-1. The table explains what information these data
members contain and, where appropriate, how NerveCenter uses that information.

NOTENOTENOTENOTE

The names of the data members shown in Table 3-1 match the labels used in the
Node Definition window, where you create and modify node objects.
Designing and Managing Behavior Models Version 5.142

NerveCenter Objects 3
TABLE 3-1. Definitions of Node Attributes

Node
Attribute

Definition

Name Contains the name of the workstation or network device. The name can be a hostname or
an IP address.

Read
Community

Contains the community name that NerveCenter will include in any SNMP GetRequest or
GetNextRequest it sends to the agent on this node. By default, set to public.

Write
Community

Contains the community name that NerveCenter will include in any SNMP SetRequest it
sends to the agent on this node. By default, set to public.

Group Contains the node’s property group. This property group helps determine whether a
particular poll will query this node and whether a particular alarm will be instantiated for
the node. For further information about property groups, see the section Property Groups
and Properties on page 45.

The value of this attribute affects how this object interacts with other objects in a behavior
model.

Port Contains the number of the port that the node’s agent uses to receive SNMP messages. By
default, the port is set to 161.

IP Address
List

Contains the node’s IP address. If the node is multihomed, IP Address List can contain a
list of addresses.

Managed Boolean. Indicates whether NerveCenter is to manage the node. By default, NerveCenter
manages all nodes it or a network management platform discovers. However, you can mark
a node as unmanaged if you do not want it to be affected by any NerveCenter behavior
models.

The value of this attribute can disable the object.

Auto Delete Boolean. Used when NerveCenter is integrated with a network management platform. If a
node is removed from the platform’s database, NerveCenter removes the node from its
database if this attribute is set.

Platform Boolean. Indicates whether a network management platform discovered the node.

Suppressed Boolean. Indicates that the node is in a suppressed state. Suppressing a node limits polling
because if the node is suppressed and a related poll is suppressible, that poll cannot cause
an SNMP GetRequest to be sent to the node.

The value of this attribute affects how this object interacts with other objects in a behavior
model.
Designing and Managing Behavior Models 43Version 5.1

Behavior Models and Their Components3
SNMP
Version

The SNMP version used to poll the node: v1, v2c, or v3.

SNMPv3 supports additional attributes for each node, which are stored in the node
database on the NerveCenter server:

UserName The username used to authenticate a v3 query. The username can be one
of the two global user accounts (User #1 or User #2) or a node-specific
local user.

SNMPv3
Security Level

The security level of a node determines whether authentication or
encryption services are used with communications between
NerveCenter and the node.

SNMPv3 nodes can have one of the following security levels:

 NoAuthNoPriv: NerveCenter uses neither authentication nor
encryption when communicating with the agent, so no passwords
are required.

 AuthNoPriv: Message authentication is used without encryption
while communicating with the agent. An authentication protocol
and password are required. The authentication password is the same
for all nodes managed by the NerveCenter user.

 AuthPriv: Both authentication and encryption are used when
communicating with the agent. Both the authentication and privacy
protocols and passwords are required. These passwords are the same
for all nodes managed by the NerveCenter user.

For more information about SNMPv3 security, see Overview of
NerveCenter SNMPv3 Support in Managing NerveCenter. For details
about passwords, see Configuring SNMPv3 Security Settings in
Managing NerveCenter.

Authentication Either MD5 or SHA-1; you must also provide a password used to
generate the authentication key.

Privacy Either DES, 3DES, AES-128, AES-192, or AES-256; you must also
provide a password used to generate the authentication key.

Context The context string used to verify communication between SNMP agent
and requesting node. Context is required only if defined by the agent.

TABLE 3-1. Definitions of Node Attributes (Continued)

Node
Attribute Definition
Designing and Managing Behavior Models Version 5.144

NerveCenter Objects 3
Property Groups and Properties

Another attribute of a node—one that requires a little explanation—is the node’s property group. A
property group is a list of properties, which are strings that generally name either an object in the
management information base (MIB) used to manage a node, or the role the node plays in the
network (such as “router”). These property strings can be:

 The name of a MIB base object

 A user-defined string

FIGURE 3-2. Property Groups and Properties
Property groups are assigned to nodes and control which nodes will be contacted by a particular
poll and which nodes can be monitored using a particular alarm. Both types of properties—MIB
base objects and user-defined strings—play a part in making these determinations.

Routers “atEntry”

“ifEntry”

“interfaces”

“router”

Property group

Contains

Properties

MIB base objects

User-defined string
Designing and Managing Behavior Models 45Version 5.1

Behavior Models and Their Components3
For example, NerveCenter ships with a predefined property group called Router. This property
group contains the following properties:

In this case, all the properties are MIB objects except “router,” which describes the type of the
device.

For the person who programs NerveCenter to monitor particular devices for specific error
conditions, the properties associated with each node are important. These properties allow the
programmer to define which devices NerveCenter should poll for MIB data and which error
conditions NerveCenter should look for on each device, among other things.

You can filter the nodes that you are monitoring based on their properties. For example, you might
choose to monitor only nodes that have been assigned the Router property group, that is, all routers.

Polls

A NerveCenter poll periodically sends an SNMP message to a set of nodes, requesting information
from the agents running on those nodes. When the poll receives this information from a node, it
uses the information in the evaluation of a poll condition, which may cause a trigger to be fired. For
example, a poll may fire a trigger if the number of discarded packets on an interface is too high.
The poll condition must be able to fire at least one trigger, and may be capable of firing several.
These triggers can cause alarms to be instantiated, to change states, or perform actions—under the
right circumstances.

The key attributes of a poll are listed in Table 3-2 This table explains what information these data
members contain and, where appropriate, how NerveCenter uses that information.

NOTENOTENOTENOTE

The names of the data members shown in Table 3-2 match the labels used in
NerveCenter’s Poll Definition window, where you create and modify poll objects.

 atEntry ip snmp

 egp ipAddrEntry system

 egpNeighEntry ipNetToMediaEntry tcp

 icmp ipRouteEntry tcpConnEntry

 ifEntry nl-ping udp

 interfaces router udpEntry
Designing and Managing Behavior Models Version 5.146

NerveCenter Objects 3
TABLE 3-2. Definitions of Poll Attributes

Data Member Definition

Name A unique name that you assign to the poll.

Property The Property attribute is a string. This string determines (in part) whether a poll will
request MIB data from a particular node. Only if the node’s property group contains the
poll’s property can polling possibly occur. However, before a poll will request
information from a node’s SNMP agent, other conditions must be satisfied as well. For
further information, see the explanation below for Poll Condition.

Port Optional. If you specify a port number here, NerveCenter will send the poll to this port
on the nodes that are configured to receive the poll. Otherwise, NerveCenter will send
the poll to the port specified in each node’s definition.

Poll Rate The number of seconds, minutes, or hours between polls.

Enabled A poll’s enabled status (Off or On) is similar to a node’s Managed status. That is, if a
poll is disabled, it will never send a request to an SNMP agent.

Poll Condition The Poll Condition is a Perl script that can fire one or more triggers. Which trigger is
fired (if any) depends of what data the poll retrieves from an SNMP agent. Generally,
this data is used in evaluating an if statement.

This poll condition must be expressed in terms of one MIB base object. For example, a
valid condition would be:

if (delta(snmp.snmpInBadCommunityNames) >= 1 or
delta(snmp.snmpInBadCommunityUses) >= 1) {

FireTrigger(“AuthFail”);
}

In this case, the base object is snmp. The name of this base object must be one of the
properties in a node’s property group before the node can receive a request from a poll
with this poll condition.

Suppressible A poll’s Suppressible attribute works in conjunction with a node’s Suppressed attribute.
If a node is suppressed and a related poll is suppressible, that poll will not query that
node. If a poll is not suppressible, then it will poll even a suppressed node. Generally,
the only polls that are insuppressible are those designed to determine when an
unresponsive node becomes responsive again. When a node becomes responsive, the
behavior model of which the poll is a part can change the status of the node from
suppressed to unsuppressed. (You set an attribute of a node using the Set Attribute alarm
action.)
Designing and Managing Behavior Models 47Version 5.1

Behavior Models and Their Components3
If a poll fires a trigger, that trigger has the attributes shown in Table 3-3.

A trigger’s Name, Node name/IP address, Subobject, and Property are all important when it comes
to determining what effect, if any, a trigger has on an alarm. You’ll find more on this subject in the
section Constructing Behavior Models on page 58.

TABLE 3-3. Definitions of Trigger Attributes

Data Member Definition

Name The name of the trigger, which is defined in the poll definition.

Node name/IP address The name or IP address of the node that responded to the poll and caused the
trigger to be fired.

Subobject In general, the Subobject has a value of the form BaseObject.Instance.
BaseObject is the name of the MIB base object that the poll inquired about, and
Instance is the unique identifier associated with a row of MIB data returned by
the poll. In most cases, Instance is the number associated with a particular
interface on the node. The subobject, however, can also be an arbitrary string.
The important thing is that subobjects can be used to uniquely identify alarm
instances so that triggers can be directed to exactly the right alarm instance.

Property The Property, as always, is simply a string. A trigger fired by a poll does not have
a property, but as you’ll see later, other triggers do.

Variable bindings The trigger also contains the values of the MIB attributes referred to in the Poll
Condition. Each attribute and its value are called a variable binding.
Designing and Managing Behavior Models Version 5.148

NerveCenter Objects 3
Trap Masks

A trap mask filters SNMP traps that NerveCenter receives. Based on criteria that you specify, the
trap mask either filters out each trap or fires a trigger in response to it. A trigger fired by a mask is
exactly the same as a trigger fired by a poll except that a trap trigger contains the trap’s variable
binding list instead of the values of MIB attributes. (For further information about the trigger
object, see the section Polls on page 46.)

The principal attributes of a trap mask are shown in Table 3-4. The table explains what information
these data members contain and, where appropriate, how NerveCenter uses that information.

NOTENOTENOTENOTE

The names of the data members shown above match the labels used in
NerveCenter’s Mask Definition window, where you create and modify trap masks.

TABLE 3-4. Definitions of Trap Mask Attributes

Attribute Definition

Name The name of the trap mask.

Generic The generic trap type is an enumeration constant indicating the nature of the event being
reported:

 0—coldStart

 1—warmStart

 2—linkDown

 3—linkUp

 4—authenticationFailure

 5—egpNeighborLoss

 6—enterpriseSpecific

You supply a Specific trap number (see below) only if the generic trap type is 6.

From Indicates that the object identifier (OID) contained in the trap’s Enterprise field must
represent a branch in the MIB tree that is the same as, or subordinate to, the branch
represented by the contents of the trap mask’s Enterprise field.

From Only Indicates that the OID contained in the trap’s Enterprise field must match the trap
mask’s Enterprise attribute exactly.

Enterprise An OID (or name) representing the object referenced by the trap.

Specific A trap number supplied by the vendor of the product whose agent generated the trap.
The significance of the trap number is defined in an ASN.1 file provided by the vendor.
Designing and Managing Behavior Models 49Version 5.1

Behavior Models and Their Components3
Trigger Type Trigger Type can be set to either Simple Trigger or Trigger Function. See the next two
table entries for definitions of these trigger types.

Simple Trigger A simple trigger is one that will be fired whenever the trap mask sees a trap that meets
the criteria specified in the fields discussed above.

The value of this attribute affects how this object interacts with other objects in a
behavior model.

Trigger
Function

A trigger function is a Perl script that is called whenever the trap mask sees a trap that
meets the criteria specified in the fields discussed above. This function typically looks at
information in the trap’s variable bindings and fires a trigger if a condition is fulfilled.
The trigger function fires this trigger using NerveCenter’s FireTrigger() function.

The value of this attribute affects how this object interacts with other objects in a
behavior model.

Enabled As with a poll, a trap that is disabled (Enabled is set to Off) is nonfunctional.

TABLE 3-4. Definitions of Trap Mask Attributes (Continued)

Attribute Definition
Designing and Managing Behavior Models Version 5.150

NerveCenter Objects 3
Alarms

As mentioned in the section Behavior Models on page 25, a NerveCenter alarm consists primarily
of a state diagram, which defines the alarm’s states, the transitions between states, and the alarm
actions to be performed when each transition takes place. This alarm definition is analogous to a
class in object-oriented programming. That is, the alarm itself does not monitor a network
condition; rather, an alarm instance (comparable to an object) is created to track such a condition.

For example, the section Behavior Models on page 25 showed the definition of an alarm designed
to monitor traffic on an interface.

FIGURE 3-3. Definition of the alarm IfLoad
If NerveCenter detects a medium or high level of traffic on an interface it is managing, it creates an
instance of this alarm to track the condition. If NerveCenter detects medium or high traffic on five
interfaces, it creates five instances of the alarm. Each instance of the alarm maintains such
information as:

 The instance’s current state

 The severity of that state

 The node the instance is monitoring

In addition, each alarm instance causes the appropriate alarm actions to take place when a state
transition occurs.
Designing and Managing Behavior Models 51Version 5.1

Behavior Models and Their Components3
If five instances of IfLoad are created, how do you distinguish them? Depending on the scope of
the alarm, you might need to look at the instance’s node attribute or at both its node and subobject
attributes.

In NerveCenter, alarms can have one of four scopes: enterprise, instance, node, or subobject. Only
one instance of an enterprise-scope alarm can be created. This instance monitors a condition across
all managed nodes. For example, one alarm instance could cause an action to take place if three or
more routers in an enterprise are down at the same time.

A node-scope alarm monitors a single managed device for a condition. For instance, the alarm
SnmpStatus (shipped with NerveCenter) determines whether a device is in a normal state,
unreachable, down, or up but unable to respond to SNMP requests. An instance of this type of
alarm can be identified by its alarm name and the name of the node it is monitoring. This node
name is an attribute of the alarm instance.

A subobject-scope alarm most often monitors an interface on a device. For example, an instance of
the alarm IfLoad monitors each interface that is experiencing a medium to high level of traffic. This
type of instance can be identified by its alarm name, the name of the node it is monitoring, and the
name of the subobject being monitored. This subobject name is usually composed of the name of a
MIB table followed by an instance number. That is, if an instance of the IfLoad alarm is monitoring
port 2 on a device, its subobject attribute has the value ifEntry.2.

Instance scope alarms track instances for every interface or port that fits the polled condition
regardless of the base object. Instance scope is similar to Subobject scope but has the following
difference: Instance scope lets you monitor any instance for different base objects. This allows you
to track a variety of events for any managed subobject in a single alarm instance.
Designing and Managing Behavior Models Version 5.152

NerveCenter Objects 3
Alarm Scope

All NerveCenter alarms have a property called scope. This property can have one of four values:

 Subobject

 Instance

 Node

 Enterprise

If an alarm has Subobject scope, an instance of that alarm tracks activity on a component that can
be described using a nonzero MIB object instance, for example, an interface on a router.

Instance scope alarms track instances for every interface or port that fits the polled condition
regardless of the base object. Instance scope is similar to Subobject scope but has the following
difference: Instance scope lets you monitor any instance for different base objects. This allows you
to track a variety of events for any managed subobject in a single alarm instance.

If an alarm has Node scope, an instance of that alarm tracks activity on a single device. If an alarm
has Enterprise scope, an instance of that alarm tracks activity on all managed nodes.

NOTENOTENOTENOTE

It might be useful to think of an alarm instance as a copy of the alarm’s state
diagram whose current state is something other than Ground.

Why is NerveCenter architected this way? Well, think about the following network management
problem: You want to be notified whenever four interfaces on a device experience high traffic.

Your first step in solving this problem might be to create a poll that detects high traffic on an
interface and fires the trigger highTraffic. You might then create an alarm with node scope and five
states, as shown in Figure 3-4.
Designing and Managing Behavior Models 53Version 5.1

Behavior Models and Their Components3
FIGURE 3-4. Possible Alarm Diagram for Looking for High Traffic on Four Interfaces
Most likely, this alarm won’t detect the condition you’re looking for because all four transitions can
be effected if the poll repeatedly detects high traffic on a single port.

To solve your problem, the trigger highTraffic must cause one or more transitions in a subobject
scope alarm, and this alarm must fire a busyPort trigger (using the Fire Trigger alarm action) during
its final transition. Such an alarm is shown in Figure 3-5.

FIGURE 3-5. A Subobject Scope Alarm
When the high-traffic poll detects high traffic on an interface, a subobject scope alarm will be
instantiated, and the transition highTraffic will occur. During this transition, the alarm will fire a
trigger called busyPort. Note that once a subobject alarm instance transitions to the BusyPort state,
additional high-traffic triggers for the interface concerned have no effect. However, if the high-
traffic poll detects high traffic on other interfaces, new alarms will be instantiated and fire the
trigger busyPort. Each instance fires its own busyPort trigger.

Ground TwoPortsHigh

highTraffic highTraffic highTraffic highTraffic

OnePortHigh ThreePortsHigh

FourPortsHigh

Ground highTraffic BusyPort

Action
Fire Trigger - busyPort
Designing and Managing Behavior Models Version 5.154

NerveCenter Objects 3
Now a node scope alarm similar to the one shown in Figure 3-6 can be configured to receive up to
four busyPort triggers, each one from its own instance of the high traffic alarm. Each busyPort
trigger signals high traffic on a different interface.

FIGURE 3-6. Node Scope Alarm Detecting High Traffic from Four Alarm Instances
An instance scope alarm behaves in a similar manner as the subobject scope alarm. The main
difference between subobject and instance scope is that, with instance scope, you could add another
transition to the alarm to monitor a different base object than the one for high traffic. Then, the
alarm could be instantiated by the high-traffic poll and then transition again when an entirely
different condition (MIB object) is detected.

Ground TwoPortsHigh

busyPort busyPort busyPort busyPort

OnePortHigh ThreePortsHigh

FourPortsHigh
Designing and Managing Behavior Models 55Version 5.1

Behavior Models and Their Components3
NerveCenter and Perl

In prior versions of NerveCenter, there was one Perl interpreter and that interpreter was single
threaded. This meant that only one poll, trap mask function, Perl subroutine, or action router rule
could run at one time. Perl scripts that take a long time to run, such as logging to a file, performing
database queries, or issuing external system calls, can slow down NerveCenter’s performance.

FIGURE 3-7. Previous NerveCenter Perl Interpreter Architecture
As shown in Figure 3-7, all poll conditions, trigger functions, action router rules and Perl
subroutines all used the same Perl interpreter. The advantage of this architecture is that you can use
the same variables through out your Perl in NerveCenter. The disadvantage comes with high-use
situations. Since there is only one Perl interpreter, only one Perl routine can run at a time. If your
NerveCenter installation is receiving thousands of traps, and hundreds of these traps cause Perl-
intensive triggers to fire or polls to run, with hundreds of Perl subroutines to follow as actions,
NerveCenter performance can quickly degrade.

NerveCenter 4.0 and above give you the option of using separate Perl interpreters for the three
major components in NerveCenter which use Perl—poll conditions, trigger functions, perl
subroutines. Action router rules continue to use a global—or shared—Perl interpreter. Figure 3-8
shows the new architecture.

NerveCenter
Perl

Interpreter

$GlobalVariables

Poll Conditions

Trigger Functions

Action Router Rules

Perl Subroutines

Perl Results

To
NerveCenter

Server
Designing and Managing Behavior Models Version 5.156

NerveCenter and Perl 3
FIGURE 3-8. Current NerveCenter Perl Interpreter Architecture
With four different interpreters handling the Perl work load, less time is spent waiting for one Perl
routine to finish. Polls can run independent of triggers or Perl subroutines. Remember, now that
each interpreter is separate, global variables only work within one interpreter.

Using multiple interpreters is optional. If it is better for your NerveCenter configuration to continue
using a single interpreter, you can choose to send some or all of your poll conditions, trigger
functions, and Perl subroutines to the Global Perl interpreter used by the action router.

To
NerveCenter
Server

Poll Conditions
Perl Interpreter

$PollConditionVariables

Trigger Functions
Perl Interpreter

$TriggerFunctionVariables

Global
Perl Interpreter

$GlobalVariables

Perl Subroutines
Perl Interpreter

$PerlSubroutineVariables

Poll Conditions

Action Router Rules

Trigger Functions

Perl Subroutines

Perl Results

Perl Results

Perl Results

Perl Results

Poll Conditions

Trigger Functions

Perl Subroutines

Path to Perl Interpreter

Path to Perl Interperter
if Execute Perl in Global
Space is selected
Designing and Managing Behavior Models 57Version 5.1

Behavior Models and Their Components3
Constructing Behavior Models

Given the NerveCenter objects discussed in NerveCenter Objects on page 42, it’s possible to create
a behavior model, which can be defined as the set of NerveCenter objects required to deal with a
single network or system condition. Figure 3-9 shows a simple example of the objects that might
make up a behavior model.

FIGURE 3-9. A Behavior Model
The next two sections:

 Discuss in general how the various objects fit together to make a model

 Present an example of a behavior model

Behavior model

Contains

Property
Group

GetRequest

GetResponse
Poll

Trigger

AlarmNodes
Designing and Managing Behavior Models Version 5.158

Constructing Behavior Models 3
How the Pieces Fit Together

Let’s first review how you define which managed nodes a behavior model will monitor and
manage. As Figure 3-10 shows, each node belongs to a property group, and that property group
contains properties.

FIGURE 3-10. Nodes, Property Groups, and Properties
Any set of nodes that share a unique property can be managed as a set of devices. (The nodes need
not be members of the same property group.) In the figure above, the tcp property might be that
unique property.

For a node to be pollable, the principal requirements are that:

 The poll’s property must be in the node’s property group.

 The base object around which the poll’s poll condition is built must be a property in the
node’s property group.

 The poll’s trigger must correspond to a pending alarm transition, and the alarm’s property
must be in the node’s property group.

Figure 3-11 shows the definition of a poll that has been designed to work with the node shown in
Figure 3-10.

Node Property group

tcp

Properties

atEntry

ifEntry

ipRouteEntry

tcp
Designing and Managing Behavior Models 59Version 5.1

Behavior Models and Their Components3
FIGURE 3-11. Relationship Between Node and Poll
As you can see, the node’s property group, Mib-II, contains a property tcp that matches the poll’s
property and the base object used in the poll’s poll condition. Once this poll is enabled, the poll
TcpMedRetrans will poll the node, unless there is no alarm that the poll can affect or the node is
suppressed. (If the node is suppressed, no polling will occur because the poll is marked
suppressible.)

NOTENOTENOTENOTE

Since trap masks do not have properties, this type of matching is not necessary for
masks.

If TcpMedRetrans polls the node, receives a response to its query, and that response satisfies the
poll condition, the poll will fire a trigger. If an alarm has been defined whose first transition is
tcpRetransMed (the poll’s trigger) and that alarm is enabled has the property tcp, a new instance of
that alarm will be instantiated to monitor the node. Because the alarm is instantiated using the
trigger’s Node and Subobject, the key attributes of the trigger and alarm will match, and the first
transition will be effected.

Mib-II
atEntry
ifEntry
ipRouteEntry
.
.

.
tcp
Designing and Managing Behavior Models Version 5.160

Constructing Behavior Models 3
Once an alarm instance has been instantiated and has gone through one transition, the transitions
that can be effected from its current state determine which triggers affect the alarm. For example
consider the following alarm, TcpRetransMon.

FIGURE 3-12. An Alarm: TcpRetransMon
When this alarm is first instantiated and the tcpRetransMed transition is made, the alarm transitions
to the tcpMedRtrans state, so two transitions are pending: tcpRetransNorm and tcpRetransHigh. If
NerveCenter sees a trigger with one of those names, and the trigger’s Node and Subobject match
those of the transition, the transition occurs.
Designing and Managing Behavior Models 61Version 5.1

Behavior Models and Their Components3
An Example of a Behavior Model

This section presents an overview of the set of steps you would need to perform to create a behavior
model that monitors node interfaces. The possible interface conditions are link up and link down.

NOTENOTENOTENOTE

Don’t try to follow these directions. Just read over them to get an overview of the
procedure. Detailed procedures are available in following chapters.

1. Create a property group named CheckLink.

2. Add to this property group the properties ifEntry (base object) and checkLink (user defined).

3. Assign the property group CheckLink to all of the managed nodes whose interfaces you
want to monitor.

4. Create two masks: LinkUp and LinkDown.

The values you use to create LinkUp are shown in the table below.

The definition for LinkDown is the same as the definition of LinkUp except for the name of
the mask and Generic SNMP trap number (LinkDown=2).

5. Create the alarm shown below.

TABLE 3-5. Values Needed to Create LinkUp

Attribute Value

Name LinkUp

Generic LinkUp=3

Trigger Type Simple Trigger

Enabled On
Designing and Managing Behavior Models Version 5.162

Constructing Behavior Models 3
Once this alarm is enabled, the behavior model will become functional.

The IfLinkUpDown alarm contains the property ifEntry, which is in the property group
CheckLink. Even though a trap mask filters all traps sent to NerveCenter, the
IfLinkUpDown alarm will only become instantiated when the SNMP agent sending the trap
belongs to a node in the CheckLink property group.

Here’s how the behavior model might interact with one port on a workstation that belongs to the
property group:

1. The mask LinkDown will cause a transition to the DownTrap state, as well as start a three-
minute timer (linkTimer).

2. If the agent comes back up, then the alarm transitions back to Ground and the timer is
cleared.

3. If three minutes has past, and the interface remains down, then the alarm transitions to
LinkDown, and sends a 7004 Inform to the network management platform.
Designing and Managing Behavior Models 63Version 5.1

Behavior Models and Their Components3
Designing and Managing Behavior Models Version 5.164

4
Designing and Managing Behavior ModelsGetting Started with the NerveCenter

Client
Before you can begin monitoring your network using the NerveCenter Client, you must start the
client and then establish a connection between the client and one or more NerveCenter servers. You
may also want to set up alarm filters to control which alarm instances the NerveCenter Client will
display information about.

For instructions on how to perform these and related tasks, see the sections listed below:

Section Description

Starting the Client on page 66 Describes how to start the NerveCenter Client.

Connecting to a Server on
page 67

Explains how to log on to one or more NerveCenter Servers, discusses
the various server connection options, and describes how to select an
active server.

Setting Up Alarm-Instance
Filters on page 77

Provides instructions for setting up alarm viewing preferences. You can
request that the alarm instances from the servers you’re connected to be
filtered by: IP range, severity, or property group.

Specifying Heartbeat
Messaging on page 95

Explains heartbeat messaging: how to set message intervals and how to
deactivate heartbeat messaging.

Disconnecting from a Server
on page 98

Describes how to log off the NerveCenter Server.
Designing and Managing Behavior Models 65Version 5.1

Getting Started with the NerveCenter Client4
Starting the Client

The NerveCenter Client enables you to monitor current alarm instances, view an alarm’s history,
reset an alarm, and monitor the status of nodes.

TO START THE CLIENT

 If you’re working on a UNIX system, from a terminal window, enter the command:

client &

If you receive the error message client: Command not found, NerveCenter has not been
installed in the default location (/opt/OSInc). In this case, you must change directories to the
NerveCenter bin directory before entering this command, or enter the full pathname of the
executable.

NOTENOTENOTENOTE

Before running NerveCenter, you must set the necessary UNIX environment
variables with the appropriate ncenv shell script. For more information about
environment variables, refer to Running the NerveCenter Server on UNIX in
Managing NerveCenter.

 On a Windows system, start the client using the Start menu. If the person who installed
NerveCenter selected the default program folder, NerveCenter, select the following set of
menu entries: From the Start menu, select Programs > OpenService NerveCenter > Client.

If the installer used a program folder other than OpenService NerveCenter, select Client
from that folder instead.

After you perform this step, you see the client window shown in Figure 4-1.
Designing and Managing Behavior Models Version 5.166

Connecting to a Server 4
FIGURE 4-1. NerveCenter Client
Most of the buttons on the button bar and the options on the menus are not enabled until you
connect the client to a NerveCenter server.

Connecting to a Server

Before you can use the client, you must connect the client to a NerveCenter server. This server
collects data from managed devices, creates alarm instances, and performs the actions defined in
alarms. The server also gives the client access to information about alarm instances and the status
of nodes.

You can connect your client to more than one server at one time and view information about all the
active alarm instances being managed by those servers. However, only one server can be the active
server. The active server determines which NerveCenter database is used when you ask for a list of
polls or the definition of an alarm.

For information on connecting to a NerveCenter server, see the following subsections:

 Connecting to a Server Manually on page 68

 Connecting to a Server Automatically on page 71

 Sharing MIB Information from Multiple Servers on page 73

You may also be interested in the following topics, which relate to connecting to a server:

 Selecting the Active Server on page 74

 Deleting a Server from the Server List on page 75

 Changing the Server Port on the Client on page 76
Designing and Managing Behavior Models 67Version 5.1

Getting Started with the NerveCenter Client4
Connecting to a Server Manually

If you haven’t configured the client to connect to one or more servers at startup, or if you want to
establish a connection with a server that you don’t typically use, you must establish your
connection with the server manually.

TO CONNECT TO A NERVECENTER SERVER MANUALLY

2. In the Server Name field, type the hostname or IP address of the machine where the
NerveCenter server is running or select a hostname or IP address from the Server Name
drop-down list.

The first time you connect to a server, the drop-down list is empty. After that, it contains a
list of the machines to which you’ve connected, or attempted to connect, in the past. (The list
won’t display the names of machines to which you’re already connected.) For information
on removing an entry from the drop-down list box, see the section Deleting a Server from the
Server List on page 75.

3. Type a user name and password in the User ID and Password fields.

You must enter a user name and password. The user whose name you enter here must be a
member of the NerveCenter Users or NerveCenter Admins group (Windows) or the ncusers
or ncadmins group (UNIX).

4. Select the Connect button.

If the machine to which you try to connect is not running the NerveCenter server, you see the
message The server did not respond.

1. From the Server menu, select Connect.

The Connect to Server window displays.
Designing and Managing Behavior Models Version 5.168

Connecting to a Server 4
When the client successfully connects to the server, all of the buttons in the button bar become
enabled, and the Aggregate Alarm Summary window appears.

FIGURE 4-2. Client Connected to a Server
Table 4-1 lists the client windows you can reach by using the buttons in the client’s toolbar.

TABLE 4-1. Windows Accessible from Toolbar

Button Window

Opens the Connect to Server window, from which you can connect the client to a
NerveCenter server.

Opens a Client message window containing the prompt Disconnecting from Hostname. Use
this window to confirm that you want to disconnect the client from a NerveCenter server.

Opens the Property Group List window. From this window, you can view the currently
defined property groups and the properties that each property group contains.

Opens the Node List window. From this window, you can view a list of the nodes defined in
the NerveCenter database and a brief definition of each node.

Opens the Poll List window. From this window, you can view a list of the polls defined in the
NerveCenter database and a brief definition of each poll.

Opens the Mask List window. From this window, you can view a list of the trap masks
defined in the NerveCenter database and a brief definition of each trap mask.
Designing and Managing Behavior Models 69Version 5.1

Getting Started with the NerveCenter Client4
Opens the Alarm Definition List window. From this window, you can view a list of the alarms
defined in the NerveCenter database and open a definition window for each alarm.

Displays a list of currently defined correlation expressions. Correlation expressions enable
you to create alarms from boolean expressions.

Opens the Severity List window, from which you can view a list of the severities defined in
the NerveCenter database. (A severity has a name, a severity level, and a color associated
with it.)

Opens the Perl Subroutine List window. From this window, you can view a list of the
currently defined Perl subroutines.

Opens the Report List window. From this window, you can view a list of reports.

Opens the Action Router Rule List window. From this window, you can view a list of the
current set of rules that you have defined for the Action Router.

Opens the Import Objects and Nodes dialog. From this dialog, you can import behavior
models from one NerveCenter to another.

Opens the Export Objects and Nodes dialog. From this dialog, you can export specific objects
or groups of objects from one database to another.

Opens the Server Status dialog. This dialog provides you with a comprehensive view of all
your NerveCenter server settings.

Opens the Alarm Summary window. This window presents information about the current
alarm instances for the active server.

Opens the Aggregate Summary window. This window presents information about the current
alarm instances for all the servers to which you’re connected.

TABLE 4-1. Windows Accessible from Toolbar (Continued)

Button Window
Designing and Managing Behavior Models Version 5.170

Connecting to a Server 4
Connecting to a Server Automatically

If you want to establish a connection with the same set of servers each time you run the client, you
can use NerveCenter’s Autoconnect feature.

TIP

Before you activate the Autoconnect feature, you might want to manually connect
to the NerveCenter Server, to verify that you can indeed access the server.

TO SET UP A LIST OF SERVERS TO WHICH YOU’LL CONNECT AT STARTUP

1. From the client’s Client menu, choose Configuration.

The Client Configuration dialog displays.

2. Enter the hostname or IP address of the server to which you want to connect in the Server
Name field.
Designing and Managing Behavior Models 71Version 5.1

Getting Started with the NerveCenter Client4
3. Generally, you’ll leave the default value in the Server Port field.

However, if the administrator who configured the server you want to connect to has changed
the server port to be used for client/server communication, you must enter the new port
number here. The NerveCenter Client uses this same port number for every NerveCenter
Server to which it attempts to connect.

4. Check the Autoconnect checkbox.

5. Type a user name and password in the User ID and Password fields.

You must enter a user name and password. The user whose name you enter here must be a
member of the NerveCenter Users or NerveCenter Admins group (Windows) or the ncusers
or ncadmins group (UNIX).

On UNIX, if you have activated Autoconnect and your password changes, you must
manually update your password in the Client Configuration dialog box for the Autoconnect
feature to work. For the Autoconnect feature, NerveCenter does not update your password
automatically.

6. Select the Add button.

The server’s name and automatic-connection status are displayed in the list near the bottom
of the window.

7. Repeat step 2 through step 6 for each server you want to connect to automatically.

8. Select the OK button.

When you restart and log on to the client, you will be connected to the servers that have an
Autoconnect status of On. Alternatively, you can connect, or reconnect, to these servers by
selecting Autoconnect from the client’s Server menu.
Designing and Managing Behavior Models Version 5.172

Connecting to a Server 4
Sharing MIB Information from Multiple Servers

The NerveCenter Client needs a copy of the same MIB file that a NerveCenter Server uses to
provide MIB base objects and attributes. If you intend to connect to multiple servers that use the
same MIB file, you can direct NerveCenter to share MIB information. When you use this option,
the NerveCenter Client saves only the MIB information sent to it by the first connected server.

For more information about MIBs, refer to Managing Management Information Bases (MIBs) in
Managing NerveCenter.

TO SHARE MIB INFORMATION

1. Disconnect from any connected servers.

2. From the client’s Client menu, choose Configuration.

The Client Configuration dialog is displayed.

3. Select the Share MIB checkbox.

4. Select the OK button.
Designing and Managing Behavior Models 73Version 5.1

Getting Started with the NerveCenter Client4
Selecting the Active Server

The active server is the one whose database you can read data from. That is, you have access to this
server’s alarm definitions, poll definitions, and so on. You can view alarm instances for any number
of servers at the same time.

TO MAKE A PARTICULAR SERVER THE ACTIVE SERVER

1. Display the server drop-down list on the client’s button bar.

FIGURE 4-3. Server Drop-Down List
2. Select from the list the name of the server you want to make the active server.

The name of the active server appears in the drop-down list box.
Designing and Managing Behavior Models Version 5.174

Connecting to a Server 4
Deleting a Server from the Server List

NerveCenter maintains a list of servers that a client has connected to, or attempted to connect to, in
the past. This list is used in the Connect to Server window, which you use to establish a connection
to a server manually, and it also appears in the Client Configuration window. This list may contain
the names of servers that you will never connect to again, or, even worse, the misspelled names of
servers you were unable to connect to because of a misspelling.

TO DELETE THE NAME OF A SERVER FROM THE SERVER LIST

1. From the client’s Client menu, select Configuration.

NerveCenter’s Client Configuration window is displayed.

2. In the Server List near the bottom of the window, select the server name you want to
remove from the server list.

3. Select the Delete button.

4. Select the OK button.
Designing and Managing Behavior Models 75Version 5.1

Getting Started with the NerveCenter Client4
Changing the Server Port on the Client

Each NerveCenter server uses a special port on its host for client/server communication. By
default, servers use port 32504; however, the person who configures the NerveCenter server can
change the number of this communication port if port 32504 is being used by another application.
If this number is changed on the server side, you must make a corresponding change on the client
side before you will be able to connect to the server.

TO CHANGE THE CLIENT’S SERVER PORT

1. From the client’s Client menu, choose Configuration.

The Client Configuration window is displayed.

2. In the Server List near the bottom of the window, select the name of the server that uses the
non-default port number.

Connection information for that server is displayed.

3. Type the new port number in the Server Port text field.

4. Select the OK button.
Designing and Managing Behavior Models Version 5.176

Setting Up Alarm-Instance Filters 4
Setting Up Alarm-Instance Filters

Before or after you’ve connected to the servers from which you want to retrieve alarm instances,
you can set up one or more alarm-instance filters, per server. These filters control which alarm
instances are displayed in the NerveCenter Client. You can filter alarm instances by:

 The IP address of the instance’s node

 The severity of the instance’s state

 The property group associated with the instance’s node

If you filter alarm instances by a severity, only instances whose states have this severity will be
displayed in the client. Filters based on property groups and IP address ranges work similarly.

A single filter can contain any combination of:

 A list of subnets

 A list of severities

 A list of property groups

These filters offer two advantages. First, they limit the number of alarm instances that will show up
in the client, enabling you to focus your attention on the alarm instances that are specifically of
interest to you. Using filters also improves the performance of the client, since NerveCenter only
transfers to the client those alarm instances that match the filter criteria.

For information on how to build an alarm-instance filter and on how to associate a filter with a
server, see the sections listed below:

 Filtering Alarms by IP Range on page 78

 Filtering Alarms by Severity on page 85

 Filtering Alarms by Property Groups on page 89

 Associating a Filter with a Server on page 92

 Rules for Associating Filters with Alarms on page 94
Designing and Managing Behavior Models 77Version 5.1

Getting Started with the NerveCenter Client4
Filtering Alarms by IP Range

When you filter alarms by IP range, you are specifying that you only want to display alarm
instances in the NerveCenter Client from particular nodes identified by their IP addresses. See IP
Subnet Filter Exclusion Rules on page 81, for more about filtering alarms by IP ranges. Although
you can create a filter simply based on an IP range, a single filter can contain any combination of:

 A list of subnets

 A list of severities

 A list of property groups

For information on how to build an alarm-instance filter based on severities and property groups,
see the respective section listed below:

 Filtering Alarms by Severity on page 85

 Filtering Alarms by Property Groups on page 89

TO CREATE AN ALARM FILTER BASED ON AN IP RANGE

1. Choose Configuration from the Client menu.

The Client Configuration dialog is displayed.
Designing and Managing Behavior Models Version 5.178

Setting Up Alarm-Instance Filters 4
2. Select the Alarm Filter Modification tab.

The Alarm Filter Modification page is displayed.

3. Select the New button.

The Alarm Filter Definition dialog is displayed.
Designing and Managing Behavior Models 79Version 5.1

Getting Started with the NerveCenter Client4
4. If you want to filter alarm instances based on the IP addresses of the alarm instances’ nodes,
perform the steps below for each subnet you want to be part of the filter. That is, you want to
see information about instances whose nodes have IP addresses on these subnets.

a. Enter an IP address in the Subnet text field.

The IP address must consist of four octets separated by periods.

b. Enter a subnet mask in the Mask text field.

The subnet mask must consist of four octets separated by periods. Taken together with
the subnet address, this mask defines the subnet whose nodes you’re monitoring.

c. In the Exclusion text field, enter the last octet of the IP address of any node on the
subnet that you’re not monitoring.

You can enter multiple exclusions separated by commas. You can also enter a range of
excluded nodes using a hyphen. For example, if you enter 24, 76-78 in the Exclusion
field, the nodes whose addresses end in 24, 76, 77, and 78 will be excluded by the filter.

d. Select the Add button.

e. Repeat step a to step d to add other subnets to the alarm filter.

5. Enter a name for your filter in the Filter Name field.

6. Select the OK button.

The Alarm Filter Definition dialog is closed and you return to the Client Configuration
dialog box.

You’ve now defined an alarm filter based on an IP range. Before the client will use the filter,
however, you must associate the filter with a server. For instructions on how to create this
association, see the section Associating a Filter with a Server on page 92.
Designing and Managing Behavior Models Version 5.180

Setting Up Alarm-Instance Filters 4
IP Subnet Filter Exclusion Rules

When you filter by subnet, you specify which subsets of nodes are managed by NerveCenter.
Filtering does not apply to nodes that have been imported from a file or from another NerveCenter.
For an example, see IP Subnet Filter Examples on page 83.

You can exclude specific nodes that belong to the filter by entering an exclusion. To exclude one or
more nodes, you must specify the full subnet and mask, and then enter the individual nodes you
want excluded. Enter the part of the IP address that is not affected by the subnet’s mask.

NerveCenter filters Class B and C networks.

Class C Networks

In a Class C network, the first three octets of the address specify the network and the last octet
specifies the host. For example, in network 194.123.45.0, the 194.123.45 value pertains to the
network. The remaining octet is used to identify nodes (up to 254) on the network, and you can
exclude nodes by specifying ID values in this octet.

Class B Networks

For a Class B network, only the first two octets of the address specify the network. For example, in
network 132.45.0.0, the 132.45 value pertains to the network. The remaining two octets are used to
identify nodes, and you can exclude nodes by specifying ID values in these two octets.

Example

In the following example, the node whose IP address is 134.204.179.40 is excluded from the filter
(the node is filtered out and, therefore, is not managed by NerveCenter).

134.204.179.0
255.255.255.0
40
Designing and Managing Behavior Models 81Version 5.1

Getting Started with the NerveCenter Client4
Rules for Exclusions

 You can enter several nodes separated by a comma. NerveCenter accepts comma-separated
values with or without spaces following the commas. You can enter the node values in any
order.

The following three examples (each on a separate line) illustrate valid exclusions:

7,8,9,15
7, 8, 9, 15
8,7,9,15

 You can enter a range of values using a hyphen.

For example, you can enter as an exclusion range: 40-60

You can also enter the range in inverse order: 60-40

 You can include multiple entries for the same subnet if you have values or ranges that are not
incremental.

 For example, you can enter as a filter:

134.204.179.0
255.255.255.0
7,8,9
134.204.179.0
255.255.255.0
40-60
134.204.179.0
255.255.255.0
70-90

 You can combine ranges, for example:

134.204.179.0
255.255.255.0
40-60,70-90

 You can also combine formats, for example:

134.204.179.0
255.255.255.0
7-9,31,33,40-60
Designing and Managing Behavior Models Version 5.182

Setting Up Alarm-Instance Filters 4
IP Subnet Filter Examples

The following examples can help you understand how to filter nodes for Class B and C networks.

Class C Network

The following subnet filters are for two sample nodes:

 Sample node #1 with IP address: 197.204.179.25

 Sample node #2 with two IP addresses:

 134.204.179.40

 197.204.179.7

The filter values in Table 4-2have the following effects on the sample nodes:

TABLE 4-2. Class C Network Examples

Subnet Mask
Exclusion Results of Filter

134.204.179.0

255.255.255.0

This filter does not contain any exclusions.

Node #1 is not on this subnet and is not included in the filter or managed by
NerveCenter.

Node #2 is included in the filter because it’s on the subnet.

134.204.179.0

255.255.255.0

25,40

Node #1 is not on this subnet and is not included in the filter.

Node #2 is listed as an exclusion and is not included in the filter.

197.204.179.0

255.255.255.0

7-20

Node #1 is included.

Node #2 is not included because it’s listed in the exclusion range.

197.204.179.0

255.255.255.0

7-20

134.204.179.0

255.255.255.0

40

Node #1 is included in the first subnet.

Node #2 is not included because it’s listed as an exclusion on both subnets.
Designing and Managing Behavior Models 83Version 5.1

Getting Started with the NerveCenter Client4
Class B Filters

The following subnet filters are for two sample nodes:

 Sample node #1 with IP address: 132.45.160.10

 Sample node #2 with IP address: 132.45.174.10

The mask you use for this filter is 255.255.0.0.

If you use a subnet mask of 255.255.240.0, you would get different results.

 Sample node #1 with IP address: 132.45.160.10

 Sample node #2 with IP address: 132.45.174.10

197.204.179.0

255.255.255.0

25,40

Node #1 is not included because it’s listed as an exclusion.

Node #2 is included.

TABLE 4-3. Class B Filter Examples (Set One)

Subnet Mask
Exclusion

Results of Filter

132.45.0.0

255.255.0.0

Both nodes are included in the filter and managed by NerveCenter.

132.45.0.0

255.255.0.0

174.10

Node #1 is included in the filter.

Node #2 is excluded from the filter. The filter includes all nodes except
132.45.174.10.

132.45.0.0

255.255.0.0

160.10-174.5

Node #1 is listed in the exclusion range and is excluded from the filter.

Note #2 is included in the filter.

132.45.0.0

255.255.0.0

10

Both nodes are excluded from the filter and, therefore, neither node is managed by
NerveCenter. The filter includes all nodes except 132.45.xxx.10, where xxx can be
any value greater than 1 and less than 255.

TABLE 4-2. Class C Network Examples

Subnet Mask
Exclusion Results of Filter
Designing and Managing Behavior Models Version 5.184

Setting Up Alarm-Instance Filters 4
You must first apply the filter before determining the node’s ID. The filter values in the table below
have the following effects:

Filtering Alarms by Severity

When you filter alarms by severity, you are specifying that you only want to display alarm
instances in the NerveCenter Client from particular nodes identified by the severity of the alarm
instance’s state.

Although you can create a filter simply based on severity, a single filter can contain any
combination of:

 A list of subnets

 A list of severities

 A list of property groups

For information on how to build an alarm-instance filter based on IP range and property groups, see
the respective section listed below:

 Filtering Alarms by IP Range on page 78

 Filtering Alarms by Property Groups on page 89

TABLE 4-4. Class B Filter Examples (Set Two)

Subnet Mask
Exclusion

Results of Filter

132.45.160.0

255.255.240.0

174.10

The node is not included in the filter. The filter includes all nodes except
132.45.174.10.

132.45.160.0

255.255.240.0

10

Neither node is included in the filter. The filter includes all nodes except
those ending in .10. The third octet of an excluded node can be 174 or any
value between 160 and 174.
Designing and Managing Behavior Models 85Version 5.1

Getting Started with the NerveCenter Client4
TO CREATE AN ALARM FILTER BASED ON SEVERITY

1. Choose Configuration from the Client menu.

The Client Configuration dialog is displayed.

2. Select the Alarm Filter Modification tab.

The Alarm Filter Modification page is displayed.
Designing and Managing Behavior Models Version 5.186

Setting Up Alarm-Instance Filters 4
3. Select the New button.

The Alarm Filter Definition dialog is displayed.

This is the dialog you use to define your filter.
Designing and Managing Behavior Models 87Version 5.1

Getting Started with the NerveCenter Client4
4. Select the Severity tab.

The Severity tab is displayed.

5. In the Available Severities list, for each severity you want to use in your filter, select the
severity and then select the >> button. That is, you want to see information about alarm
instances whose states have these severities.

The severities in this list box are the union of the severities defined by all of the servers to
which you’re connected. You can also add a user-defined severity to the list of severities to
filter by entering it in the And User-specified Severity text box, and then clicking >>.

The name of the severity is moved to the Selected Severities list. Information about alarm
instances with this severity will be displayed in the alarm summary views.

To remove a severity from the Selected Severities list, select the severity and then click <<.

6. Enter a name for your filter in the Filter Name field.

7. Select the OK button.

You return to the Client Configuration dialog box.

You’ve now defined an alarm filter based on severity. Before the client will use the filter, however,
you must associate the filter with a server. For instructions on how to create this association, see the
section Associating a Filter with a Server on page 92.
Designing and Managing Behavior Models Version 5.188

Setting Up Alarm-Instance Filters 4
Filtering Alarms by Property Groups

When you filter alarms by property groups, you are displaying alarm instances in the NerveCenter
Client from particular nodes belonging to one or more property groups. While you can create a
filter based on membership within a property group, a single filter can contain any combination of
subnets, severities, or property groups.

For more on building an alarm-instance filter based on an IP range and severities, see the respective
section listed below:

 Filtering Alarms by IP Range on page 78

 Filtering Alarms by Severity on page 85

TO CREATE AN ALARM FILTER BASED ON PROPERTY GROUPS

1. Choose Configuration from the Client menu.

The Client Configuration dialog is displayed.
Designing and Managing Behavior Models 89Version 5.1

Getting Started with the NerveCenter Client4
2. Select the Alarm Filter Modification tab.

The Alarm Filter Modification tab is displayed.

3. Select the New button.

The Alarm Filter Definition dialog is displayed.

This is the dialog you use to define your filter.
Designing and Managing Behavior Models Version 5.190

Setting Up Alarm-Instance Filters 4
4. Select the Property Group tab.

The Property Group tab is displayed.

5. In the Available Property Groups list, for each property group of each alarm instance’s
node, perform the steps below for each property group you want to be part of the filter. That
is, you want to see information about instances whose nodes belong to these property
groups.

The property groups in this list box are the union of the property groups defined by all of the
servers to which you’re connected.

The property group is moved to the Selected Property Groups list. Information about alarm
instances with this property will be displayed in the alarm summary views. Optionally, you
can also add a user-defined property group to the list of properties to filter by entering a
property group in the And User-specified Property Group text box, and then click >>.
To remove a property group from the Selected Properties list, select it and then click <<.

6. Enter a name for your filter in the Filter Name field.

7. Select the OK button.

You return to the Client Configuration dialog box.

You’ve now defined an alarm filter based on property groups. Before the client will use the filter,
however, you must associate the filter with a server. For instructions on how to create this
association, see the section Associating a Filter with a Server on page 92.
Designing and Managing Behavior Models 91Version 5.1

Getting Started with the NerveCenter Client4
Associating a Filter with a Server

When you define an alarm filter, that filter is not used to filter alarm instances from all connected
servers. It is only used to filter alarm instances from a server with which you have explicitly
associated it.

TO ASSOCIATE AN ALARM FILTER WITH A NERVECENTER SERVER

1. Choose Configuration from the Client menu.

The Client Configuration dialog is displayed.

2. Select a server from the list of servers at the bottom of the dialog.

The name of the server appears in the Server Name text field in the Connection Information
group box. This is the server with which you will associate your alarm filter.
Designing and Managing Behavior Models Version 5.192

Setting Up Alarm-Instance Filters 4
3. Select the Alarm Filter Selection tab.

The Alarm Filter Selection page is displayed.

4. Select a filter from the Available Filters list.

This is the filter you want to associate with the server you selected in step 2.

5. Select the >> button to move the filter from the Available Filters list to the Selected Filters
list.

To remove a filter from the Selected Filters list, select the filter and then select the <<
button.

6. Select the OK button at the bottom of the dialog.
Designing and Managing Behavior Models 93Version 5.1

Getting Started with the NerveCenter Client4
Rules for Associating Filters with Alarms

When deciding whether to apply multiple filters to your alarms, you should keep in mind the
following general rules:

 Multiple filters are ORed together

 Multiple conditions in a single filter are ANDed together

Multiple Filters are ORed Together

When you select more than one filter for a server, each filter is independent of the other filters.
Their behavior is equivalent to a logical OR operation.

For example, say you associate two filters with a NerveCenter Server. The two filters are defined as
follows:

 Filter #1 is configured to display only those alarms that have a severity level of Critical.

 Filter #2 is configured to display only those alarms coming from the network 132.168.196.0.

When both filters are applied to a server, you see the following alarms:

 Alarms with a Critical severity level from all existing networks defined for the server.

 From the network 132.168.196.0, you see all alarms regardless of severity.

Multiple Conditions in a Single Filter are ANDed Together

If, instead of the above view, you want to limit your alarms to Critical instances coming from the
network 132.168.196.0, you need to create one filter with both of those conditions. You would
create one filter that:

 Specifies a severity level of Critical, and

 Specifies an IP range of 132.168.196.0.

With this filter applied to the server, you see only those alarms that have a Critical severity level
and that come from network 132.168.196.0. One filter with multiple conditions is equivalent to a
logical AND operation; each condition is ANDed with the other conditions for optimum filtering.
Designing and Managing Behavior Models Version 5.194

Specifying Heartbeat Messaging 4
Specifying Heartbeat Messaging

The NerveCenter Client sends a message called a heartbeat to each connected NerveCenter Server
on a standard interval. This messaging ensures the reliability of communications between the server
and client. If a server fails to respond after three consecutive heartbeat messages from the client, a
message box is displayed on the client console to alert the operator of the server’s heartbeat failure.
(In such cases, you should check with your network administrator to obtain the status of that
particular NerveCenter Server.)

You can set the interval at which the NerveCenter Client sends a heartbeat to the NerveCenter
Server (30 seconds by default). You can also choose to deactivate heartbeat messaging.

See the following sections for more information:

 Modifying the Heartbeat Message Interval on page 95

 Deactivating Heartbeat Messaging on page 97

Modifying the Heartbeat Message Interval

You can change the interval NerveCenter Client uses to send heartbeat messages to verify its
connection with your NerveCenter Servers.

TO MODIFY THE HEARTBEAT MESSAGE INTERVAL

1. Choose Configuration from the Client menu.

The Client Configuration dialog is displayed.
Designing and Managing Behavior Models 95Version 5.1

Getting Started with the NerveCenter Client4
2. In the Heartbeat Configuration panel, make sure the Heartbeat checkbox is checked. If
it’s not checked, heartbeat messaging is turned off.

3. In the Retry Interval field, enter the number of seconds you want NerveCenter Client to
wait between heartbeat messages. The default is 30 seconds. (The number of retries is three.)

NOTENOTENOTENOTE

When you modify heartbeat messaging, it applies to all NerveCenter Servers to
which this client connects.

4. Select the OK button.
Designing and Managing Behavior Models Version 5.196

Specifying Heartbeat Messaging 4
Deactivating Heartbeat Messaging

The NerveCenter Client sends heartbeat messages on an interval that you specify (or by default,
every 30 seconds) to verify its connection with your NerveCenter Servers. If you choose, you can
deactivate (or activate) heartbeat messages going to and from all your connected servers.

TO DEACTIVATE HEARTBEAT MESSAGES

1. Choose Configuration from the Client menu.

The Client Configuration dialog is displayed.

2. In the Heartbeat Configuration panel, uncheck the Heartbeat checkbox.

NOTENOTENOTENOTE

If there is no check mark in this checkbox, heartbeat messaging has already been
deactivated for NerveCenter Client. When you activate or deactivate heartbeat
messaging, it applies to all NerveCenter Servers to which this client connects.

3. Select the OK button.

Heartbeat deactivation takes effect the next time you connect NerveCenter Client to one or
more of your NerveCenter Servers.
Designing and Managing Behavior Models 97Version 5.1

Getting Started with the NerveCenter Client4
Disconnecting from a Server

When you exit the client, all connections to NerveCenter servers are broken. However, you may
also want to disconnect the client from a server without stopping the client.

TO DISCONNECT THE CLIENT FROM A SERVER

2. From the client’s Server menu, choose Disconnect.

You see a pop-up window that asks you to confirm that you want to disconnect from the
selected server.

3. Select the OK button.

1. From the server drop-down list on the client’s button bar, select the server with which you
want to break the connection.
Designing and Managing Behavior Models Version 5.198

5
Designing and Managing Behavior ModelsDiscovering and Defining Nodes
Before NerveCenter can manage a set of devices, a set of node definitions must reside in the
NerveCenter database. There are two ways to enter these definitions into the NerveCenter database:

 By using a discovery mechanism. Both network management platforms and NerveCenter
itself have the ability to explore a network and discover what devices are on the network.
NerveCenter can use the information gleaned during this discovery process to create a set of
node definitions.

 By defining the nodes manually using the NerveCenter GUI.

Generally, if you’re managing a network of any size, you’ll use a discovery mechanism to gather
information about the devices on your networks. Defining nodes manually is appropriate only if
you have a very small network or if you want to add to your database some nodes that were not
found during the discovery process (perhaps because they were on a subnet that the discovery
program did not explore).

For further information on these two methods of adding node definitions to the NerveCenter
database, see the following sections:

Section Description

Discovering Nodes on page
100

Explains how to add node definitions to the NerveCenter database using
a discovery mechanism, such as that provided by HP OpenView
Network Node Manager or by NerveCenter.

Defining Nodes Manually on
page 108

Explains how to add node definitions to the NerveCenter database
manually using the NerveCenter graphical user interface.

IPv6 and NerveCenter on page
113

Explains the NerveCenter support for IPv6.
Designing and Managing Behavior Models 99Version 5.1

Discovering and Defining Nodes5
Discovering Nodes

Generally, you add node definitions to the NerveCenter database using a discovery program. The
two most common scenarios are listed below:

 You are using NerveCenter with a network management platform such as Hewlett Packard’s
OpenView Network Node Manager, and you use the platform’s discovery mechanism to
explore the network and write node definitions to the platform’s database. You then define
the machine on which the platform is running as NerveCenter’s node source. This action
causes NerveCenter to copy the node definitions in the platform’s database to its own
database. The node information in NerveCenter’s database is updated whenever the node
information in the platform’s database changes, for example, if a node is added to or deleted
from the platform’s database or if a node’s attributes are changed.

 You are using NerveCenter in standalone mode, and you use NerveCenter’s IPSweep
behavior model to explore the network and write node definitions to NerveCenter’s
database.

There are also other, less common, scenarios. For example, you may be using NerveCenter with a
network management platform, but NerveCenter may be set up at a remote site and the platform
may be running at a central site. In this case, it may make sense to have NerveCenter discover the
remote network and forward the node information it gathers to the platform. NerveCenter can then
retrieve node definitions from the platform as in the first case mentioned above.

In any of these situations, you may only want information about nodes on particular subnets. This
type of filtering is easy to do with NerveCenter; however, it must be set up from the NerveCenter
Administrator. For information on how to perform this task, see Filtering Nodes in Managing
NerveCenter.

For more detailed information about discovering nodes, see the following sections:

 Using a Network Management Platform Discovery Mechanism on page 101

 Using IPSweep Behavior Model on page 102
Designing and Managing Behavior Models Version 5.1100

Discovering Nodes 5
Using a Network Management Platform Discovery Mechanism

The most common method of writing node definitions to the NerveCenter database is to copy them
from a network management platform’s database. NerveCenter can be configured to received node
information from Hewlett Packard OpenView Network Node Manager.

To use OpenView to collect node information, you perform these steps:

1. You use the platform’s discovery mechanism to explore your network and write node
definitions to the platform’s database.

2. You specify in NerveCenter your node source (the machine on which your platform’s
database is located) and a set of filters. Using these filters, you can request that a node be
copied to the NerveCenter database if:

 It is located on a particular subnet and is not explicitly excluded

 It has particular capabilities, such isRouter, isHub, or isSNMPSupported

 It has a particular object identifier (OID)

Once you’ve done this setup, NerveCenter reads the appropriate node definitions into its own
database. The node information in NerveCenter’s database is updated whenever the node
information in the platform’s database changes.

NOTENOTENOTENOTE

Every node must have SNMP version information before NerveCenter can poll the
node or process a trap from the node. When NerveCenter receives nodes from
OpenView, NerveCenter deems the SNMP version for these nodes to be version 1.
See Classifying the SNMP Version Configured on Nodes on page 122 for more
information.

You cannot perform the tasks mentioned in step 2 from the NerveCenter Client, however. These
tasks must be taken care of either when NerveCenter is installed or later from the NerveCenter
Administrator. For information about performing these tasks at installation, see Installing
NerveCenter, and for information about performing them later using the NerveCenter
Administrator, see Managing the NerveCenter Trap Source in Managing NerveCenter.
Designing and Managing Behavior Models 101Version 5.1

Discovering and Defining Nodes5
Using IPSweep Behavior Model

NerveCenter can be configured to discover nodes and add them to its database. With discovery
enabled, if the NerveCenter database does not already have a node matching the source of an
SNMP trap or NerveCenter Inform, it adds the node to the database. If NerveCenter Administrator
is configured to auto-classify, NerveCenter also attempts to classify the node’s SNMP version.

You typically use NerveCenter to discover nodes when NerveCenter is not integrated with a
network management platform.

For times when you want NerveCenter to discover the devices on a network, NerveCenter includes
the IPSweep behavior model. To use this behavior model, you—or for the first step, an
administrator—must perform the following tasks:

1. Someone must specify the following information:

 Which subnets the IPSweep behavior model should explore, and any nodes on those
subnets that the model should ignore

 Whether node information should be sent to NerveCenter or to a network management
platform

 Whether the IPSweep alarm should be started automatically when the NerveCenter
Client is started.

This information can be specified either when NerveCenter is installed or later via the
NerveCenter Administrator. For details on installing NerveCenter, see Installing
NerveCenter, and for information about using the NerveCenter Administrator, see
Populating Using the IPSweep Behavior Model in Managing NerveCenter.

2. You must make minor changes to the predefined NerveCenter alarm: IPSweep.

3. You must enable the IPSweep alarm.

Once the IPSweep behavior model becomes operational, it finds devices on the subnets you’ve
specified and, for each node, send a trap to the NerveCenter server or the network management
platform. If the trap is sent to NerveCenter, the server creates a node definition and places it in the
NerveCenter database. If the trap is sent to the platform, the platform writes information about the
node to its database, and then that information becomes available to NerveCenter.

Both the customization and enabling of the IPSweep alarm is handled from the NerveCenter Client.
For instructions on how to modify and enable these alarms, refer to the following sections:

 Modifying the IPSweep Alarm on page 103

 Enabling the IPSweep Alarm on page 106
Designing and Managing Behavior Models Version 5.1102

Discovering Nodes 5
Modifying the IPSweep Alarm

The IPSweep alarm actually executes the program, ipsweep, that discovers devices on your
network. If NerveCenter was installed in the default directory, this alarm will work correctly
without modification. However, if the product was installed in a non-default directory, you must
change the Command action associated with one of the alarm’s transitions so that the path to
ipsweep is correct. You may also want to change the delay between executions of the ipsweep
program. The instructions below explain how to change both the delay and the path to the ipsweep
program.

TO MODIFY THE IPSWEEP ALARM

2. Select the IPSweep alarm from the list.

The Open button is enabled.

1. From the client’s Admin menu, choose Alarm Definition List.

The Alarm Definition List window is displayed.
Designing and Managing Behavior Models 103Version 5.1

Discovering and Defining Nodes5
3. Select the Open button.

The definition of the IPSweep alarm is displayed in the Alarm Definition window.

4. If the alarm is enabled, set its Enabled status to Off.

The alarm may be turned on even if it was never explicitly enabled. This is possible because
NerveCenter server can be configured to enable this alarm on startup.

5. Double-click the transition from the PingSweep state to the Wait state.

The Transition Definition dialog is displayed.
Designing and Managing Behavior Models Version 5.1104

Discovering Nodes 5
6. Double-click the Fire Trigger action.

The Fire Trigger Action dialog is displayed.

7. Change the delay for the Fire Trigger action from 5 minutes to the length of time you want to
wait between invocations of the ipsweep program.

A short delay will generate more network traffic, while a long delay will mean a longer wait
for new devices to be discovered.

8. Select the OK button in the Fire Trigger Action window.

9. Select the OK button in the Transition Definition window.

10. Double-click the IPSweep transition.

The Transition Definition window is displayed.

11. Double-click the Process Command action in the Transition Definition window.

The Command Action dialog is displayed.

12. Edit the Command text field so that it contains the correct path to the ipsweep program.

13. Select the OK button in the Command Action window.

14. Select the OK button in the Transition Definition window.

15. Select the Save button in the Alarm Definition window.
Designing and Managing Behavior Models 105Version 5.1

Discovering and Defining Nodes5
Enabling the IPSweep Alarm

Once you’ve modified the IPSweep alarm, you must enable the alarm for the IPSweep behavior
model to become functional.

TO ENABLE THE IPSWEEP ALARM

2. Highlight the name of the alarm you want to enable.

The Open button is enabled.

1. For each alarm, perform this step and the following steps. From the client’s Admin menu,
select Alarm Definition List.

The Alarm Definition List window is displayed.
Designing and Managing Behavior Models Version 5.1106

Discovering Nodes 5
3. Select the Open button.

The alarm’s definition is displayed in the Alarm Definition window.

4. Select the On radio button in the Enabled frame.

5. Select the Save button at the bottom of the window.

TIP

You can also enable an alarm by selecting it in the Alarm Definition list, pressing
the right mouse button while your cursor is positioned over the highlighted alarm,
and selecting On from the pop-up menu.
Designing and Managing Behavior Models 107Version 5.1

Discovering and Defining Nodes5
Defining Nodes Manually

There are three situations in which you should define nodes manually using the NerveCenter
Client.

 You are managing a very small network, and it is easier to define the nodes in the network
manually than to configure NerveCenter’s IPSweep behavior model.

 You’ve discovered most of your nodes using either your network management platform’s or
NerveCenter’s discovery mechanism, but you need to add to your database a few nodes on a
subnet that wasn’t explored during the discovery process.

 You are managing a network with IPv6 support.

In any case, you can define your nodes using the Node Definition window in the client.

TO DEFINE A NODE MANUALLY

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.
Designing and Managing Behavior Models Version 5.1108

Defining Nodes Manually 5
2. In the Node List window, select the New button.

The Node Definition window appears.

3. In the Name text field, type the name of the workstation or network device that the node
object represents. The name can be a fully qualified hostname or an IP address.

NOTE

The maximum length for node names is 255 characters.

4. Select the node’s property group from the Group list box.

The Group list box contains a list of all the valid property group names defined in the
NerveCenter database.

5. In the Port text field, type the number of the port on the node to which NerveCenter should
send messages.

SNMP agents use port 161 to receive SNMP messages.

6. In the New IP text field, type the node’s IP address. Then select the Add button to add the
address to the IP Address List. If the node is multihomed, you can add the node’s other
addresses to the list in the same manner.
Designing and Managing Behavior Models 109Version 5.1

Discovering and Defining Nodes5
If you need to delete an address from the address list, highlight that address, and then select
the Delete button.

If you have a properly configured DNS or NIS server, you can also use IP Lookup to find the
IP Address(es) for the node. See Using IP Lookup on page 111 for more details.

7. Check the Managed checkbox if you want NerveCenter to manage the node.

You can leave Managed unchecked if you do not want the node to be affected by any
NerveCenter behavior models.

8. Check the Auto Delete checkbox if you want the node to be deleted if it is not in your
network management platform’s (NMP’s) node database.

The setting of this property is meaningful only if you are using an NMP as your node source.
If you’re using an NMP as a node source and you check the Auto Delete checkbox, the node
you’re defining will be deleted when the NerveCenter database is synchronized with the
NMP’s node database, if the node you’re defining is not found in the NMP’s node database.
If you don’t want the node to be deleted in this situation, don’t check the Auto Delete
checkbox.

9. The Platform checkbox is a read-only control.

When you define a node manually, Platform is read-only and is unchecked and indicates
that the node you are defining was not discovered by a network management platform.

10. Check the Suppressed checkbox if you want the node to be in a suppressed state.

A suppressed node is not polled by any suppressible polls (a poll’s default state). Only polls
designed to monitor a device’s responsive/unresponsive state are not suppressible.

TIP

Normally, you do not check Suppressed. A node’s suppressed attribute is
usually set by an alarm action when the alarm detects that the node is not
reachable.

11. By default, NerveCenter deems the SNMP version for a node to be version 1. If you want to
manage the node using SNMP version 2c or 3, you must configure the appropriate SNMP
settings in the SNMP tab. In the SNMP tab, you can also change the Read and Write
community names for a node that’s using SNMP version 1 or 2c.

For details, see Configuring SNMP Settings for Nodes on page 115.

12. Select the Save button.
Designing and Managing Behavior Models Version 5.1110

Defining Nodes Manually 5
When adding nodes manually, you can also search for the IP Addresses available for the hostname
of the node.

NOTENOTENOTENOTE

IP Lookup functions only if you have a properly configured DNS or NIS server.
Connectivity is not enough for IP Lookup to find the correct IP address.
IP Lookup is separate from the DNS Lookup used by NerveCenter when
discovering nodes from traps. See Managing Node Data in Managing NerveCenter
for more details about DNS Lookup.

USING IP LOOKUP

2. In the Node List window, select the New button or select a Node and select Open.

The Node Definition window appears.

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.
Designing and Managing Behavior Models 111Version 5.1

Discovering and Defining Nodes5
3. In the Name text field, type the fully qualified name of the workstation or network device
that the node object represents.

4. Select IP Lookup.

The IP Address Selection window opens.

If the IP Address Selection window does not open, you can click StopLookup to stop the the
IP lookup and return control to the NerveCenter client.

If any node IP Addresses have been defined, they appear in the Selected IP Addresses field.

5. If you already defined IP addresses for the node, select them all and select Delete to move
them to the Available IP Addresses field.

6. Select what type of IP Addresses you want to collect, IPv4, IPv6, or a combination of IPv4
and IPv6 addresses.

See IPv6 and NerveCenter on page 113 for more details about NerveCenter’s IPv6 support.

NOTE

If you have any invalid IP Addresses in the Available IP Addresses field—
for example, if you defined IP Address manually in the Node Definition
window—NerveCenter deletes them when you select an Address Filter.

7. Select the IP Addresses you want to assign to the Node from the Available IP Addresses
field and click Add to move them to the Selected IP Addresses field.

8. Select OK to return to the Node Definition window.

9. Select Save.
Designing and Managing Behavior Models Version 5.1112

IPv6 and NerveCenter 5
IPv6 and NerveCenter

Formally known as IP Next Generation or IPng, IPv6 is the network protocol to replace IPv4. With
the popularity of the Internet, and the advent of more network-capable devices, the addressing
system created by IPv4 is quickly running out of addresses. Network address translation (NAT) has
extended the useful life of IPv4, but many technologies do not work with NAT, including Voice
over IP (VoIP).

One of the main features of IPv6 is an expanded addressing system. IPv4 can only support
4,294,967,296 addresses (2564) with its 32-bit addressing system. IPv6 uses a 128-bit addressing
system, and can support 3.4 × 1038 addresses. The Internet Engineering Task Force (IETF) believes
that this large number of addresses will support all the devices which might become internet
capable in the future including cell phones, televisions, inventory control devices, etc.

NerveCenter supports networks running IPv6 and IPv4 within the following guidelines:

 Your network must support the IPv6 protocol. If IPv6 devices reside on different network
than the NerveCenter management node, your routers must support IPv6 routing.

 You must configure The SNMP agent on your IPv6 devices to support all SNMP requests on
IPv6.

 You must install the NerveCenter server on a machine with IPv6 and IPv4 stack support.

 You must have a working DNS, NIS or other server properly configured to use name
resolution for IPv6 addresses.

 You must install the NerveCenter server on a machine with IPv6 and IPv4 stack support.

While NerveCenter supports monitoring IPv6 networks, it has the following limitations:

 Communication between the NerveCenter server, the Administrator, and the Client does not
support IPv6.

 Communication between NerveCenter and network management platforms such as HP
Openview does not support IPv6.

 The IPSweep alarm does not support IPv6.

 When using Perl, commands generated by NerveCenter work with IPv6. However, all Perl
network packages do not support IPv6. For example, get or set commands in the
NET::SNMP package do not work with IPv6.
Designing and Managing Behavior Models 113Version 5.1

Discovering and Defining Nodes5
Designing and Managing Behavior Models Version 5.1114

6
Designing and Managing Behavior ModelsConfiguring SNMP Settings for

Nodes
A node must have SNMP version information before NerveCenter can poll the node or process a
trap from the node. If the node is using SNMPv3, the SNMP agent must be configured properly on
the node. See Using the SNMP Test Version Poll on page 144 for help testing communication with
a node.

You can manually specify the correct SNMP version for the node or command NerveCenter to
classify the node. If you specify the node as SNMPv3 or if the node is classified as SNMPv3, you
can set the security level, user name, context and, if applicable, the authentication and privacy
protocols used by NerveCenter to poll the node.

For more information, see the following sections:

Section Description

Manually Changing the SNMP
Version Used to Manage a
Node on page 116

Describes how to change manually the SNMP version used by
NerveCenter to communicate with the agent on a node.

Changing the Security Level of
an SNMPv3 Node on page 118

Describes how to change manually the security level used by
NerveCenter to communicate with the SNMPv3 agent on a node.

Changing the Authentication
Protocol for an SNMPv3 Node
on page 120

Describes how to change manually the authentication protocol used by
NerveCenter to communicate with the SNMPv3 agent on a node.

Classifying the SNMP Version
Configured on Nodes on page
122

Describes the different possible ways in which NerveCenter classifies
the SNMP version on a node.
Designing and Managing Behavior Models 115Version 5.1

Configuring SNMP Settings for Nodes6
Manually Changing the SNMP Version Used to Manage a Node

NerveCenter must use different versions of SNMP to communicate with the different versions of
SNMP agents. Most often, you will want NerveCenter to classify the SNMP version for nodes
when they are added to your database. You can, however, manually change the version that
NerveCenter uses for communicating with a particular node.

You might change the version, for example, if you are using SNMPv3 and it is not configured
correctly at the agent. Instead of continuing to send SNMPv3 polls that may generate numerous
alarms, you can temporarily change the node’s SNMP version to v1 or v2c until you have a chance
to reconfigure the v3 information at the agent. With this change, you can still poll the node for
certain MIB variables defined in your behavior models and continue monitoring minimal MIB
information for the node.

This feature also allows you to override the maximum version classification value configured in
NerveCenter Administrator. For example, if maximum classification value is v2c, you can specify
SNMPv3 for a particular node and run a test poll against that node.

TO CHANGE A NODE’S SNMP VERSION MANUALLY

2. In the Node List window, select New if defining a new node, or select the node and then
Open to change an existing node.

The Node Definition window appears.

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.
Designing and Managing Behavior Models Version 5.1116

Manually Changing the SNMP Version Used to Manage a Node 6
3. Select the SNMP tab.

4. Select the node’s SNMP Version.

 If you select Unknown or an incorrect version, NerveCenter cannot poll the node or
process traps from the node.

 If you select v1 or v2, set the Read Community and Write Community values as
appropriate for the node.

 If you select v3, click the Select User list and select User #1, User #2, or Local User;
and select the appropriate Security Level. If you select Local User, you can configure a
node-specific username, authentication and privacy settings, and context as necessary.

5. Select the Save button.

CAUTION

NerveCenter performs no type of error check to validate the version you choose.
However, you can manually confirm SNMPv3 communication with the node by
clicking Save and then testing this setting with Get on the Query Node tab.
Designing and Managing Behavior Models 117Version 5.1

Configuring SNMP Settings for Nodes6
TIP

To change the version of one or more nodes from the Node List window, right-click
one or more nodes, select Version, and select the version you want for the nodes.

Changing the Security Level of an SNMPv3 Node

NerveCenter lets you set the security level you want for each managed node using SNMPv3. The
security level of a node determines whether authentication or encryption services are used with
communications between NerveCenter and the node.

SNMPv3 nodes can have one of the following security levels:

 NoAuthNoPriv—Neither message authentication nor encryption is used while
communicating with the agent. No passwords are required.

 AuthNoPriv—Message authentication is used without encryption while communicating
with the agent. An authentication protocol and password are required. The authentication
password can be set to one of the two global passwords defined under User #1 or User #2, or
can be set on a per-node basis.

 AuthPriv—Both authentication and encryption are used when communicating with the
agent. Both the authentication and privacy protocols and passwords are required. These
passwords can be set to one of the two global passwords defined under User #1 or User #2,
or can be set on a per-node basis.

For more information on SNMPv3 security, see NerveCenter Support for SNMPv3 Security on
page 134. For details about passwords, see NerveCenter Support for SNMPv3 Digest Keys and
Passwords on page 135.

TO CHANGE AN SNMPV3 NODE’S SECURITY LEVEL

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.
Designing and Managing Behavior Models Version 5.1118

Changing the Security Level of an SNMPv3 Node 6
2. In the Node List window, select New if defining a new node, or select the node and then
Open to change an existing node.

The Node Definition window appears.

3. Select the SNMP tab.
Designing and Managing Behavior Models 119Version 5.1

Configuring SNMP Settings for Nodes6
4. Select the Security Level.

If you are setting the security level for the Local User, you can configure the necessary
authentication and privacy keys from this screen. If you are setting the security level for
User #1 or User #2, those keys are configured from the SNMPv3 tab in the NerveCenter
Administrator (see Configuring SNMPv3 Security Settings in Managing NerveCenter).

5. Select the Save button.

TIP

You can change node security levels from the Node List window. Right-click one or
more nodes, select Security Level, and then select the level you want for the nodes.

Changing the Authentication Protocol for an SNMPv3 Node

If you change the authentication protocol on an SNMPv3 agent, you must likewise change the
protocol used by NerveCenter to manage that agent.

An authentication protocol must be specified when the node’s security level is AuthNoPriv or
AuthPriv. NerveCenter supports either HMAC-MD5-96 (MD5) or HMAC-SHA-96 (SHA-1) as
authentication protocols. The default is MD5.

TO CHANGE THE AUTHENTICATION PROTOCOL USED TO MANAGE AN SNMPV3 NODE

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.
Designing and Managing Behavior Models Version 5.1120

Changing the Authentication Protocol for an SNMPv3 Node 6
2. In the Node List window, select New if defining a new node, or select the node and then
Open to change an existing node.

The Node Definition window appears.

3. Select the SNMP tab.

4. Click the Select User list and select User #1, User #2, or Local User; and select the
appropriate Security Level. If you select Local User, you can configure a node-specific
username, authentication and privacy settings, and context as necessary.

5. Select the new protocol from the Authentication list box.

6. Click Save.

TIP

You can change the protocol for one or more nodes from the Node List window.
Right-click one or more nodes, click Authentication, and then select the protocol
you want for the nodes. Polling is halted for all selected nodes during this change.
Designing and Managing Behavior Models 121Version 5.1

Configuring SNMP Settings for Nodes6
Classifying the SNMP Version Configured on Nodes

A node must have SNMP version information before NerveCenter can poll the node or process a
trap from the node. NerveCenter enables you to obtain the SNMP version for a node and classify
the node with that version. This is required when you don’t know the SNMP version for a node or
when NerveCenter receives its nodes from Hewlett Packard OpenView Network Node Manager.
When NerveCenter receives nodes from OpenView, NerveCenter deems the SNMP version for
these nodes to be version 1.

A node must already exist in the database before it can be classified. To classify a node as
SNMPv3, the agent must have an initial user configured for discovery. For details, refer SNMP
Auto and Manual Classification Settings in Managing NerveCenter.

For a detailed study of classification, refer to The Need for Node Classification in Managing
NerveCenter.

There are three ways in which NerveCenter classifies nodes:

 Enable auto-classification of nodes. If auto-classification is enabled, when NerveCenter adds
nodes to its database (discovered from a trap, added from OpenView, or imported from
another NerveCenter), any nodes without version information are classified at the highest
possible level up to the maximum version specified in NerveCenter Administrator.
NerveCenter does not attempt auto-classification for nodes that you add manually in Client.

For details, refer to Managing Node Data in Managing NerveCenter.

 Manually classify SNMP version for one or more nodes. NerveCenter attempts to classify
one or more nodes at the highest level up to the maximum version specified in NerveCenter
Administrator.

For details, see Classifying the SNMP Version for One or More Nodes Manually on page
124.

 Manually classify all nodes in the Client’s Node List. NerveCenter attempts to classify all
nodes in its database at the highest level up to the maximum version specified in
NerveCenter Administrator.

For details, see Classifying the SNMP Version for All Nodes Manually on page 125.

NOTENOTENOTENOTE

You can also manually confirm the SNMP version defined for a node. When you
use this option, NerveCenter attempts to poll a node using the version specified for
the node. The maximum classified version configured in NerveCenter
Administrator has no effect on this operation. For details, see Confirming the
SNMP Version for a Node on page 125.
Designing and Managing Behavior Models Version 5.1122

Classifying the SNMP Version Configured on Nodes 6
If NerveCenter classifies a node as SNMPv3, NerveCenter assigns a default security level for
communicating with the node. The default security level is NoAuthNoPriv. For details about
changing the security level, see Changing the Security Level of an SNMPv3 Node on page 118.

CAUTION

If NerveCenter fails to classify the node, then the version of the node is set to
“Unknown.” NerveCenter does not poll nodes or process traps from nodes whose
SNMP version is Unknown.

For more information about classification, see also:

 When NerveCenter Classifies Node SNMP Versions on page 128

 How NerveCenter Classifies a Node SNMP Versions on page 129

SNMP version classification is also important for using the GetBulk function.

NerveCenter utilizes the SNMP getbulk operation. Getbulk operations allow NerveCenter to
retrieve large portions of a table in a single response, instead of making repeated getnext
requests. This increases NerveCenter's polling performance on nodes possessing MIB tables with a
large number of instances, such as a managed device with many ports or interfaces (for example,
multiple ifEntry table rows).

You do not need to make any changes to take advantage of the getbulk functionality, though
certain criteria must be met for NerveCenter server to use getbulk instead of getnext.

 Getbulk operations are used when a polled Node's SNMP version is classified as v2c or v3.

 The Property being polled must be associated with a MIB table (as opposed to a singleton
object).

 The Property Group's Property must not have a Filter applied.

 Instance-scope and Suboject-scope alarm instances that have transitioned out of ground
utilize standard individual polls to allow flexible state transitions for each unique instance.

With these restrictions in mind, you can employ several techniques to optimize the performance of
NerveCenter polling:

 Classify Node versions as at least v2c if they support that level of SNMP

 Utilize Property Filters only when eliminating a large range of instances from a large table

 Design Alarm models that do not transition out of ground for trivial events.
Designing and Managing Behavior Models 123Version 5.1

Configuring SNMP Settings for Nodes6
Classifying the SNMP Version for One or More Nodes Manually

Follow the procedure below to classify the SNMP version for one or more nodes manually. When
using this method, NerveCenter attempts to classify the selected nodes at the highest level up to the
maximum version specified in NerveCenter Administrator.

TO CHANGE THE AUTHENTICATION PROTOCOL USED TO MANAGE AN SNMPV3 NODE

2. In the Node List window, select New if defining a new node, or select the node and then
Open to change an existing node.

The Node Definition window appears.

3. Right-click the node or nodes you want to classify and select Classify.

NerveCenter attempts to classify the SNMP version on the nodes up to the highest level
specified in NerveCenter Administrator.

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.
Designing and Managing Behavior Models Version 5.1124

Classifying the SNMP Version Configured on Nodes 6
Classifying the SNMP Version for All Nodes Manually

NerveCenter Client can attempt to classify nodes’ SNMP versions, at the highest level to the
maximum specified in NerveCenter Administrator.

TO CLASSIFY NODES MANUALLY

Confirming the SNMP Version for a Node

You can verify the SNMP version that NerveCenter has configured for any particular node, which
is useful when manually defining a node to be added to the node list.

With this option, NerveCenter attempts to poll the node using the version specified; the maximum
classified version configured in NerveCenter Administrator does not apply to this classification
method. For example, if the maximum classification value is v2c and you have set the version for a
particular node to SNMPv3, you can still confirm SNMPv3 communication using this method.

TO CONFIRM A NODE’S SNMP VERSION

 From the client’s Admin menu, select Classify All Nodes.

NerveCenter attempts to classify the SNMP version on all nodes up to the level specified.

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.
Designing and Managing Behavior Models 125Version 5.1

Configuring SNMP Settings for Nodes6
2. In the Node List window, select New if defining a new node, or select the node and then
Open to change an existing node.

The Node Definition window appears.

3. Select the Query Node tab.

4. Select the Get button.

NerveCenter attempts to communicate with the node using the SNMP version specified in
the SNMP Version field on the SNMP tab. See Testing SNMPv1 and v2c agents on page 126
and Testing SNMPv3 agents on page 127 for details.

Testing SNMPv1 and v2c agents

To test the agent on a node configured in NerveCenter with SNMP version 1 or 2c, the Test Version
poll sends the agent an SNMP GetRequest for the system description, sysDescr.0. This operation is
similar to the GetRequest issued by clicking the Get button on the Query Node tab of a node’s
definition window.
Designing and Managing Behavior Models Version 5.1126

Classifying the SNMP Version Configured on Nodes 6
Testing SNMPv3 agents

To test the agent on a node configured in NerveCenter with SNMPv3, the Test Version poll issues
GetRequest messages for the following:

 Engine ID for a node

 Boots/timeticks if the security level on the node is either AuthNoPriv or AuthPriv

 sysObjectID for the node

To establish communication, NerveCenter sends a GetRequest for the node’s sysObjectID. Before
sending this GetRequest, however, NerveCenter first requires engine information such as engineID,
engine boots, and time ticks. If this information is not known to NerveCenter, NerveCenter cannot
send a request to the agent.

NerveCenter must obtain engine information in the following cases:

 When the SNMPv3 node has an 'v3InitFail' error status

This status indicates that the engineID for that node is not available to NerveCenter.
NerveCenter first obtains the engine ID. Then, if the security level for the node is other than
NoAuthNoPriv, NerveCenter obtains the boots and time ticks.

 When the SNMPv3 node has an error status of 'TimeSyncFail.'

This status indicates that the engine boots and time ticks for that node are not available to
NerveCenter.

 When someone has changed the Authentication and Privacy passwords in NerveCenter
Administrator but did not update the passwords on the SNMPv3 agent.

You must change the passwords on the agent and run the TestVersionPoll to restore proper
communication.

After obtaining the engine information, NerveCenter can send the sysObjectID request.
Designing and Managing Behavior Models 127Version 5.1

Configuring SNMP Settings for Nodes6
When NerveCenter Classifies Node SNMP Versions

There are two main ways that NerveCenter classifies nodes:

 On demand—You can issue a classify command in NerveCenter Client to classify one,
several, or all nodes in the database.

 Automatically—You can set up auto-classification in NerveCenter Administrator. Then,
when NerveCenter adds nodes to its database (discovered from a trap, added from a platform
such as OpenView Network Node Manager, or imported from another NerveCenter), any
nodes without version information are classified at the highest possible level. NerveCenter
does not attempt auto-classification for nodes that you add manually in Client. Refer to
SNMP Auto and Manual Classification Settings in Managing NerveCenter for details about
auto-classification.

When you enable auto-classification, NerveCenter attempts auto-classification in the following
instances:

 A node is added through a node file either from importutil or from the Client, and the node
does not have a version or has the version “Unknown.” This would happen, for example, if
you were importing the node from a previous version of NerveCenter.

 A node is imported from another NerveCenter Server, and the node does not have a version
or has the version “Unknown.”

 A node is added from a trap, and the node’s version is not v3. NerveCenter needs to verify
whether these nodes are v1 or v2. If the trap indicates v3, NerveCenter does not need any
further verification.

 NerveCenter is co-resident with network management platform and the platform sends
nodes to NerveCenter. All nodes added from OpenView Network Node Manager are v1 by
default.

NOTENOTENOTENOTE

NerveCenter does not attempt to auto-classify nodes added manually in Client.

Disabling auto-classification in Administrator prevents auto-classification for all these cases. If you
choose to disable auto-classification, bear in mind that NerveCenter does not poll nodes whose
SNMP version is unknown. (You can still classify nodes manually in NerveCenter Client using the
available commands.)
Designing and Managing Behavior Models Version 5.1128

Classifying the SNMP Version Configured on Nodes 6
How NerveCenter Classifies a Node SNMP Versions

There are two main ways that NerveCenter classifies nodes:

 Manually—You can issue a classify command in NerveCenter Client to classify one,
several, or all nodes in the database.

 Automatically—NerveCenter can be configured to classify nodes when they are added to its
database (discovered from a trap, added from a platform such as OpenView Network Node
Manager, or imported from another NerveCenter). Refer to SNMP Auto and Manual
Classification Settings in Managing NerveCenter for details about auto-classification.

Following is a summary of classification.

Each time NerveCenter attempts to classify a node, NerveCenter sends a series of classification
requests (GetRequest messages) to the node. NerveCenter classifies the node based on the
responses to these requests. Each request corresponds to an SNMP version—either v1, v2c, or v3.

While classifying a node, NerveCenter attempts to detect the maximum supported version on the
agent up to a maximum specified version, which you can configure in NerveCenter Administrator.
So, for example, if you set a maximum classification version of v2c, NerveCenter never attempts to
classify nodes any higher than v2c. (However, you can manually specify any version for a node and
then test communication with the agent using that version. See Manually Changing the SNMP
Version Used to Manage a Node on page 116 for details.)

Based on the response to its messages, NerveCenter changes its SNMP version setting for the node.

CAUTION

Note the following about node classification:
 If NerveCenter fails to classify the node, then the version of the node is set to

“Unknown.” NerveCenter cannot poll a node with an unknown version.
 A node must have correct version information, either supplied manually by the
user or obtained via classification, before NerveCenter can successfully poll the
node or process a trap from the node.
Designing and Managing Behavior Models 129Version 5.1

Configuring SNMP Settings for Nodes6
Designing and Managing Behavior Models Version 5.1130

7
Designing and Managing Behavior ModelsNerveCenter Support for SNMPv3
SNMP version 3 is an extension of SNMP that addresses security and administration. The
following topics describe how NerveCenter provides support for SNMPv3. You can find other
topics related to SNMPv3—for example, changing the SNMP version for a node—in the section
Configuring SNMP Settings for Nodes on page 115.

Section Description

Overview of NerveCenter
SNMPv3 Support on page 132

Summarizes NerveCenter support for SNMPv3 and points to where you
can find information about specific settings and requirements.

SNMPv3 Operations Log on
page 136

Describes the Operations Log that records SNMPv3 operations and
errors that occur while attempting to perform those operations.

SNMP Error Status on page
141

Describes SNMPv3 error status messages and indicates which ones
cause polling to stop for a node.

Using the SNMP Test Version
Poll on page 144

Explains how to use the V3 Test Poll to verify communication with an
SNMPv3 agent.
Designing and Managing Behavior Models 131Version 5.1

NerveCenter Support for SNMPv37
Overview of NerveCenter SNMPv3 Support

NerveCenter support for SNMPv3 includes new data types and enhanced security for
communication. SNMP v1 and v2c rely on community names for authentication. SNMPv3
enhances authentication and expands its services to include privacy. SNMPv3 also expands on the
earlier concept of MIB views to control access to management information by using a View-based
Access Control Model (VACM) to determine a user’s access level for viewing MIB data.

Following are highlights of NerveCenter support for SNMPv3:

 Before NerveCenter can discover SNMPv3 agents on nodes, the nodes must have an initial
user configured for discovery.

See Configuring an Initial User for Discovering an SNMPv3 Agent in Managing
NerveCenter.

Refer to Confirming the SNMP Version for a Node on page 125 for details about testing
communication with a node using the NerveCenter Test Version poll.

 NerveCenter communicates (sends polls) with SNMPv3 agents on behalf of a specified
NerveCenter user (the global User #1 or User #2 accounts, or a node-specific user). Before
NerveCenter can poll SNMPv3 agents, the agents must be configured to support the user,
security level, and potentially the context.

See Configuring an SNMPv3 Agent for NerveCenter in Managing NerveCenter.

See Configuring SNMPv3 Security Settings in Managing NerveCenter.

 NerveCenter supports three security levels for communicating with SNMPv3 agents. By
default, NerveCenter sets the security level to noAuthNoPriv, which means the v3 agent
sends and receives messages without authentication or encryption.

See NerveCenter Support for SNMPv3 Security on page 134 for details about security.

Refer to Changing the Security Level of an SNMPv3 Node on page 118 for details about
setting a node’s security level.

 The authentication and privacy protocols require specialized authentication and privacy
keys, which are generated from the corresponding passwords. You can change these
passwords in NerveCenter, thereby changing the keys.

See NerveCenter Support for SNMPv3 Digest Keys and Passwords on page 135.

See Configuring SNMPv3 Security Settings in Managing NerveCenter.
Designing and Managing Behavior Models Version 5.1132

Overview of NerveCenter SNMPv3 Support 7
 NerveCenter supports the HMAC-MD5-96 (MD5) or HMAC-SHA-96 (SHA) protocols for
authentication on a per-node basis, and DES, 3-DES, AES-128, AES-192, or AES-256 as
privacy protocols. If you change an agent’s authentication protocol, you must likewise
configure NerveCenter to use that protocol to manage the corresponding node in its
database.

Refer to Changing the Authentication Protocol for an SNMPv3 Node on page 120 for details
about changing the authentication protocol used by NerveCenter for an agent.

 A node must have SNMP version information before NerveCenter can poll or process a trap
from that node. NerveCenter can discover the node version both automatically or manually.
If auto-classification is enabled, then a newly added node (e.g., discovered from a trap,
added from a platform such as HP OpenView, imported from another NerveCenter
installation) will be classified at the highest level possible.

NOTE

NerveCenter auto-classification is disabled by default. You must enable it
before NerveCenter can classify nodes added to its database.

See SNMP Auto and Manual Classification Settings in Managing NerveCenter.

Refer to Classifying the SNMP Version Configured on Nodes on page 122 for details about
classifying nodes manually.

 The trap source specified during installation can be changed to MSTrap, OVTrapD or
NerveCenter. Changing the trap source requires stopping and starting the related
applications (e.g., OVTrapD) and restarting the NerveCenter Server.

See Managing the NerveCenter Trap Source in Managing NerveCenter.

 SNMPv3 operations are logged to a file so that you can follow the progress of v3 activities.
The log includes information about activities (e.g., a key change initiated by the user) as well
as errors that occur while NerveCenter attempts to perform the activities.

See SNMPv3 Operations Log on page 136.

See SNMP Error Status on page 141 for information about SNMPv3 errors.

 Product ships with behavior models that provide the status of various applications monitored
by the SNMP Research CIAgent.

For complete details about these and all behavior models, refer to the Behavior Models
Cookbook.
Designing and Managing Behavior Models 133Version 5.1

NerveCenter Support for SNMPv37
NerveCenter Support for SNMPv3 Security

SNMPv3 enables two devices to communicate in a secure fashion using message authentication to
validate users and encryption to ensure communication secrecy. SNMPv3 provides a User-based
Security Model (USM) to establish authentication and secrecy.

SNMPv3 nodes can have one of the following security levels:

 NoAuthNoPriv — Neither message authentication nor encryption is used while
communicating with the agent. No passwords are required.

 AuthNoPriv — Message authentication is used without encryption while communicating
with the agent. An authentication protocol and password are required. The authentication
password can be set to one of the global passwords defined under User #1 or User #2, or can
be set on a per-node basis.

 AuthPriv — Both authentication and encryption are used when communicating with the
agent. Both the authentication and privacy protocols and passwords are required. These
passwords can be set to one of the global passwords defined under User #1 or User #2, or
can be set on a per-node basis.

Communication between any two SNMPv3 entities takes place on behalf of a uniquely identified
domain user. The security level used for this communication defines the security services —
message authentication and encryption — used while exchanging data. NerveCenter communicates
with SNMPv3 nodes on behalf of the NerveCenter poll user in the poll context.

If you do not specify a security level for an SNMPv3 node, NerveCenter uses the NoAuthNoPriv
security level by default, which means that message authentication and encryption services are not
used for data exchange with the node.

NOTENOTENOTENOTE

The NerveCenter poll users (User #1 and User #2), contexts, and the authentication
and privacy passwords can be changed in NerveCenter Administrator. If you
change the passwords, you can update all nodes from the NerveCenter
Administrator.

The node-specific information (such as version, security level, and authentication
protocol) used to poll each SNMPv3 node is configured in NerveCenter Client. A
node-specific poll user and associated credentials can be managed from the SNMP
tab on the Node screen (see Changing the Security Level of an SNMPv3 Node).
Designing and Managing Behavior Models Version 5.1134

Overview of NerveCenter SNMPv3 Support 7
NerveCenter Support for SNMPv3 Digest Keys and Passwords

SNMPv3 allows two devices to communicate in a secure fashion using message authentication and
encryption to ensure secrecy. In any SNMPv3 communication, one of the two communicating
entities plays a role of authoritative entity for the communication, and communication is performed
on behalf of a unique user within the management domain.

The sender of a secure message attaches a code, or digest, for authentication and encrypts the
message to ensure privacy. To generate this digest, the sender uses an authentication key at the
authoritative entity of the user on whose behalf communication takes place. Similarly, to encrypt a
message, the sender uses a privacy key at the authoritative entity of the user on whose behalf
communication takes place. These keys are generated from the authentication password and
privacy password, respectively.

SNMPv3 specifications have defined a localized key-generation scheme. For every user, the
authentication key at every SNMPv3 entity is a function of the snmpEngineID of that entity, the
user’s authentication password, and the authentication protocol. For every user, the privacy key at
every SNMPv3 entity is a function of the snmpEngineID of that entity, the user’s privacy password,
and the privacy protocol. NerveCenter supports this localized key-generation scheme.

NerveCenter communicates with SNMPv3 nodes on behalf of a NerveCenter user (User #1, User
#2, or a local, node-specific user). NerveCenter needs to know the authentication and privacy
passwords for this user to generate the keys required for secure communication. Whenever
NerveCenter learns the snmpEngineID of a newly discovered SNMPv3 agent with a security level
other than NoAuthNoPriv, NerveCenter generates these keys for the NerveCenter poll user on that
agent:

 If authentication is required (a security level of AuthNoPriv is specified for the node), the
sender uses the authentication key to generate the digest for the message, which is appended
to the message.

 If encryption is required (a security level of AuthPriv is specified for the node), the sender
uses the privacy key to generate the digest for the message. For this security level, only the
privacy digest is required; privacy assumes authentication, and you cannot have encryption
without authentication.

On receipt of a secure message, a receiver does the following:

 Separates the message from the digest (authentication or privacy).

 Uses the corresponding key from its local store to generate the message’s local digest copy.

 Compares the local digest with the one received in the message. If the two digests match, the
recipient authenticates or decrypts the message using the corresponding local key. If they do
not match (indicating a lack of authentication), the recipient discards the message.

 The recipient reads and processes the message.
Designing and Managing Behavior Models 135Version 5.1

NerveCenter Support for SNMPv37
SNMPv3 Operations Log

Whenever a NerveCenter Server receives a request for an SNMPv3 operation (e.g., authorization or
privacy key change request) or an error occurs while attempting to perform an SNMPv3 operation
(e.g., v3 initialization fails), the NerveCenter Server logs a message to V3Messages.log, which
resides in the NerveCenter installation log directory on the NerveCenter Server host machine. The
file contains messages about SNMPv3 operations and errors resulting from requests that originate
with any connected NerveCenter Clients, Administrators, and Command Line interfaces.

After logging the error, the NerveCenter Server notifies all connected NerveCenter Clients and
Administrators in the following ways:

 If you are logged on to the NerveCenter Client or Administrator that initiated the operation
that caused an error condition, NerveCenter displays the error that was logged.

 If you are logged on to a NerveCenter Client or Administrator that did not initiate the error
condition, a red icon appears in the status bar; double-click the icon to display the
NerveCenter Server with the SNMPv3 error. If your Client or Administrator is connected to
more than one Server, the dialog box lists all servers that currently have an error condition.

NOTE

The dialogs are displayed only in the NerveCenter Client, not the
NerveCenter Web Client.

When your NerveCenter Client or Administrator displays a dialog box with an error condition, you
can do either of the following:

 Acknowledge the error condition by “signing the log.” When you sign the log, NerveCenter
notes that in the log file and changes the red icon back to green for all connected Clients and
Administrators.

 Dismiss the dialog box without acknowledging the error condition, in which case only the
icon in your Client or Administrator turns green. The icon remains red for all other
connected Clients and Administrators to signal that the NerveCenter Server has an
unacknowledged/unsigned error. Moreover, the Server does not indicate acknowledgment in
the log file.

If the SNMPv3 operation affects a group of nodes (e.g., a version change or classification failure),
only one error instance for the group displayed; see the log file for details on individual nodes.
Designing and Managing Behavior Models Version 5.1136

SNMPv3 Operations Log 7
You must have administrator rights to initiate an SNMPv3 operation that can result in an error or to
acknowledge a logged error condition. If you are logged on with only user rights, you can dismiss
the error dialog box but not acknowledge an error condition.

Whether you acknowledge or dismiss the error, all messages remain in the V3Messages.log.

For more information, refer to the following topics:

 Signing a Log for SNMPv3 Errors Associated with Your Client on page 137

 Signing a Log for SNMPv3 Errors Associated with a Remote Client or Administrator on
page 138

 Viewing the SNMPv3 Operations Log on page 140

Signing a Log for SNMPv3 Errors Associated with Your Client

Whenever an SNMPv3 operation is requested or an error occurs while attempting an SNMPv3
operation, the NerveCenter Server logs a message to V3Messages.log. If you are logged in to the
NerveCenter Client that initiated the logged request, NerveCenter displays a dialog box with that
error.
a

FIGURE 7-1. Operations Log Error in Server Dialog Box for Your Client
Users with administrator rights can acknowledge a logged condition from NerveCenter Client by
signing the Operations log. Signing the log causes the icon to turn green in all connected
Clients/Administrators.

You can also dismiss the dialog box without acknowledging the error condition. If you are logged
on with user rights rather than administrator rights, your only option is to dismiss the dialog box;
you cannot sign the Operations log.
Designing and Managing Behavior Models 137Version 5.1

NerveCenter Support for SNMPv37
TO SIGN THE OPERATIONS LOG

1. After viewing the message that NerveCenter displays on your screen, check the Sign the log
and dismiss errors checkbox.

2. Click OK.

The icon in the Status Bar turns green for all Clients or Administrators connected to the
designated NerveCenter Server. You can later view this message again in the Operations log.

This V3Messages.log file, resides in the NerveCenter installation log directory. The file can be
viewed in a text editor or word processor.

TO DISMISS THE ERROR IN SERVER DIALOG BOX

 Click OK without checking the checkbox.

In this case, only the icon in your Client turns green. For all other connected Clients and
Administrators, the icon remains red and signals to those modules that the NerveCenter
Server has some error that remains unacknowledged.

Signing a Log for SNMPv3 Errors Associated with a Remote Client or
Administrator

Whenever an error occurs while attempting an SNMPv3 operation, the NerveCenter Server logs a
message to V3Messages.log. If you are logged on to a remote NerveCenter Client (one that did not
initiate the error condition), the status bar displays a red icon.

Users with administrator rights can acknowledge a logged condition from NerveCenter Client by
signing the Operations log. Signing the log causes the status icon to turn green in all connected
Clients/Administrators.

You can also dismiss the dialog box without acknowledging the error condition. If you are logged
on with user rights rather than administrator rights, your only option is to dismiss the dialog box;
you cannot sign the Operations log.
Designing and Managing Behavior Models Version 5.1138

SNMPv3 Operations Log 7
TO SIGN THE OPERATIONS LOG

1. Double-click the red icon in the Status Bar.

The Error In Server dialog box is displayed.

2. Check the NerveCenter Server or Servers for which you want to sign the log.

3. Click OK.

The icon in the Status Bar turns green for all Clients or Administrators connected to the
servers you checked. At a suitable time, you can open the Operations log and view the new
message. This file, named V3Messages.log, resides in the NerveCenter installation log
directory. The file can be viewed in a text editor or word processor.

TO DISMISS THE ERROR IN SERVER DIALOG BOX

1. Double-click the red icon in the Status Bar.

The Error In Server dialog box is displayed.

2. Click OK without checking any of the checkboxes.

In this case, only the icon in your Client turns green. For all other connected Clients and
Administrators, the icon remains red and signals to those modules that the NerveCenter
Server has some error that remains unacknowledged.
Designing and Managing Behavior Models 139Version 5.1

NerveCenter Support for SNMPv37
Viewing the SNMPv3 Operations Log

Whenever an SNMPv3 operation is requested or an error occurs while attempting the operation, the
NerveCenter Server logs a message to the V3Messages.log file, which resides in the NerveCenter
installation log directory on the NerveCenter Server host machine.

The file can be viewed in a text editor or word processor. As NerveCenter adds more messages to
the file, the file continues to grow until you manually remove old messages.

The log entries resemble the following:

06/20/2000 09:26:29 Tue - Event ID : NC_SERVER; Category ID :
NC_THREAD_V3OP;Error Status : AutoClassifyFail; Error while communicationg
using SNMPv1 for 10.52.174.51 because of : NC_PORT_UNREACHABLE;

Following are the fields in the log:
\

TABLE 7-1. Fields in the Operations Log

Field Description

Date/Time Date and time the record was logged. The format is month/day/year,
hour/minute/second, and day (for example, 12/16/2000 11:32:29 Sat).

EventID This always NC_SERVER.

CategoryID Name of the thread where the event occurred.

Error Status One of several error status strings. See Error Status for a description of SNMPv3
error status messages and which ones cause polling to stop for a node.

Error Description Details of the error or operation.
Designing and Managing Behavior Models Version 5.1140

SNMP Error Status 7
SNMP Error Status

When NerveCenter is unable to complete an SNMP operation on a node, the error status is
displayed in the Node List (NerveCenter Client and Web Client) and in the SNMP tab of the node’s
definition window (NerveCenter Client). Figure 7-2 shows the Node List window in the Client.

FIGURE 7-2. Node List Window
Though most of the error strings correspond to SNMPv3 errors, some are applicable for v1 and v2c
errors as well. These are noted in the descriptions below.

Sometimes error conditions can be corrected simply by running the SNMP Test Version poll.
Others may require configuration changes to the node's SNMP agent. After changing the
configuration of an SNMP agent, always test communication with the node in NerveCenter Client
prior to polling the node.

NOTENOTENOTENOTE

For information about the Test Version poll, see Using the SNMP Test Version Poll
on page 144.

The following list describes each possible SNMP error status.

 V3InitFail – An attempt to get the snmpEngine ID of an SNMPv3 agent failed or the
SNMPv3 configuration defined for that node is causing a failure at the SNMPv3
communication layer. This can occur either when NerveCenter first attempts to poll the node
using the SNMPv3 configuration or at any point when the SNMP agent changes its SNMPv3
configuration. For all of these cases, the V3InitFail is augmented by one of the following
values in the SNMPv3 Status field (NerveCenter Client):
Designing and Managing Behavior Models 141Version 5.1

NerveCenter Support for SNMPv37
 ConfigurationError – The node’s SNMP definition is incomplete with respect to its
Security Level. This status is discovered and reported by NerveCenter before issuing an
SNMPv3 request to an SNMP Agent.

Operator intervention is required. The node’s SNMP v3 definition must contain a User
Name regardless of the Security Level — AuthNoPriv requires an Authentication
Protocol and Password; AuthPriv requires Authentication and Privacy Protocols and
passwords for each.

 UnknownUsername – The SNMP Agent reports that the SNMPv3 User Name being
sent by NerveCenter is not one of the user names that it has been configured to handle.

 UnknownContext – The SNMP Agent reports that the SNMPv3 Context being sent by
NerveCenter is not appropriate. Many SNMP Agents do not report this value, even if it
is the underlying issue. Instead, the SNMP Agent may not issue any response and the
operation will time out.

 UnavailableContext – The SNMP Agent reports that the SNMPv3 Context being sent
by NerveCenter is known but inapplicable to the operation (poll, discovery, or
classification) being attempted. Many SNMP Agents do not report this value, even if it
is the underlying issue. Instead, the SNMP Agent may not issue any response and the
operation will time out.

 UnsupportedSecLevel – The SNMP Agent reports that it cannot handle the Security
Level defined in a request issued to it by NerveCenter.

 UnknownEngineID – Either NerveCenter’s SNMP Stack or the SNMP Agent is
reporting an issue with the snmpEngineID used for SNMP v3 communication. This can
occur if the snmpEngineID is changed on the SNMP Agent during polling.

 IncorrectAuthPasskey – The SNMP Agent reports that the Authentication passkey
(digest) being issued by NerveCenter is not correct. This generally occurs in one of two
cases: 1) An incorrect password was entered either on the SNMP Agent or in
NerveCenter, or 2) The password was entered correctly at both ends, but the selected
Authentication protocol is mismatched between the SNMP Agent and NerveCenter.

 ClassifyFail – An attempt to obtain the node’s SNMP version failed during a classification
attempt. The node’s version will be set to “Unknown” and it will not be polled. You can
manually change the version or try to classify the node again.

 AutoClassifyFail – An auto-classification attempt failed to obtain the node’s version. The
node’s version will be changed to “Unknown” and it will not be polled. You can manually
change the version or try to classify the node again.
Designing and Managing Behavior Models Version 5.1142

SNMP Error Status 7
NOTE

ClassifyFail and AutoClassifyFail status values are not limited to
SNMPv3 agents. If NerveCenter attempts to classify an agent and fails for
some reason (e.g., the agent is down), NerveCenter will mark the node
with ClassifyFail or AutoClassifyFail regardless of the SNMP version
supported on the agent.

 TestVersionFail – At attempt to poll the SNMP agent failed. The Test Version poll sends a
GetRequest message for a node based on the SNMP version configured for that node.

If the Test Version poll fails, polling will not happen for this node. In that case, you may
need to reconfigure the agent on this node. Then, try running the Test Version poll again
(from a node’s definition window or the right-click menu in the node list).

NOTE

TestVersionFail is not limited to SNMPv3 agents. You can test the version
of any SNMP agent with this feature.

 Configuration Mismatch – Indicates an SNMP trap was received but there is some problem
with the configuration on the agent. If NerveCenter is unable to decode a trap due to some
unspecified reason (e.g., unsupported authentication or privacy parameters on the agent or
an incorrect NerveCenter user name), NerveCenter can receive the trap and add the node to
its database if configured to discover nodes via traps. After adding the node to its database,
however, NerveCenter assigns an error status of Configuration Mismatch.

NOTE

Any error that occurs during trap decoding always results in a
Configuration Mismatch error.

 TimeSyncFail – An attempt to get the node’s snmpEngine boots/timeticks failed. Polling
will continue for this node. If any polls successfully reach the node, the node responds with
an “Out of time window” report PDU that contains the correct boots/timeticks, and
NerveCenter can then update this information for the node. For the initial polls that generate
the report PDU, the SNMP_NOT_IN_TIME_WINDOW trigger will be fired.

 You can ignore this message, which simply indicates that NerveCenter is getting in sync
with that node. You can recover from this error status by right-clicking the node in the
Node List and selecting v3TestPoll. If the agent corresponding to the node is up, the test
poll should be successful and clear the error message. The SNMPv3 Status field will be
set to the following:

 NotInTimeWindow – This is the reply sent by the SNMP Agent or declared by
NerveCenter’s SNMP stack upon investigating a request or response PDU wherein
the SNMPv3 timestamp handling shows a time sync failure.
Designing and Managing Behavior Models 143Version 5.1

NerveCenter Support for SNMPv37
Using the SNMP Test Version Poll

When configuring an SNMP agent or if you encounter problems polling a node, you can test
whether NerveCenter can communicate with the agent. NerveCenter provides an SNMP test poll
that verifies communication with the node using the SNMP version specified for the node. If the
agent is configured for SNMPv3, this poll helps you determine whether the agent is correctly
configured for communication with NerveCenter.

If the poll fails to establish a connection for the specified SNMP version, a TestVersionFail error is
displayed for the node, and polling will not happen for this node.

Testing SNMPv1 and v2c Agents

To test the agent on a node configured in NerveCenter with SNMP version 1 or 2c, the Test Version
poll sends the agent an SNMP GetRequest for the system description. This operation is similar to
the GetRequest issued by clicking the Get button on the Query Node tab of a node’s definition
window.

Testing SNMPv3 Agents

To test the agent on a node configured in NerveCenter with SNMPv3, the Test Version poll issues
GetRequest messages for the following:

 Engine ID for a node

 Boots/timeticks if the security level on the node is either AuthNoPriv or AuthPriv

 SysObjectID for the node

To establish communication, NerveCenter sends a GetRequest for the node’s sysobjectID. Before
sending this GetRequest, however, NerveCenter first requires engine information such as engineID,
engine boots, and time ticks. If this information is not known to NerveCenter, NerveCenter must
send a request to the agent.

NerveCenter must obtain engine information in the following cases:

 When the SNMPv3 node has an 'v3InitFail' error status. This status indicates that the
engineID for that node is not available to NerveCenter.

 NerveCenter first obtains the engine ID. Then, if the security level for the node is other than
NoAuthNoPriv, NerveCenter obtains the boots and time ticks.
Designing and Managing Behavior Models Version 5.1144

Using the SNMP Test Version Poll 7
 When the SNMPv3 node has an error status of 'TimeSyncFail.' This status indicates that the
engine boots and time ticks for that node are not available to NerveCenter.

 When someone has changed the Authentication and Privacy passwords in NerveCenter
Administrator but did not update the passwords on the SNMPv3 agent. You must change the
passwords on the agent and run the V3TestPoll to restore proper communication.

After obtaining the engine information, NerveCenter can send the SysObjectID request.

How To Use the Test Version Poll

Follow the steps below to verify communication with a node using the Test Version poll.

TO USE THE SNMP TEST VERSION POLL

2. Right-click one or more nodes you want to test, then select Test Version.

TIP

You can also issue this poll for a particular node by selecting the node in the list,
clicking the Open button, and selecting Test Version in the SNMP tab.

The Status Bar indicates the status of the test. If the test fails to establish a connection for the
specified SNMP version, a TestVersionFail error is displayed for the node.

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.
Designing and Managing Behavior Models 145Version 5.1

NerveCenter Support for SNMPv37
Designing and Managing Behavior Models Version 5.1146

8
Designing and Managing Behavior ModelsDefining Property Groups and

Properties
Recall that a property is a string, a property group is a container for properties, and property groups
are assigned to nodes. In general, before NerveCenter will use a behavior model to manage a node,
the following requirements must be met:

 The property of any poll in the behavior model must be in the node’s property group.

 The name of the base object used in the poll condition of any poll in the behavior model
must be in the node’s property group.

 The property of any alarm in the behavior model must be in the node’s property group.

This chapter concentrates on the mechanics of listing all existing property groups and properties,
creating properties, creating property groups, and assigning property groups to nodes. The chapter
concludes with a section that offers suggestions on how to use property groups effectively. For
information on these subjects, see the following sections.

Section Description

Listing Property Groups and
Properties on page 148

Explains how to view the property groups and properties that are
currently defined in the NerveCenter database.

Creating a Property on page 150 Explains how to create a new property.

Creating a New Property Group on
page 151

Discusses the different methods of creating a new property group.

The nl-ping Property on page 156 Discusses the nl-ping property.

Filtering Properties on page 156 Explains how to create property filters.

Assigning a Property Group to a
Node on page 160

Discusses the different methods of assigning a new property group
to a node.

Tips for Using Property Groups and
Properties on page 172

Recommends ways to use property groups to organize nodes.
Designing and Managing Behavior Models 147Version 5.1

Defining Property Groups and Properties8
Listing Property Groups and Properties

When NerveCenter is first installed and the NerveCenter database is created, many property groups
are loaded into the database. Before you begin creating new property groups, you should review
these existing property groups and see if one of them meets your needs. Or perhaps you can create
the property group you need by modifying an existing property group.

The following sections explain how to display a list of property groups and how to display a list of
the properties in a property group:

 Listing Property Groups on page 148

 Listing Properties on page 149

Listing Property Groups

TO DISPLAY A LIST OF THE PROPERTY GROUPS CURRENTLY DEFINED IN THE DATABASE FOR THE
ACTIVE SERVER

The existing property groups are listed in alphabetical order in the Property Group list on the
left side of the window.

 From the client’s Admin menu, choose Property Group List.

This action causes NerveCenter to display the Property Group List window.
Designing and Managing Behavior Models Version 5.1148

Listing Property Groups and Properties 8
Listing Properties

You generally only display properties in the context of a property group. That is, you don’t view all
the properties defined in the database in a single list; you view a list of properties that belong to the
same property group.

TO LIST THE PROPERTIES IN A PROPERTY GROUP

2. Select a property group from the Property Group list.

All of the properties belonging to that property group are listed in alphabetical order in the
Property list on the right side of the window.

1. From the client’s Admin menu, choose Property Group List.

NerveCenter displays the Property Group List window.
Designing and Managing Behavior Models 149Version 5.1

Defining Property Groups and Properties8
Creating a Property

If you design a new behavior model and intend it to manage a group of nodes that don’t currently
share a unique property, you must create a property to serve as that unique property. Because you
must create this property in the context of an existing property group, you will probably need to
create a property group before you create your property, as described in Creating a New Property
Group on page 151. Once you’ve created both the property group and the property, you can assign
the new property group to the nodes you want to manage with the new behavior model.

TO CREATE A PROPERTY

2. Select a property group from the Property Group list.

When you create the property, it will belong to this property group.

3. Type the name of the new property in the New Property text field.

NOTE

The maximum length for property names is 255 characters.

4. Select the Add button below the Property list.

The property is added to the Property list.

5. Select the Save button at the bottom of the window.

1. From the client’s Admin menu, select Property Group List.

The Property Group List window is displayed.
Designing and Managing Behavior Models Version 5.1150

Creating a New Property Group 8
Creating a New Property Group

As you develop your network management strategy, you may need to create new property groups.
For example, NerveCenter ships with a property group called Router that you can use to uniquely
identify the routers on your network. However, suppose you decide that while some of your
behavior models should apply to all routers, others should apply to either campus routers or
backbone routers, but not both. To handle this problem, you might create two new property groups,
CampusRouter and BackboneRouter. Each can be a copy of Router to which you add one unique
property. For instance, you might add the property campusRouter to the property group
CampusRouter and the property backboneRouter to the property group BackboneRouter. You could
then assign these new property groups to the appropriate nodes.

There are three methods of creating a property group:

 You can base the new property group on an existing one. In this case, you copy an existing
property group and then add one or more new properties to it. This is the technique used in
the hypothetical example above.

 You can create a property group that contains the names of the base objects in one or more
MIB definitions. This technique is useful when you add new hardware to your network and
there is a special MIB defined for that hardware. Basing the property group on this MIB
ensures that you’ll meet one of the prerequisites for making the new device pollable: the
base object used in the poll condition will be in the property group.

 You can create an empty property group and add properties to it one by one. Obviously, this
option gives you the greatest flexibility, but it also is the most time consuming.

For further information on the three methods of creating a property group, see the sections listed
below:

 Based on an Existing Property Group on page 152

 Based on the Contents of MIBs on page 153

 Adding Properties Manually on page 155
Designing and Managing Behavior Models 151Version 5.1

Defining Property Groups and Properties8
Based on an Existing Property Group

Earlier, we mentioned that you could create a property group for campus routers by copying the
predefined property group Router, naming the copy CampusRouter, and adding to the new property
group the unique property campusRouter.

TO CREATE A NEW PROPERTY GROUP BASED ON AN EXISTING ONE

2. From the Property Group list, select the property group that you want to copy.

The properties contained in this property group are displayed in the Property list.

3. Type a name for the new property group in the New Property Group text field.

NOTE

The maximum length for property group names is 255 characters.

4. Select the Copy button, located below the New Property Group text field.

Your new property group appears in the Property Group list and is highlighted.

5. Use the procedure explained in the section Creating a Property on page 150 to add one or
more new properties to your property group.

6. Select the Save button.

1. From the client’s Admin menu, select Property Group List.

The Property Group List window is displayed.
Designing and Managing Behavior Models Version 5.1152

Creating a New Property Group 8
Based on the Contents of MIBs

If you purchase a new device that comes with a new vendor MIB, your NerveCenter administrator
should incorporate the new MIB into NerveCenter’s compiled MIB so that you can take advantage
of the new information provided by the vendor. In addition, you should create a new property group
that contains properties for all the base objects in the new MIB. Why? Recall that a node’s property
group must contain properties for each of the MIB base objects you monitor on the node. If you
want to poll the new device for the values of the attributes belonging to the new MIB objects, you
need properties for the new base objects in the device’s property group.

TO CREATE A NEW PROPERTY GROUP BASED ON THE CONTENTS OF ONE OR MORE MIBS

2. Select the MIB to Group button at the bottom of the window.

NerveCenter displays the MIB to Property Group window.

1. From the client’s Admin menu, select Property Group List.

The Property Group List window is displayed.
Designing and Managing Behavior Models 153Version 5.1

Defining Property Groups and Properties8
All of the MIBs in NerveCenter’s compiled MIB are displayed in the MIB list. If you select
one of the MIBs in the list, the names of the base objects for that MIB are displayed in the
Base Objects list.

3. Select from the MIB list a MIB whose base objects you want to become properties in your
new property group.

4. Enter a name for your property group in the Property Group Name text field. Or leave
there the default name that NerveCenter has supplied.

5. Select the OK button.

The MIB to Property Group window is dismissed, and the name of your new property group
appears in the Property Group list in the Property Group List window. If you wanted to base
your property group on just one MIB, you’re finished. If you want the new property group to
contain the names of the base objects from more than one MIB, continue with step 6.

6. In the Property Group List window, select the MIB to Group button again.

The MIB to Property Group window is displayed.

7. In the MIB to Property Group window, select from the MIB list another MIB whose base
objects you want included in your property group.

8. Enter in the Property Group Name field the same name you used in step 4.

9. Select the OK button.

The Merge or Overwrite Property Group window is displayed.

10. Select the Merge button.

11. Repeat step 6 through step 10 if necessary.

12. Select the Save button.
Designing and Managing Behavior Models Version 5.1154

Creating a New Property Group 8
Adding Properties Manually

If you need a property group that contains only a few properties—maybe a couple of base object
names and one user-defined property—you can create an empty property group and then add
properties to it by hand.

TO CREATE AN EMPTY PROPERTY GROUP AND THEN ADD PROPERTIES TO IT

2. Type the name of your new property group in the New Property Group text field.

3. Select the Add button under the New Property Group text field.

Your new property group appears in the Property Group list and is highlighted. Note that no
properties are listed in the Property list since the property group is empty.

4. To add one or more properties to the new property group, perform the steps covered in the
section Creating a Property on page 150.

5. Select the Save button.

1. From the client’s Admin menu, select Property Group List.

The Property Group List window is displayed.
Designing and Managing Behavior Models 155Version 5.1

Defining Property Groups and Properties8
The nl-ping Property

NerveCenter includes a special “nl-ping” property that identifies that an operation utilizes ICMP
instead of SNMP. In the context of polling, nl-ping can be used to indicate either of two types of
behavior:

 To indicate that a poll should use an ICMP Echo (or Ping) request, not an SNMP operation.

 To view the details of an ICMP response to an SNMP operation. In the context of event
monitoring, nl-ping is used within a Trap Mask to decode ICMP message details.

The nl-ping property is defined in NerveCenter's NETLABS-PING-MIB module (nl-ping.asn1).
This can be pulled in with the MIB to Group button on the Property Group List (select
NETLABS-PING-MIB in the left-hand MIB column and nl-ping will appear in the right-hand
Base Objects column).

When using the default database included with NerveCenter, “nl-ping” is included in many of the
Property Groups such as “Icmp”, “Mib-II” and many of the vendor-based Property Groups. This
provides ease of reference to this ability to access ICMP-related information.

You can find more information in the following sections:

 Use of nl-ping in polling and in poll conditions is presented in The Basic Procedure for
Creating a Poll Condition on page 182.

 Use of nl-ping in Poll response handling is presented in ICMP Responses on page 233.

 Use of nl-ping in Trap Notification handling is presented in How NerveCenter Decodes
ICMP Events on page 208.

Filtering Properties

When polling, NerveCenter steps through every property value to see if it meets the correct
conditions to advance to the next state. Some properties defined by MIBs, such as ifEntry, can
consist of hundreds of entries. In these cases, a single poll can use valuable resources as
NerveCenter steps through every value, looking for the value that meets the condition defined in
the poll. If the property has an associated MIB table index, and you know the specific property
value or range of values you want to monitor, you can use property filters to constrain your poll.

Table 8-1 describes the property filter values.
Designing and Managing Behavior Models Version 5.1156

Filtering Properties 8
NOTENOTENOTENOTE

Property filters are only applied to the property belonging to the specified property
group. The same property in a different property group will not be filtered.

CAUTION

Before creating or editing Property Filters, you must turn off all alarms using the
property group you are editing.

TABLE 8-1. Property Filter Attributes

Attribute Value

Property Index Automatically populated by NerveCenter.

The MIB attribute that acts as the index of the property’s associated MIB table. This MIB attribute can
only consist of a single attribute; property filters do not support multiple field indices.

Datatype Automatically populated by NerveCenter.

The datatype of the Property Index attribute.

Property filters work with the following datatypes: IpAddress, Integer32, INTEGER, Counter, Gauge,
TimeTicks, Counter32, UInteger32, and Counter54.

The following datatypes are not supported: NULL, DisplayString, Bits, NetworkAddress, OctetString,
ObjectID, Timeout, and TimeStamp.

Default Range Automatically populated by NerveCenter.

The allowed values of the Property Index attribute as specified in the MIB.

Filter Index
Range

The Property Index values you want to include. The Filter Range can consist of the following:

 a comma delimited list of individual values

For example: 7,12,19,34

 a dash (-) delimited pair of values to indicate the lower and upper bounds of a range

For example: 18-35

 a combination of these values

For example: 2,4,35-38

Property filters have the following limitations:

 the maximum value is 2,147,483,647

 no negative numbers

 the filter range can be no more than 200 characters

 the filter can contain no more than 1,000 unique values. For example, 2000-4000 is not a valid
filter index range because it encompasses more than 1,000 values.
Designing and Managing Behavior Models 157Version 5.1

Defining Property Groups and Properties8
TO CREATE A PROPERTY FILTER

6. Select a Property Group.

7. Select a Property.

If the property has an associated MIB table index that meets the requirements described in
Table 8-1 on page 157, the Filter button is active. You must save a new property group or
new property before the Filter button activates.

8. Click Filter.

The Property Filter window is displayed.

CAUTION

From the client’s Admin menu, select Property Group List.

The Property Group List window is displayed.
Designing and Managing Behavior Models Version 5.1158

Filtering Properties 8
9. Enter a Filter Index Range.

See Filter Index Range on page 157 for acceptable values. Click Clear Filter to delete the
Filter Index Range.

10. Click OK.

You return to the Property Group List dialog box.

11. Click Save.

The filter is not saved until you save the property group. If you click Cancel in the Property
Group List, all filters will be lost.

NOTENOTENOTENOTE

Filters are applied when polled by an alarm with a SubObject or Instance scope
only.

TO EDIT A PROPERTY FILTER

2. Select the Property Group with the property filter.

3. Select the Property with the property filter.

4. Click Filter.

The Property Filter window is displayed, with the existing filter information.

5. Edit the Filter Index Range.

See Filter Index Range on page 157 for acceptable values. Click Clear Filter to delete the
Filter Index Range.

6. Click OK.

You return to the Property Group List dialog box.

7. Click Save.

1. From the client’s Admin menu, select Property Group List.

The Property Group List window is displayed.
Designing and Managing Behavior Models 159Version 5.1

Defining Property Groups and Properties8
Assigning a Property Group to a Node

When a node is created, it is assigned a property group, and this property group determines which
behavior models NerveCenter uses to manage the node. Of course, this property group assignment
isn’t permanent. You can change the assignment manually, or a behavior model being used to
manage the node can change it.

This section discusses a number of ways in which you can assign a property group to a node and
explains when you would use each method. For further information, see the following subsections.

 Using the Node Definition Window on page 160

 Using the Node List Window on page 162

 Using the AssignPropertyGroup() Function on page 163

 Using the Set Attribute Alarm Action on page 169

 Using OID to Property Group Mappings on page 171

Using the Node Definition Window

One way to change the property group of a node is to open the Node Definition window for that
node and to change the value of the Group field. This method is an appropriate way to change a
node’s property group if:

 You know in advance which node or nodes need the new property group

 Only one node or a few nodes need the change
Designing and Managing Behavior Models Version 5.1160

Assigning a Property Group to a Node 8
TO CHANGE A NODE’S PROPERTY GROUP USING THE NODE DEFINITION WINDOW

1. From the client’s Admin menu, choose Node List.

NerveCenter displays the Node List window.

2. Highlight the name of the node whose property group you want to change.

3. Select the Open button.

The Node Definition window appears. This window enables you to edit the properties of the
node you selected.
Designing and Managing Behavior Models 161Version 5.1

Defining Property Groups and Properties8
4. Select a new property group from the Group drop-down list.

5. Select the Save button.

Repeat this procedure for any additional nodes you want to assign a new property group to.

Using the Node List Window

You can change the property group of a set of nodes from the Node List window, using a popup
menu accessible from that window. It is appropriate to use this method of property group
assignment if:

 You need to change the property group for more than a couple of nodes

 You want to assign the same property group to each of the nodes

 You know in advance which nodes you want to modify

TO CHANGE THE PROPERTY GROUP FOR A SET OF NODES FROM THE NODE LIST WINDOW

1. From the client’s Admin menu, choose Node List.

NerveCenter displays the Node List window.

2. Select one node whose property group you want to change. Then hold down the Ctrl key and
select the remainder of the nodes you want to modify.

3. With your cursor positioned over one of the highlighted entries, press the right mouse button
to bring up the node-management popup menu, and select Property Group from the menu.
Designing and Managing Behavior Models Version 5.1162

Assigning a Property Group to a Node 8
NerveCenter displays the Property Group Edit dialog box.

4. Select a property group from the drop-down list.

5. Select the Save button.

Using the AssignPropertyGroup() Function

In addition to being able to assign property groups to nodes manually using the NerveCenter user
interface, you can use the AssignPropertyGroup() function in a behavior model to change a node’s
property group dynamically. This function can appear in a poll condition, a trap mask trigger
function, or a Perl subroutine.

The syntax for this function is shown below:

AssignPropertyGroup(“PropertyGroupName”)

The property group whose name is passed to the function must already exist.

For further information about how to use this function in a poll condition, a trigger function, or a
Perl subroutine—and for information on when it’s appropriate to use the function in each of these
contexts—see the sections listed below:

 In a Poll Condition on page 163

 In a Trigger Function on page 165

 In a Perl Subroutine on page 167

In a Poll Condition

Suppose you want to change the property group assignment for all of your Cisco routers in
Building 6. You can collect the names or IP addresses of all these nodes and change their property
groups manually using the NerveCenter user interface. However, this can be an error prone process.
All you have is your list of routers to make sure that you assign the new property group to exactly
the right set of nodes. Alternatively, you can create a poll that will detect whether a polled node is a
Cisco router located in Building 6 and will assign the new property group only to nodes that meet
these criteria.
Designing and Managing Behavior Models 163Version 5.1

Defining Property Groups and Properties8
NOTENOTENOTENOTE

The instructions below are not intended to explain in detail how to create this type
of poll. Creating polls is a fairly large topic and is covered in Using Polls on page
175 These instructions cover only the general procedure for incorporating a call to
AssignPropertyGroup() into a poll condition.

This procedure details how to define a poll condition that changes the property group of each Cisco
router in Building 6:

TO DEFINE A POLL CONDITION THAT CHANGES THE PROPERTY GROUP (SAMPLE)

1. Display the Poll Condition page in the Poll Definition window.

2. Create the condition that determines whether you want to call AssignPropertyGroup():

if ((system.sysLocation eq “Building 6") &&
(system.sysObjectID == 1.3.6.1.4.1.9.1))

3. Add a block including a call to AssignPropertyGroup() to the preceding condition:

if ((system.sysLocation eq “Building 6") &&
(system.sysObjectID == 1.3.6.1.4.1.9.1)) {

AssignPropertyGroup(“Cisco6”);}

This example assumes that the new property group is named Cisco6.

NOTE

Your poll condition must also include a call to FireTrigger(); otherwise,
you won’t be able to save the poll.
Designing and Managing Behavior Models Version 5.1164

Assigning a Property Group to a Node 8
4. Select the Save button to save your poll.

Before NerveCenter will use this poll, there must be an enabled alarm in which the poll can
cause a state transition.

CAUTION

When a poll changes a node’s property group, any alarm instances that have been
created for that node are deleted.

In a Trigger Function

Here’s a simple example of when you might use the AssignPropertyGroup() function in a trap mask
trigger function. Suppose that you want to use NerveCenter’s Authentication behavior model to
monitor your network for excessive SNMP authentication failures. This model includes a trap mask
and two polls and looks for three authentication failures on a single node within ten minutes.

You could enable the behavior model by assigning to the nodes you want to monitor a property
group that contains the property snmp and turning on the Authentication alarm. But let’s say that
you don’t want to monitor nodes that have never experienced an authentication failure, because the
model does involve some polling. To monitor only nodes whose agents have sent authentication
failure traps, you can initially assign your nodes a property group that doesn’t contain the property
snmp. You can then define a trap mask that looks for authentication failure traps and changes the
property group of the nodes from which it receives these traps. Let’s assume that the new property
group is called Mib-II and contains the property snmp.

NOTENOTENOTENOTE

The instructions below are not intended to explain in detail how to create this type
of trap mask. Creating masks is a fairly large topic and is covered in Chapter 10,
Using Trap Masks These instructions cover only the general procedure for
incorporating a call to AssignPropertyGroup() into a trigger function.
Designing and Managing Behavior Models 165Version 5.1

Defining Property Groups and Properties8
TO DEFINE A TRAP MASK

This procedure defines a trap mask that changes the property group of each node that issues an
authentication failure trap, you would:

1. Create a trap mask that looks for a generic trap 4.

2. Indicate that the trap mask will use a trigger function instead of a simple trigger.

3. Display the Trigger Function page in the Mask Definition window.

4. Type in your call to AssignPropertyGroup():

AssignPropertyGroup(“Mib-II”);

You can make this property-group assignment conditional, based on the value of a variable
binding if you need to. In the present case, such a condition isn’t necessary.

5. Also type in a call to FireTrigger();

FireTrigger(“TrigggerName”);

Remember that before NerveCenter will use this mask, there must be an enabled alarm in
which the mask can cause a state transition.

6. Save your trap mask.

CAUTION

When a mask changes a node’s property group, any alarm instances that have been
created for that node are deleted.
Designing and Managing Behavior Models Version 5.1166

Assigning a Property Group to a Node 8
In a Perl Subroutine

Another place from which you can call the AssignPropertyGroup() function is a Perl Subroutine
alarm-transition action. This is the appropriate context for using this function if you want to
perform your property-group assignment conditionally, based on information that is available from
with a Perl subroutine, but not elsewhere. For example, a Perl subroutine associated with an alarm
transition has access to the name of the property group of the node that triggered the transition. You
could use this information to change a node’s property group only if:

 An alarm transition containing the appropriate Perl Subroutine action is caused by a trigger
associated with the node

 The node currently has a particular property group

For a complete list of the information that is available to a Perl subroutine, see the section
NerveCenter Variables on page 326.

NOTENOTENOTENOTE

The instructions below do not explain in detail how to create a Perl subroutine or
how to create an entire alarm. They explain only how to add to an alarm transition a
Perl Subroutine action that will change the property group of a node. For complete
information about creating Perl subroutines, see the section Perl Subroutine on
page 318, and for complete information about creating alarms, see Using Alarms on
page 247

TO ADD A PERL SUBROUTINE TO AN ALARM TRANSITION

The procedure below explains how to add to an alarm transition a Perl Subroutine action that
assigns the property group Gateway to the node associated with the trigger that caused the
transition. The property group is assigned only if the node’s current property group is Mib-II.

1. Use the Perl Subroutine Definition window to create your Perl subroutine.

The subroutine should look something like this:

if ($NodePropertyGrp eq “Mib-II”) {
AssignPropertyGroup(“Gateway”);

}

2. In the Alarm Definition window, open the Transition Definition dialog by double-clicking
on the transition to which you want to add the Perl Subroutine action.
Designing and Managing Behavior Models 167Version 5.1

Defining Property Groups and Properties8
3. Select the New Action list.

A list of available actions is displayed.

4. Select the Perl Subroutine action.

NerveCenter displays the Perl Subroutine Action dialog box.

5. Select the name of the subroutine you created in step 1 from the Name list box.

6. Select the OK button in the Perl Subroutine Action dialog.

The dialog is dismissed, and the newly defined action appears in the Actions list in the
Transition Definition dialog.

7. Select the OK button in the Transition Definition dialog.

8. Select the Save button in the Alarm Definition window.

CAUTION

When a Perl subroutine changes a node’s property group, any alarm instances that
have been created for that node are deleted.
Designing and Managing Behavior Models Version 5.1168

Assigning a Property Group to a Node 8
Using the Set Attribute Alarm Action

There are two ways to change a node’s property group using alarm-transition actions: using the Perl
Subroutine action and using the Set Attribute action. For information on changing a node’s property
group using the Perl Subroutine action, see the section In a Perl Subroutine on page 167. Using a
Perl Subroutine action to change a property group is appropriate when you want to use Perl to do
something more complex than simply change the property group of the node associated with the
trigger that causes the alarm transition (or the property group of any other node, for that matter). If
the only action you would take from a Perl subroutine is to change a property group, you should use
the Set Attribute action instead. This approach will save you the trouble of having to write and
compile a Perl subroutine.

NOTENOTENOTENOTE

The instructions below do not explain how to create an entire alarm. They explain
only how to add to an alarm transition a Set Attribute action that will change the
property group of a node. For complete information about creating alarms, see
Chapter 12, Using Alarms.

TO ADD TO AN ALARM TRANSITION A SET ATTRIBUTE ACTION THAT CHANGES A NODE’S
PROPERTY GROUP

1. Open the Transition Definition dialog by double-clicking on the transition to which you
want to add the Set Attribute action.

2. Select the New Action list.

A list of available actions is displayed.

3. Select the Set Attribute action.
Designing and Managing Behavior Models 169Version 5.1

Defining Property Groups and Properties8
NerveCenter displays the Set Attribute Action dialog.

4. Leave the Object Type value set to Node since you want to set an attribute of a node.

5. Usually you’ll leave the Name value set to $NODE.

$NODE stands for the name of the node associated with the trigger that caused the alarm
transition. However, you can change the value to the name of any node in the NerveCenter
database if you know in advance the name of the node whose property group you want to
change.

6. Select Property Group from the Attribute drop-down list.

7. Select a property-group name using the Value drop-down list.

The property group you choose will become the new property group for the node you chose
in step 5 whenever this alarm transition takes place.

8. Select the OK button in the Set Attribute Action dialog.

The dialog is dismissed, and the newly defined action appears in the Actions list in the
Transition Definition dialog.

9. Select the OK button in the Transition Definition dialog.

10. Select the Save button in the Alarm Definition window.

CAUTION

When a Set Attribute alarm action changes a node’s property group, any alarm
instances that have been created for that node are deleted.
Designing and Managing Behavior Models Version 5.1170

Assigning a Property Group to a Node 8
Using OID to Property Group Mappings

When a node is first written to the NerveCenter database, it is assigned a property group based on
the object ID of the node. For example, a Cisco router with an OID of 1.3.6.1.4.1.9.1 is, by default,
assigned a property group of CISCO-ROUTER-9.x-MIB. The assignments are based on a table of
mappings between OIDs and property groups. If no mapping exists for a particular device, that
device is assigned the default property group NCDefaultGroup.

Using the NerveCenter client, you can add entries to, or change entries in, this OID-to-property-
group table. The new mappings will affect any nodes that are added to the NerveCenter database
after you make your changes.

TO ADD A NEW OID-TO-PROPERTY-GROUP MAPPING

1. From the client’s Admin menu, choose OID to Group.

The OID to Property Group dialog is displayed.

2. Enter an object identifier in the System Object text field.

3. Enter the name of a property group in the Property Group text field.

4. Select the Add button.

5. Select the Save button.
Designing and Managing Behavior Models 171Version 5.1

Defining Property Groups and Properties8
Tips for Using Property Groups and Properties

Using property groups and properties is mainly a matter of common sense; however, the sections
below give you a few suggestions for using them effectively.

Categorizing Nodes

We’ve said that property groups enable you to create groups of nodes, each of which is managed by
a set of behavior models. As you create your groups, it’s helpful to list a variety of criteria for
categorizing your nodes and then to use the criteria that make the most sense for your network. For
example, some criteria you could use in classifying your nodes are:

 Type of device (workstation, server, router)

 Location

 Importance (Which nodes need to be managed most closely?)

 Supported MIBs

 Business function

Apply whatever set of criteria is appropriate for your site.

Move from the General to the Specific

Set up property groups that establish general groups of devices first. Then create subcategories of
nodes as necessary.

For instance, suppose that you have MIB-II agents running on all of your computers, including
servers. You want to monitor the servers more closely than the personal computers, so you copy the
existing Mib-II property group, name the copy Server, and add to the copy the property server. You
can now set up polls and alarms that take one action, such as sending an e-mail message, when any
workstation is unreachable, and another action, such as paging an administrator, when a server is
unreachable.

Or maybe you want to refine how you monitor servers so that you can distinguish file servers from
print servers. You can set up two new property groups, each a copy of Server. Name one Fserver
and add the property fserver, and name the other Pserver and add the property pserver. Note that
both groups still contain the property server because each is a copy of the Server property group.
You can then set up polls and alarms to perform one action when any server is unreachable,
perform a different action when a file server is unreachable, and perform a third action when a print
server is unreachable.
Designing and Managing Behavior Models Version 5.1172

Tips for Using Property Groups and Properties 8
MIB Objects

The property group for a device should contain a property for every MIB base object that might be
used in a poll condition by a poll designed to contact that node. For further information on building
poll conditions, see Writing a Poll Condition on page 180.

If a base object is not in the node’s property group, polls whose poll conditions refer to that object
will not contact the node.
Designing and Managing Behavior Models 173Version 5.1

Defining Property Groups and Properties8
Designing and Managing Behavior Models Version 5.1174

9
Designing and Managing Behavior ModelsUsing Polls
Designing and Managing Behavior Models 175Version 5.1

NerveCenter polls enable you to retrieve information from SNMP agents on devices to determine
the status of those devices. Figure 9-1 depicts the role that a poll plays in a behavior model

FIGURE 9-1. The Role of a Poll in a Behavior Model
To function as part of a behavior model, a poll must be tied to one or more alarms by means of one
or more triggers. If the poll does not define a trigger that can affect a pending alarm transition, the
poll is never sent to a device. This behavior is part of NerveCenter’s smart polling feature.

Other aspects of this smart polling feature are that NerveCenter doesn’t send a poll to a node unless
the poll’s property is in the node’s property group and that NerveCenter never sends a suppressible
poll to a suppressed node. Together, these behaviors sharply curtail the amount of network traffic
NerveCenter generates by polling SNMP agents.

The remainder of this chapter explains in detail how to create and work with polls. Refer to the
following sections:

Section Description

Listing Polls on page 176 Explains how to display a list of the polls currently defined in
the NerveCenter database.

Defining a Poll on page 178 Explains how to create a new poll.

Writing a Poll Condition on page 180 Explains how to write the poll condition for a new poll.

Documenting a Poll on page 199 Explains how to add notes (documentation) to a poll.

Enabling a Poll on page 203 Explains how to turn a poll on.

Nodes

Response
Poll

Behavior model

Trigger

Alarm

Poll

Using Polls9
Listing Polls

This section explains how to display a list of the polls currently defined in the NerveCenter
database. The section also explains how to view the definition of a particular poll.

For information on creating a new poll, see Defining a Poll on page 178.

TO DISPLAY A LIST OF POLLS AND THEN DISPLAY A PARTICULAR POLL’S DEFINITION

This window lists all NerveCenter polls and provides a brief definition of each. For each
poll, the window specifies a name and the following information:

 Whether the poll is currently enabled

 Whether the poll is suppressible

 The poll’s property

 The name of the base object used to build the poll condition

2. Select a poll from the poll list.

3. Select the Open button

NerveCenter displays the Poll Definition window.

1. From the client’s Admin menu, choose Poll List.

NerveCenter displays the Poll List window.
Designing and Managing Behavior Models Version 5.1176

Listing Polls 9
The poll defined in this figure is named AuthFail. Every thirty minutes, the poll is sent to
nodes whose property group includes the property snmp, and the poll checks for an increase
in the value of snmpInBadCommunityNames or snmpInBadCommunityUses. If the poll
finds an increase in either of these values, it fires the trigger authFail; otherwise, it does not
fire a trigger. The poll is suppressible and is currently not enabled. It must be enabled before
NerveCenter will use its definition to poll any devices.
Designing and Managing Behavior Models 177Version 5.1

Using Polls9
Defining a Poll

This section explains the steps required to create a new poll.

TO DEFINE A NEW POLL

2. Select the New button.

The Poll Definition window is displayed.

3. Make sure that the Off radio button is selected in the Enabled frame.

1. From the client’s Admin menu, choose Poll List.

NerveCenter displays the Poll List window.
Designing and Managing Behavior Models Version 5.1178

Defining a Poll 9
The poll must remain off until you’ve completed defining the poll and saved your definition.
You must then turn the poll on for it to become part of a functioning behavior model.

4. In the Name text field, type a unique name for the poll.

NOTE

The maximum length for poll names is 255 characters.

5. From the Property list box, select a property, or leave the Property set to NO_PROP.

The property you choose limits which nodes NerveCenter can retrieve data from using this
poll definition. The poll will contact only those nodes whose property group contains this
property. (Note that the property can be a member of multiple property groups.)

If you don’t want to restrict the poll to any subset of nodes, leave the field set at NO_PROP.
The poll will target all managed nodes.

6. Usually, you’ll leave the Port text field blank. However, if you want this poll to
communicate with nodes on a port other than that specified in the nodes’ definitions, enter
that port number here.

7. Define the poll rate by entering a number in the Poll Rate text field and selecting either the
Hours, Minutes, or Seconds radio button.

NOTE

When defining the poll rate, the interval should be equal to or greater than
(numberOf Retries + 1) * retryInterval. Otherwise, NerveCenter can issue
a second poll before the first one times out. The number of retries and the
retry interval are defined on the SNMP tab in the NerveCenter
Administrator.

CAUTION

Choosing a frequent poll rate can have a serious impact on network traffic,
especially if the poll applies to numerous nodes.

8. Uncheck the Suppressible checkbox if you want to send this poll to a node even when the
node is suppressed.

A suppressible poll does not poll a node whose state is suppressed. This feature prevents
repeated polling of devices that are not capable of responding. The default value for a poll is
suppressible.

There might be specific polls that you want to send to a node even when it is suppressed. For
example, if you want to check on the status of a suppressed node to determine whether it has
returned to normal, use an insuppressible poll.
Designing and Managing Behavior Models 179Version 5.1

Using Polls9
9. Select the Poll Condition tab to display the Poll Condition page, and enter your poll
condition. For details on how to construct this poll condition, see Writing a Poll Condition
on page 180.

10. Select the Save button to save your poll.

11. If you want to enable you poll now, set the poll’s Enabled status to On, and then select the
Save button again.

Writing a Poll Condition

Every poll must include a poll condition. This poll condition, which you write using Perl, specifies
which MIB variables the poll should read, what conditions the values of those variables must meet,
and what triggers will be fired each time a value makes a condition true. For example, the following
poll condition detects whether a node’s desired and current operational status are both up and, if
they are, fires the trigger ifUp:

if (ifEntry.ifAdminStatus == up and ifEntry.ifOperStatus == up) {
FireTrigger(“ifUp”);

}

Note that both the MIB variables referred to in this condition are children of the same base object
(ifEntry). In a single poll condition, you can only refer to one base object. If the condition that you
want to detect requires that you inquire about variables associated with multiple base objects, you
must design multiple polls.

Another important point about poll conditions is that if a poll causes a trigger to be fired, that
trigger’s variable bindings will include a name-value pair for each MIB variable referred to in the
poll condition and read by the poll. If such a trigger causes a logging action, the value of each
variable used in the poll condition is written to the log.

Most poll conditions are very similar in structure. They follow this pattern:

if (condition1) {
FireTrigger(arguments);

}
elsif (condition2) {

FireTrigger(arguments);
}
else {

FireTrigger(arguments);
}

Designing and Managing Behavior Models Version 5.1180

Writing a Poll Condition 9
The conditions can be arbitrarily complex, and the FireTrigger() function fires a trigger, whose
name, subobject, and node you can control.

NOTENOTENOTENOTE

The maximum length for trigger names is 255 characters.

Because a poll condition is written in Perl, you can use any data types, operators, and functions that
Perl understands in this condition. Also, you can make use of a number of functions and one
variable defined by NerveCenter. The functions and variables available to you are summarized in a
pop-up menu for Perl accessible via a right mouse click from the poll condition editing area. (See
the following section, Using the Pop-Up Menu for Perl on page 194, for more information.)

For all the details about writing a poll condition, see the following sections:

 The Basic Procedure for Creating a Poll Condition on page 182

 Functions for Use in Poll Conditions on page 184

 NerveCenter Variables on page 326

 Using the Pop-Up Menu for Perl on page 194

 Examples of Poll Conditions on page 196
Designing and Managing Behavior Models 181Version 5.1

Using Polls9
The Basic Procedure for Creating a Poll Condition

The section explains how to use the Poll Condition page in the Poll Definition window to create a
poll condition.

TO CREATE A POLL CONDITION

1. In the Poll Definition window, select the Poll Condition tab.

The Poll Condition page is displayed.

2. From the Base Object drop-down list, select the base object whose attributes you will use in
the poll condition.

A list of the base object’s attributes is displayed in the Attributes list.

NOTENOTENOTENOTE

Selecting the nl-ping base object causes NerveCenter to poll using an ICMP Echo
(aka ping) instead of SNMP. The attributes of nl-ping, shown in the Attributes list,
can be used to examine the outcome of the ICMP operation. See The nl-ping
Property on page 156 for more information.
Designing and Managing Behavior Models Version 5.1182

Writing a Poll Condition 9
3. If you want to use the shared Perl interpreter, select the Execute Perl in Global Space
checkbox.

NOTE

If you select Execute Perl in Global Space, the poll condition executes in a
shared Perl interpreter. You can use Global variables in your poll condition
to share information between other Perl routines such as trigger functions
or Perl subroutines, however, Perl intensive poll conditions may impede
NerveCenter’s performance.
If you do not select Execute Perl in Global Space, the poll condition
executes in a Perl interpreter dedicated to poll conditions. This will
improve NerveCenter’s performance, however you cannot use global
variables in your poll condition to share information between other Perl
routines such as trigger functions or Perl subroutines.
For more information about the various Perl interpreters, see NerveCenter
and Perl on page 56.

4. Place your cursor in the Poll Condition text area, and enter the poll condition.

You can enter the poll condition by simply typing the condition in this text area. However,
you can also use several shortcuts to enter text:

 One useful shortcut allows you to enter a MIB base object plus an attribute (connected
by a period) at the point of the cursor. To use this shortcut, position your cursor where
you want to enter the text, and double-click an attribute in the Attribute list. (You must
have selected a base object from the Base Object drop-down list while the poll condition
editing area was empty.)

 You can enter a Perl operator, a call to a NerveCenter function, or a NerveCenter
variable using the poll-condition pop-up menu for Perl. To bring up this menu, click the
right mouse button while your cursor is in the poll-condition editing area.

See the section Using the Pop-Up Menu for Perl on page 194 for further information
about this pop-up menu.

 You can paste text from the clipboard into the text area.

When you return to the Poll page—to save your poll—the poll condition you’ve constructed
appears in the read-only Poll Condition text area.
Designing and Managing Behavior Models 183Version 5.1

Using Polls9
Functions for Use in Poll Conditions

NerveCenter includes a number of functions that you can use in constructing a poll condition.
Several of these functions are designed specifically for use in poll conditions. For example, they
enable you to determine the exact number of seconds between polls and to determine the change in
the value of a MIB variable between one poll and the next. You can also use the functions
DefineTrigger(), FireTrigger(), AssignPropertyGroup(), and in() and a set of string-matching
functions. These functions can be used not only in defining poll conditions, but in defining other
objects as well.

The functions and variables available to you for use in poll conditions are summarized in a pop-up
menu for Perl accessible via a right mouse click from the poll condition editing area in the Poll
Condition page of the Poll Definition window. (See the section, Using the Pop-Up Menu for Perl
on page 194, for more information.)

For detailed information about all of these functions, see the following sections:

 NerveCenter Functions for Poll Conditions on page 185

 AddNode() Function on page 186

 AssignPropertyGroup() Function on page 187

 DefineTrigger() Function on page 187

 FireTrigger() Function on page 189

 in() Function on page 191

 NC::AlarmCounters on page 191

 String-Matching Functions on page 193
Designing and Managing Behavior Models Version 5.1184

Writing a Poll Condition 9
NerveCenter Functions for Poll Conditions

The functions discussed below are designed specifically for use in poll conditions.

delta()

Syntax: delta(baseObject.attribute)

Arguments: baseObject.attribute - The name of a MIB variable qualified by the name of its
parent object, for example, ifEntry.ifType.

Description: Returns the difference between the value of baseObject.attribute retrieved by
the previous poll and that retrieved by the current poll.

Example: This statement fires a trigger if the number of SNMP messages sent to a node
without an acceptable community name has increased:

if (delta(snmp.snmpInBadCommunityNames) >= 1) {
FireTrigger(“authFail”);

}

elapsed

Syntax: elapsed

Description: Returns the number of seconds that elapsed between the previous poll and the
current poll.

Example: This statement fires a trigger if the poll detects interface traffic levels exceeding
80 percent of capacity:

if (((delta(ifEntry.ifInOctets) + delta(ifEntry.ifOutOctets))
* 8) / (ifEntry.ifSpeed * elapsed) >= 0.801) {

FireTrigger(“highLoad”);}

not_present

Syntax: not_present

Description: Returns true if the poll is not able to read the value of the MIB attribute that
precedes the function.

Example: This statement fires a trigger if the poll is unable to read the value of
system.sysDescr from an agent’s MIB:

if (system.sysDescr not_present) {
FireTrigger(“noAgent”);

}

Designing and Managing Behavior Models 185Version 5.1

Using Polls9
present

Syntax: present

Description: Returns true if the poll is able to read the value of the MIB attribute that
precedes the function.

Example: This statement fires a trigger if the poll is able to read the value of ifInUcastPkts
from an agent’s MIB.

if (ifEntry.ifInUcastPkts present) {
FireTrigger(“gotInUcastPkts”);

}

AddNode() Function

The AddNode() function adds a node to the NerveCenter managed node list. This function can be
called from a poll condition, trap mask trigger function, or a Perl Subroutine alarm action.

Syntax: AddNode(“node name”);

Arguments: node name is the IP address of the node to add to the managed node list and
must be a valid IP address enclosed in quotes, for example, “123.123.123.123”.

Description: Adds a node to the NerveCenter managed node list, with the following
attributes:

 The address assigned to the node will be the address specified for the node name.

 The node property group will be assigned to the “NCDefaultGroup”

 The node community string will be assigned the community string of the node for which
the poll condition was executed.

 The node will be marked as 'managed' and 'not suppressed'

 The SNMP version of the node will be assigned the version of the node for which the
poll condition was executed.

 No action is taken if a node of the same name already exists in the node list. No
validation that the node name doesn't already exist is performed at compile time.
Designing and Managing Behavior Models Version 5.1186

Writing a Poll Condition 9
AssignPropertyGroup() Function

You use the AssignPropertyGroup() function to assign a property group to a node. The function can
be called from a poll condition, a trap mask trigger function, or a Perl Subroutine alarm action. The
node affected is the node being polled, the node from which a trap arrived, or the node associated
with the trigger that caused an alarm transition (in the case of a Perl Subroutine action).

The syntax of the AssignPropertyGroup() function is shown below:

AssignPropertyGroup()

Syntax: AssignPropertyGroup(“propertyGroup”)

Arguments:

propertyGroup - The name of an existing property group.

Description: The function assigns a property group to a node.

Example: The example below shows the AssignPropertyGroup() function being used in a
Perl Subroutine alarm action. If the variable $DestStateSev (which holds the name of the
NerveCenter severity of the destination state) contains the string “Critical,” the property
group of the node associated with the trigger that caused the alarm transition is changed to
CriticalGrp. The node will now be managed by a new set of behavior models.

if ($DestStateSev eq “Critical”) {
AssignPropertyGroup(“CriticalGrp”)

}

DefineTrigger() Function

The DefineTrigger() function enables you to create triggers which you can assign to variables and
fire using FireTrigger() in NerveCenter Perl expressions. (In the scope of a subroutine, Perl requires
you to define a variable before you can use it.)

You can use DefineTrigger() in NerveCenter anywhere that you write Perl expressions (except for
Action Router rule conditions):

 Poll conditions

 Perl Subroutine alarm actions

 Mask trigger functions

As with triggers created with FireTrigger(), the triggers you create with DefineTrigger() are
available in the trigger lists NerveCenter displays when you are defining alarm transitions, Perl
subroutines, and Action Router rule conditions.

The syntax for the DefineTrigger() function is shown below:
Designing and Managing Behavior Models 187Version 5.1

Using Polls9
DefineTrigger()

Syntax: DefineTrigger(“name”)

Arguments:

name - The name of the trigger in quotation marks.

NOTE

Trigger names can contain the following types of characters:
alphanumeric, underscore, and hyphen. No other characters are allowed.
The maximum length for trigger names is 255 characters.

Description: DefineTrigger() creates a trigger which you can assign to a variable and fire
using FireTrigger().

Example one: The expression creates a trigger named “hello” which is assigned to a Perl
variable “$trig” and is then fired:

$Trig = DefineTrigger(“hello”)
FireTrigger($trig)

Example two: The following code excerpt is from a Perl subroutine (TestParentSetNode)
associated with the downstream alarm suppression behavior models shipped with
NerveCenter. $TriggerFlag stores the name of the trigger to be fired which depends on the
status of the parent node:

DefineTrigger('UnReachable');
DefineTrigger('Down');
DefineTrigger('Testing');
...
if(($ParentStatus eq “Down” || $ParentStatus eq “UnReachable”) &&
$TriggerFlag eq “NotSet”)
{

$TriggerFlag = “UnReachable”;
}
elsif($ParentStatus eq “Up”)
{

$TriggerFlag = “Down”;
}
elsif($ParentStatus eq “Testing” && $TriggerFlag ne “Down”)
{

$TriggerFlag = “Testing”;
}
...
FireTrigger($TriggerFlag);
Designing and Managing Behavior Models Version 5.1188

Writing a Poll Condition 9
FireTrigger() Function

The FireTrigger() function enables you to fire a trigger from anywhere in NerveCenter that you
write Perl expressions:

 Poll conditions

 Perl Subroutine alarm actions

 Mask trigger functions

 Action Router rule conditions

You specify the name of the trigger and optionally its subobject attribute and node attribute.

CAUTION

In a poll condition FireTrigger function, the subobject and node values are supplied
by the poll and can’t be overridden. For this reason, you should not attempt to
provide the subobject or node parameter when calling the FireTrigger function
from a poll condition.

As with triggers created with DefineTrigger(), the triggers you create with FireTrigger() are
available in the trigger lists NerveCenter displays when you are defining alarm transitions, Perl
subroutines, and Action Router rule conditions.

The syntax for the FireTrigger() function is shown below:

FireTrigger()

Syntax: FireTrigger(“name”, [subobject], [node], [delay time])

Arguments:

name - The name of the trigger in quotation marks. Name can also be a Perl variable
that is assigned a trigger using the DefineTrigger() function. For example:

$var=DefineTrigger(“myTrigger”);
FireTrigger($var);

NOTE

Trigger names can contain alphanumerics, underscores, and
hyphens. No other characters are allowed. The maximum length
for trigger names is 255 characters.

subobject - You can pass a subobject to FireTrigger() in one of two ways.

You can use a string literal, for example, “ifEntry.2”.
Designing and Managing Behavior Models 189Version 5.1

Using Polls9
Second, if you called FireTrigger() from a trigger function or a Perl subroutine, you can
use the function VbObject(n). This function returns the subobject associated with the
nth variable binding in a trap or trigger.

NOTE

When firing a trigger from a mask trigger function, you can pass
a subobject using the variable $DefaultSubobject, which contains
the subobject associated with the first variable binding in the trap.
$DefaultSubobject works only from a trap mask trigger function.

node - You can pass a node to FireTrigger in one of three ways.

First, you can use the variable $NodeName, which is the default for this argument. The
variable value depends on the context in which it is used, as shown in Table 9-1.

Second, include the name of the node in quotation marks, for example, “MyBestRouter”
or “192.168.197.110”. This string must match the name of the node as it’s listed in the
NerveCenter Node List window.

Finally, if the node name you want to pass to FireTrigger() is in a trap’s or a trigger’s
variable bindings, you can use the function VbValue(n) to retrieve that name. This
function returns the value of the nth variable binding.

delay time - the number of seconds to wait prior to firing the indicated trigger. The delay
time can vary between 0 and 2,147,483,647.

To specify a delay time without a subobject or noade name, use default value
placeholders as follows:

FireTrigger(“myTrigger’, $DefaultSubobject, $NodeName, delay time)

Description: FireTrigger() creates a trigger with the name, subobject, and node values that
you supply.

Example: The following call generates a trigger with the name “trigger” and the default
subobject and node:

FireTrigger(“trigger”);

TABLE 9-1. The Value of $NodeName

If $NodeName is used in a ... Its value is ...

Poll condition The name of the node that was polled.

Trap mask trigger function The node name associated with the agent address in an SNMP trap.

Perl subroutine The trigger’s node attribute.
Designing and Managing Behavior Models Version 5.1190

Writing a Poll Condition 9
in() Function

The in() function is available for use in poll conditions, trap mask trigger functions, Perl
subroutines, and Action Router rule conditions.

in()

Syntax: in(scalar, scalar, ...)

Arguments:

scalar - An scalar value in a set of scalar values (often integers representing interface
types).

Description: Returns true if the value of the attribute that precedes the function is found in
the set of scalars in parentheses.

Example: This statement fires a trigger if a particular interface is part of a broadcast
network:

if (ifEntry.ifType in (6,7,8,9,11,12,13,15,26,27)) {
FireTrigger(“broadcast”);

}

NC::AlarmCounters

This is available for use in all Perl subroutines, trap masks, action router, and poll conditions.

Name

NC::AlarmCounters

Synopsis

NC::AlarmCounters->method(key => string, type => local|global, value
=> integer)

Description

A Perl based counter object. NC::AlarmCounters enables you to do the following in any Perl code
in NerveCenter:

 Increment Alarm Counters by a number other than one

 Decrement Alarm Counters by a number other than one

 Create Alarm Counters

 Set Alarm Counters
Designing and Managing Behavior Models 191Version 5.1

Using Polls9
 Retrieve Alarm Counters

Method

Arguments

Method Functionality

new Creates/initializes the counter.

If no initial value is present, then the counter is set to zero.

If the counter is global and it already exists, 'new' creates another view into the same counter

Returns a reference to the new object

incr Increments the counter.

If no value is present, then increment the counter by one.

Returns the new value of the counter.

decr Decrements the counter.

If no value is present, then Decrement the counter by one.

Returns the new value of the counter.

get Retrieve the specified counter.

set Assigns a value to a counter.

If no value is present, then the counter is set to zero.

Returns the new value of the counter.

clear Deletes counter and frees up memory

Parameter Values Description

key string Optional parameter; If not specified, defaults to $AlarmInstanceID

type local or
global

 If 'local' is specified, the $AlarmInstanceID is appended to the key, thus
making it 'local' to the Alarm Instance.

 If 'global' is specified, no modification is made to the key so that it may be
easily accessed via other Alarm Instances.

The default setting is 'local'.

value integer The value to update the counter with

 If the counter already exists (and this is another view) and no value is
present, the existing value is retained.

 If no value is specified and the counter is new, then it is initialized with zero.
Designing and Managing Behavior Models Version 5.1192

Writing a Poll Condition 9
Examples

To use the counter functionality in NerveCenter Perl components, include the following:

use NC::AlarmCounters;

To create a localized counter with the value of 5. This counter is only available in the alarm
instance it was created in.

my $local_counter = NC::AlarmCounters->new(value => 5);

To create a global counter named errors. Default value is zero. This counter is available through
any Perl component.

my $global_counter = NC::AlarmCounters->new(key => 'errors', type =>
'global');

To create another view at the global counter errors. Modifying $alternate_counter also affects
$global_counter.

my $alternate_counter = NC::AlarmCounters->new(key => 'errors', type
=> 'global');

To increment the global counter named error. Store new value in $current_value. Note that no key
is necessary because $global_counter is already defined with a key upon creation.

my $current_value = $global_counter->incr();

To decrement the local counter by 5. Note that the counter's locality and key are not necessary, as
they were determined at the time of creation.

$local_counter->decr(value => 5);

To clear out counter when not needed.

$local_counter->clear();
$global_counter->clear();

String-Matching Functions

NerveCenter provides four string-matching functions (Perl subroutines), which can be used in poll
conditions, trap mask trigger functions, Perl subroutines, and Action Router rules. These functions
enable you to determine whether a string contains a substring or a word.

For example, you could use the following poll condition to test a system attribute.

if (ContainsWord (system.sysDescr, “Description”))
{
FireTrigger (“TriggerName”)
}

Designing and Managing Behavior Models 193Version 5.1

Using Polls9
Note that the substring is enclosed in quotation marks to denote that this is a literal string, whereas
the system attribute system.sysDescr does not require quotation marks.

You can precede any of the functions with a ! to negate the value.

Following is a description of each string-matching function:

CaseContainsString()

Syntax: CaseContainsString(string, substring)

Description: Returns true if string contains substring. The match is case sensitive.

CaseContainsWord()

Syntax: CaseContainsWord(string, word)

Description: Returns true if string contains word, and word begins and ends on a word
boundary. The match is case sensitive.

ContainsString()

Syntax: ContainsString(string, substring)

Description: Returns true if string contains substring. The match is case insensitive.

ContainsWord()

Syntax: ContainsWord(string, word)

Description: Returns true if string contains word, and word begins and ends on a word
boundary. The match is case insensitive.

Using the Pop-Up Menu for Perl

There are five different tasks in NerveCenter that require you to write Perl code:

 Creating a poll condition

 Creating a trap mask trigger function

 Creating a Perl subroutine that will be executed by the Perl Subroutine alarm action

 Creating an Action Router rule condition

For each of these tasks, you can use not only Perl 5, but some NerveCenter functions and variables
that are appropriate to the task. For instance, if you’re writing a trap mask trigger function, you can
use NerveCenter functions to retrieve information about the variable bindings in the trap that
caused the trigger function to be called. You can also use NerveCenter variables that contain
information about the contents of the trap.
Designing and Managing Behavior Models Version 5.1194

Writing a Poll Condition 9
What functions and variables are available to you depends on the task you’re performing.
Therefore, NerveCenter provides a pop-up menu in the editing area for each task that indicates
which functions and variables are applicable in that situation. Figure 9-2 shows the pop-up menu as
it appears in the editing area used to create a trap mask trigger function.

FIGURE 9-2. Pop-Up Menu for Perl
The submenu being displayed lists all the variable-binding functions.

NOTENOTENOTENOTE

In addition to listing NerveCenter functions and variables, the pop-up menus also
list Perl’s arithmetic, logical, and relational operators.

Besides serving as documentation, these pop-up menus enable you to enter text in an editing area at
the point of the cursor. For example, if you were working in the trigger-function window shown
above, selecting the menu entry VbValue would cause the characters “VbValue(“ to be written to
the editing area.

To make this discussion more concrete, let’s look at an example. Let’s say that you want to write
the following trigger function:

if ($NodeName ne “troublemaker”) {
FireTrigger(“gotIt”);

}

Designing and Managing Behavior Models 195Version 5.1

Using Polls9
TO WRITE THIS TRIGGER FUNCTION, YOU WOULD

1. Open the Mask Definition window, and go tho the Trigger Function page.

2. Left-click in the Trigger Function editing area, and type if (.

3. Press the right mouse button, select the Trap variables submenu, and select $NodeName
from that submenu.

4. Press the right mouse, select the Relational operators submenu, and select ne from that
submenu.

5. Type “troublemaker”) {; then, enter a new line and four spaces.

6. Press the right mouse button, select the Other functions submenu, and select FireTrigger
from that submenu.

7. Type in the remainder of the trigger function.

Examples of Poll Conditions

This section presents a number of sample poll conditions and explains how the poll conditions
work.

Example 1

if (system.sysLocation eq “Building 6" and
system.sysObjectID == 1.3.6.1.4.1.9.1) {

AssignPropertyGroup(“Cisco6”);
}

This poll condition checks to see whether a device is located in Building 6 and whether it is a Cisco
product. If the device meets these conditions, it is assigned the property group Cisco6.
Designing and Managing Behavior Models Version 5.1196

Writing a Poll Condition 9
Example 2

if (ifEntry.ifType present and
ifEntry.ifSpeed present and
ifEntry.ifInOctets present and
ifEntry.ifInUcastPkts present and
ifEntry.ifInNUcastPkts present and
ifEntry.ifInDiscards present and
ifEntry.ifInErrors present and
ifEntry.ifOutOctets present and
ifEntry.ifOutUcastPkts present and
ifEntry.ifOutNUcastPkts present and
ifEntry.ifOutDiscards present and
ifEntry.ifOutErrors present) {

FireTrigger(“ifData”);
}

This poll condition is true as long as the poll is able to read the values of these interface variables
from an agent’s MIB.

This type of poll condition is useful if you want to gather MIB data that you’ll use later in
generating a report. For example, if a poll fires an ifData trigger after this poll condition is
evaluated, that trigger will contain a list of variable bindings that contains the name and value of
each of these attributes. If that trigger causes an alarm transition that has associated with it a Log to
File action, these names and values will be written to a log file. That log file can then be used as
input to a reporting tool.

Example 3

if ((delta(ifEntry.ifInErrors) + delta(ifEntry.ifInDiscards) +
delta(ifEntry.ifOutErrors) + delta(ifEntry.ifOutDiscards) - 0.05 *
(delta(ifEntry.ifInErrors) + delta(ifEntry.ifInDiscards) +
delta(ifEntry.ifOutErrors) + delta(ifEntry.ifOutDiscards) +
delta(ifEntry.ifInUcastPkts)+ delta(ifEntry.ifInNUcastPkts) +
delta(ifEntry.ifOutUcastPkts) + delta(ifEntry.ifOutNUcastPkts))
> 0) == 1) {

FireTrigger(“highErrorRate”);
}

This poll condition is true if the percentage of discarded packets on an interface is greater than five
percent during a given polling interval. This is a good example of how to use the delta function.
Designing and Managing Behavior Models 197Version 5.1

Using Polls9
Example 4

if (ifEntry.ifType in (37)) {
FireTrigger(“typeATM”);

}

This poll condition evaluates to true if an interface’s ifType attribute equals 37. In other words, the
condition is true if the interface is an ATM interface. Obviously, this type of poll condition is useful
for classifying interfaces.

Example 5

if (((delta(ifEntry.ifInOctets) + delta(ifEntry.ifOutOctets) -
0.00125 * elapsed * ifEntry.ifSpeed > 0) &&
(ifEntry.ifType in (6,7,8,9,11,12,13,15,26,27))) == 1 or
((delta(ifEntry.ifInOctets) + delta(ifEntry.ifOutOctets) -
0.09375 * elapsed * ifEntry.ifSpeed > 0) &&
!(ifEntry.ifType in (6,7,8,9,11,12,13,15,24,26,27))) == 1) {

FireTrigger(“highLoad”);
}

This poll condition uses the delta, elapsed, and in functions. It determines whether, during the last
poll interval, the traffic on an interface on a broadcast network was greater than 1 percent or
whether the traffic on an interface on a point-to-point network was greater than 75 percent.
Designing and Managing Behavior Models Version 5.1198

Documenting a Poll 9
Documenting a Poll

This section explains how to add documentation (notes) to a poll and what should be covered in
that documentation.

 How to Create Notes for a Poll on page 199

 What to Include in Notes for a Poll on page 201

How to Create Notes for a Poll

You can add notes to a poll by following the procedure outlined in this subsection.

TO ADD NOTES TO A POLL

2. Select the poll you want to add a note to from the list.

3. Make sure that your poll is not enabled.

4. Select the Open button.

The Poll Definition window is displayed.

1. From the client’s Admin menu, choose Poll List.

NerveCenter displays the Poll List window.
Designing and Managing Behavior Models 199Version 5.1

Using Polls9
5. In the Poll Definition window select the Notes button.

The Poll Notes and Associations dialog is displayed.
Designing and Managing Behavior Models Version 5.1200

Documenting a Poll 9
6. Enter your documentation for the poll by typing in this dialog. See the section What to
Include in Notes for a Poll on page 201 for information on what type of information you
should enter here.

7. Select the OK button at the bottom of the Poll Notes and Associations dialog.

The Poll Notes and Associations dialog is dismissed.

8. Select the Save button in the Poll Definition window.

Your notes are saved to the NerveCenter database. They can now be read by anyone who
opens the definition for your alarm and selects the Notes button.

What to Include in Notes for a Poll

The top pane of the Notes and Associations dialog box contains read-only information about the
poll. This data is retrieved from the NerveCenter database and, therefore, may change from time to
time when the poll’s definition is modified in the database.

This information includes:

 Triggers that are fired by the poll.

 Which alarms are transitioned by these triggers.

 What other NerveCenter objects fire the same triggers.

The bottom pane contains a general description of the poll and any useful information. Users with
administrator rights can add or edit this field when creating or customizing polls. Comments should
include anything other users might find helpful to know about NerveCenter polls. Following are
some suggestions:

 Purpose of the poll

 Associated alarms

 Description of the poll condition

 The poll’s property

For example, let’s consider the poll definition shown in Figure 9-3.
Designing and Managing Behavior Models 201Version 5.1

Using Polls9
FIGURE 9-3. CsCpuBusy Poll
The notes for this poll should look something like this:

Purpose: Detects a busy CPU on a Cisco device
Related alarms: CsCpuUtilization. This alarm tracks CPU utilization on a
Cisco device and characterizes it as normal, high, or very high. This
poll’s trigger, CsCpuBusy, causes a transition from Ground to High.
Poll Condition: If the value of lsystem.avgBusy5 is between 76 and 90, the
poll fires its true trigger. The variable avgBusy5 contains an average
percentage of CPU utilization. This average is a five-minute exponentially
decayed moving average.
Property: lsystem
Designing and Managing Behavior Models Version 5.1202

Enabling a Poll 9
Enabling a Poll

For a poll to become functional, several conditions must be met:

 The poll must be enabled.

 The poll’s property must be in the property group associated with one or more nodes, and if
those nodes are suppressed, the poll must not be suppressible.

 There must be an enabled alarm with a pending state transition that can be affected by the
poll.

This section explains how to enable a poll.

TO ENABLE A POLL

2. Select the poll you want to enable from the list.

The Open button becomes enabled.

3. Select the Open button.

The Poll Definition window is displayed and shows the definition of the poll you selected.

1. From the client’s Admin menu, choose Poll List.

NerveCenter displays the Poll List window.
Designing and Managing Behavior Models 203Version 5.1

Using Polls9
4. Select the On radio button in the Enabled frame.

5. Select the Save button.

The poll is now enabled.

TIP

You can also enable a poll by selecting the poll in the Poll List window, pressing the
right mouse button while your cursor is over the entry for the poll, and choosing On
from the popup menu.
Designing and Managing Behavior Models Version 5.1204

10
Designing and Managing Behavior ModelsUsing Trap Masks
Trap masks give you the ability to screen SNMP traps sent by managed nodes and received by
NerveCenter for traps of interest. This chapter explains in detail how to define and use trap masks.
Refer to the following sections:

Section Description

About Trap Masks on page 206 Overviews the role trap masks play in behavior models.

How NerveCenter Decodes
SNMPv2c/v3 Traps on page 207

Describes the mechanics of how NerveCenter decodes v2c/v3 SNMP
traps.

How NerveCenter Decodes ICMP
Events on page 208

Describes how NerveCenter decodes ICMP events.

Listing Trap Masks on page 208 Explains how to display a list of the trap masks currently defined in
the NerveCenter database.

Defining a Trap Mask on page
211

Explains how to create a new trap mask.

Writing a Trigger Function on
page 216

Explains how write a trap-mask trigger function, a Perl script that
fires triggers conditionally, based on the contents of a trap’s variable
bindings or some other information in the trap.

Documenting a Trap Mask on
page 224

Explains how to write notes (documentation) for a trap mask.

Enabling a Trap Mask on page
229

Explains how to turn a trap mask on and off.
Designing and Managing Behavior Models 205Version 5.1

Using Trap Masks10
About Trap Masks

Figure 10-1 depicts the role that a trap mask plays in a behavior model.

FIGURE 10-1. Role of a Trap Mask in a Behavior Model
Note that a trap mask is like a poll in that it is tied to one or more alarms by the triggers it can fire.
If there are no pending alarm transitions that the mask can affect, the mask is disabled in the sense
that it will not be applied to any incoming SNMP traps.

Assuming that the mask can affect an alarm transition, the mask is applied to SNMP traps as they
arrive and determines whether it should fire a trigger in response to the trap. A mask can fire a
trigger in one of two ways:

 A trap mask can fire a simple trigger. A mask designed to fire this type of trigger looks only
at the Enterprise, Generic trap, and Specific trap fields in a trap’s Protocol Data Unit (PDU).
If these fields meet predefined conditions, the mask fires a trigger. All the triggers that this
mask ever fires will have the same name.

 A mask can also fire a trigger from a trigger function by calling the FireTrigger() function.
This type of mask looks at the fields mentioned above to determine whether it should call its
trigger function. If called, this trigger function generally looks at the trap’s variable bindings
and may fire one of several triggers depending on the contents of the variable bindings.

If a mask fires a trigger, that trigger interacts with the alarm system just as a trigger fired by a poll
does. If the necessary attributes of the trigger match the corresponding attributes of a pending alarm
transition, a state transition occurs.

Nodes

SNMP trap

Mask

Behavior model

Trigger

Alarm
Designing and Managing Behavior Models Version 5.1206

How NerveCenter Decodes SNMPv2c/v3 Traps 10
How NerveCenter Decodes SNMPv2c/v3 Traps

Because SNMPv2c/v3 traps use a different architecture that extends security and administration,
the mechanics of how NerveCenter receives an SNMPv2c/v3 trap is different than how it receives
an SNMPv1 trap.

When an SNMPv3 trap is received by the NerveCenter Server, it attempts to decode the trap. If the
SNMP engine sending the trap is not registered, then NerveCenter installs the engine.

If the user name that is listed in the trap’s header does not match NCUser, NerveCenter outputs a
‘Configuration Mismatch’ error in the V3 Operation Error Status field of the Node Definition
window (SNMP page) and stops attempting to decode the trap.

Next, if the user name matches and the security level is other than NoAuthNoPriv, NerveCenter
tries to decode the trap with an MD5 authority protocol and a DES privacy protocol. Should
decoding fail, NerveCenter uses the SHA authority protocol. When this fails, NerveCenter outputs
a ‘Configuration Mismatch’ error and stops attempting to decode the trap.

Finally, if the authorization/privacy portion of the trap decode is successful, then NerveCenter
checks for the v3 trap’s context. If the context fails, NerveCenter outputs a ‘Configuration
Mismatch’ error and stops attempting to decode the trap.

FIGURE 10-2. V3 Operation Error Status Field of the SNMP Tab
For more information about SNMPv3 in NerveCenter, see Chapter 6, Configuring SNMP Settings
for Nodes.
Designing and Managing Behavior Models 207Version 5.1

Using Trap Masks10
How NerveCenter Decodes ICMP Events

When ICMP event processing is enabled, each ICMP message received is transposed to an
SNMPv1 trap and made available for processing. Such traps are built with a defined set of
attributes, and the varbinds are prepared using the attributes of the nl-ping base object. This trap, nl-
icmp-event, is defined in the NETLABS-PING-MIB file (nl-ping.asn1).

nl-icmp-event TRAP-TYPE
ENTERPRISE openservice-- “1.3.6.1.4.1.78
VARIABLES { nl-ping-response, nl-ping-uctype, nl-ping-uccode,

nl-ping-roundtrip, nl-ping-senderip, nl-ping-originip }
DESCRIPTION “ICMP event parameters formatted as SNMPv1 Trap”
::= 1000

The definition of nl-icmp-event can be used to construct a trap mask, as per any other defined
SNMP notification. Handling and processing proceeds identically to the manner given for SNMP
Trap events.

NOTENOTENOTENOTE

A recommended trap mask definition for handling nl-icmp-event trap occurrences
can be found in the importable model ICMP-Event-Processing. This model loads
the NC-ICMP-Event trap mask as well as a sample alarm, NC-PingMonitor.

Listing Trap Masks

This section explains how to display a list of the trap masks currently defined in the NerveCenter
database. The section also explains how to view the definition of a particular trap mask.

For information on creating a new trap mask, see Defining a Trap Mask on page 211.

TO DISPLAY A LIST OF TRAP MASKS AND THEN DISPLAY A PARTICULAR MASK’S DEFINITION

1. From the client’s Admin menu, choose Mask List.

The Mask List window is displayed.
Designing and Managing Behavior Models Version 5.1208

Listing Trap Masks 10
This window lists all NerveCenter masks and provides a brief definition of each. For each
mask, the window specifies a name and the following information:

 Whether the mask is currently enabled

 The generic trap the mask is looking for

 The enterprise from which the trap must come before the mask will fire a trigger

 The name of the mask’s simple trigger or an indication that the mask uses a trigger
function

2. Select a mask from the mask list.

3. Select the Open button

NerveCenter displays the Mask Definition window.
Designing and Managing Behavior Models 209Version 5.1

Using Trap Masks10
The mask defined in this figure is named LinkDown. It is looking for a generic trap 2 from
any managed node and will fire the simple trigger linkDown if it finds one.
Designing and Managing Behavior Models Version 5.1210

Defining a Trap Mask 10
Defining a Trap Mask

This section outlines the procedure for creating a trap mask.

TO DEFINE A NEW TRAP MASK

2. Select the New button.

The Mask Definition window appears.

3. In the Name text field, type a unique name for the trap mask.

1. From the client’s Admin menu, choose Mask List.

The Mask List window is displayed.
Designing and Managing Behavior Models 211Version 5.1

Using Trap Masks10
NOTENOTENOTENOTE

The maximum length for trap mask names is 255 characters.

TIP

A trap mask name should describe the type of trap the mask is looking for, for
example, “ColdStart.”

4. From the Generic list box, select a generic trap type.

Before a trap mask can fire a trigger, the value of this field must match the value of a trap’s
Generic trap field, which may contain any of the enumeration constants shown in the
following table:

Constant Meaning

coldStart (0) Signifies that the sending protocol entity is re-initializing itself such that the
agent’s configuration or the protocol entity implementation must be altered.

warmStart (1) Signifies that the sending protocol entity is re-initializing itself such that neither
the agent configuration nor the protocol entity implementation is altered.

linkDown (2) Signifies that the sending protocol entity recognizes a failure in one of the
communication links represented in the agent’s configuration.

The trap PDU of type linkDown contains as the first element of its variable
bindings the name and value of the ifIndex instance for the affected interface.

linkUp (3) Signifies that the sending protocol entity recognizes that one of the
communication links represented in the agent’s configuration has come up.

The trap PDU of type linkUp contains as the first element of its variable
bindings the name and value of the ifIndex instance for the affected interface.

authenticationFailure (4) Signifies that the sending protocol entity is the addressee of a protocol message
that is not properly authenticated.

egpNeighborLoss (5) Signifies that an EGP neighbor for whom the sending protocol entity was an
EGP peer has been marked down and that the peer relationship no longer exists.

The trap PDU of type egpNeighborLoss contains as the first element of its
variable bindings the name and value of the egpNeighAddr instance for the
affected neighbor.

enterpriseSpecific (6) Signifies that the sending protocol entity recognizes that an enterprise-specific
event has occurred. The Specific trap field identifies the particular trap that
occurred.
Designing and Managing Behavior Models Version 5.1212

Defining a Trap Mask 10
NOTE

The above definitions are taken from RFC1157.

If you select EntSpecific = 6 (an enterprise specific trap), the Specific text field is enabled,
and you must enter a vendor-specific trap number in that field.

If you select AllTraps = -1, the mask will disregard the contents of each trap’s Generic trap
field when looking for traps of interest. That is, any generic trap type in the trap meets the
trap mask’s requirement.

5. If you want the trap mask to examine the contents of a trap’s Enterprise field, follow these
directions:

a. Select the Filter on Enterprise scope checkbox.

Controls in the Enterprise group box become enabled.

b. Select one of the following radio buttons:

 From—specify that the trap’s Enterprise field must contain an OID that either
matches the OID in your mask’s Enterprise field, or is subordinate to it.

 From Only—indicate that the trap’s enterprise must match the mask’s enterprise
exactly.

c. In the Enterprise text field, enter an OID, or a name that maps to an OID.

6. If the trap NerveCenter will process is an SNMP version 2c or 3 trap, select the v2C/v3 radio
button.

7. For SNMPv1 traps, if your mask’s generic trap type is 6 (enterprise specific), enter a
vendor-specific trap number in the Specific text field.

Before the mask can fire a trigger, the number you enter in the Specific field must match the
value of a trap’s Specific trap field.

TIP

To determine what enterprise specific traps an SNMP agent can produce,
consult the vendor’s ASN.1 files or other documentation.
Designing and Managing Behavior Models 213Version 5.1

Using Trap Masks10
8. For SNMPv2c or v3 traps, enter the trap OID.

You can select one of the OID values, choose All Traps, or type the value for a particular
enterprise trap OID. SNMPv3 trap OID values map to generic traps as shown below.

9. Select one of the Trigger Type radio buttons:

 Simple Trigger—if the values in your mask’s Generic, Enterprise, and Specific fields
are sufficient to define the trap you are looking for.

 Trigger Function—if you need to specify additional information: for example, the
values of variable bindings.

If you select the Simple Trigger radio button, the Simple Trigger combo box is enabled.

10. In step 9, if you selected:

 Simple Trigger—enter a trigger name in the Simple Trigger field. You can either type
in the name of a new trigger or choose a trigger from the list of existing triggers.

 Trigger Function—perform the following:

a. Select the Trigger function tab, and enter a trigger function on the Trigger Function
page.

This trigger function is a Perl subroutine that you can use to check the values of variable
bindings or examine other pertinent information and to fire appropriate triggers. For
complete information on writing trigger functions, see the section Writing a Trigger
Function on page 216.

b. If you want to use the shared Perl interpreter, select the Execute Perl in Global Space
checkbox.

Trap Generic Value SnmpTrapOID.0

coldStart 0 1.3.6.1.6.3.1.1.5.1

warmStart 1 1.3.6.1.6.3.1.1.5.2

LinkDown 2 1.3.6.1.6.3.1.1.5.3

linkUp 3 1.3.6.1.6.3.1.1.5.4

AuthFail 4 1.3.6.1.6.3.1.1.5.5

EgpNeighLoss 5 1.3.6.1.6.3.1.1.5.6
Designing and Managing Behavior Models Version 5.1214

Defining a Trap Mask 10
NOTE

If you select Execute Perl in Global Space, the poll condition executes in a
shared Perl interpreter. You can use Global variables in your poll condition
to share information between other Perl routines such as trigger functions
or Perl subroutines, however, Perl intensive poll conditions may impede
NerveCenter’s performance.
If you do not select Execute Perl in Global Space, the poll condition
executes in a Perl interpreter dedicated to poll conditions. This will
improve NerveCenter’s performance, however you cannot use global
variables in your poll condition to share information between other Perl
routines such as trigger functions or Perl subroutines.
For more information about the various Perl interpreters, see NerveCenter
and Perl on page 56.

11. Select the Save button at the bottom of the Mask Definition window to save your mask.

TIP

Remember that you must enable the trap mask (by setting Enabled to On)
before using it in a behavior model. While the mask is disabled, it is not
used in the examination of any incoming traps. This means that any
behavior models that use this trap mask as the sole source of triggers are
also disabled.
Designing and Managing Behavior Models 215Version 5.1

Using Trap Masks10
Writing a Trigger Function

If a mask cannot describe the type of trap it is looking for by specifying the Generic trap contents,
Enterprise, and Specific trap fields, it must use a trigger function. This Perl function can include
additional conditions that the trap must meet, and it can fire different triggers as appropriate.

Most trigger functions are very similar in structure. They follow this pattern:

if (condition1) {
FireTrigger(arguments);

}
elsif (condition2) {

FireTrigger(arguments);
}
else {

FireTrigger(arguments);
}

The conditions, which can be arbitrarily complex, generally test the contents of a trap’s variable
bindings. However, they can test other information as well; for example, a condition can determine
whether a trap came from a particular node. The FireTrigger() function fires a trigger, whose name,
subobject, and node you can control.

NOTENOTENOTENOTE

The maximum length for trigger names is 255 characters.

To assist you in writing trigger functions, NerveCenter provides:

 A set of functions that enable you to examine the contents of a trap’s variable bindings and
to fire triggers, among other things

 A set of predefined variables that give you access to information about the trap you’re
examining, such as the community string in the trap’s SNMP message

 A pop-up help menu in the trigger function editing area that lists all the NerveCenter
functions and variables available for use in a trigger function.

For further information about these predefined functions and variables and the pop-up help menu,
see the following sections:

 Functions for Use in Trigger Functions on page 217

 Variables for Use in Trigger Functions on page 221

 Using the Pop-Up Menu for Perl on page 194

Also, see the section Examples of Trigger Functions on page 221. This section presents several
sample trigger functions that show a number of the functions and variables being used in context.
Designing and Managing Behavior Models Version 5.1216

Writing a Trigger Function 10
Functions for Use in Trigger Functions

NerveCenter provides a number of functions (actually Perl subroutines) that facilitate the writing of
trigger functions. The list below indicates what types of functions are available and where you can
find detailed information about each function:

 Variable-binding functions. These functions enable you to determine the number of
variable bindings in a trap’s variable-binding list and to obtain information about each
variable binding. For instance, you can retrieve the subobject and attribute associated with a
variable-binding object and the value of a variable-binding object.

For reference information about these functions, see the section Variable-Binding Functions
on page 218.

 AddNode(). This function enables you to add a node to the NerveCenter managed node list
from a NerveCenter Perl expression.

For reference information about this function, see the section AddNode() Function on page
220.

 String-matching functions. These functions enable you to determine whether a string
contains another string or a particular word. The functions are useful in conditions that test
the value of a variable binding for a substring.

For reference information about these functions, see the section String-Matching Functions
on page 193.

 DefineTrigger(). This function enables you to create triggers which you can assign to
variables and fire using FireTrigger() in NerveCenter Perl expressions.

For reference information about this function, see the section DefineTrigger() Function on
page 187.

 FireTrigger(). This function enables you to fire a trigger from your trigger function. You
can specify the name, subobject, and node attributes of the trigger.

For reference information about this function, see the section FireTrigger() Function on
page 189.

 AssignPropertyGroup(). This function enables you to assign the node that sent a trap to a
property group.

For reference information about this function, see the section AssignPropertyGroup()
Function on page 187.
Designing and Managing Behavior Models 217Version 5.1

Using Trap Masks10
 NC::AlarmCounters. This function enables you to do any of the following: increment
alarm counters by a number other than one, decrement alarm counters by a number other
than one, create alarm counters, set alarm counters, and retrieve alarm counters. For
reference information about this function, see the section NC::AlarmCounters on page 191.

NC::AlarmCounters are independent of and not related to the alarm action Alarm Counter.
See Alarm Counter on page 287 for details.

 in(). This function enables you to determine whether one scalar value is in a set of scalar
values.

For reference information about this function, see the section in() Function on page 191.

Variable-Binding Functions

Before looking at the variable-binding functions, let’s make sure that we’re using the same
terminology.

When a trap arrives, NerveCenter looks at the trap’s variable bindings and, for each variable
binding, it sees an object and a value.

FIGURE 10-3. Variable Binding
In this case, the object is the OID encoding of the object type (sysDescr) plus an instance, and the
value is a string that describes the system.

When NerveCenter sees this variable binding, it stores the following information. The portion of
the OID that corresponds to the system group is stored as the binding’s base object, and the
instance (0) is stored as the binding’s instance. When concatenated, the base object and the instance
form what NerveCenter calls a subobject.

FIGURE 10-4. Base Objects, Instances, and Subobjects

1.3.6.1.2.1.1.1.0

Object Value

“Windows Workstation”

Object Value

1.3.6.1.2.1.1.1.0 “Windows Workstation”

Base object + Instance = Subobject (system.0)
Designing and Managing Behavior Models Version 5.1218

Writing a Trigger Function 10
The variable sysDescr is stored as the binding’s attribute.

FIGURE 10-5. Attributes
Finally, the value “Windows Workstation” is stored as the binding’s value.

The variable-binding functions give you access to a binding’s subobject, attribute, and value.
There’s also a function that returns the number of variable bindings in a trap or trigger.

Each of the variable-binding functions is explained below:

VbAttribute()

Syntax: VbAttribute(index)

Description: Returns the attribute from the variable binding with an index of index. The first
variable binding has an index of 0.

VbNum()

Syntax: VbNum()

Description: Returns the number of variable bindings in the trap’s variable-binding list.

VbObject()

Syntax: VbObject(index)

Description: Returns the subobject from the variable binding with an index of index. The
first variable binding has an index of 0.

VbValue()

Syntax: VbValue(index)

Description: Returns the value from the variable binding with an index of index. The first
variable binding has an index of 0.

Object Value

1.3.6.1.2.1.1.1.0 “Windows Workstation”

Attribute (sysDescr)
Designing and Managing Behavior Models 219Version 5.1

Using Trap Masks10
AddNode() Function

The AddNode() function adds a node to the NerveCenter managed node list. This function can be
called from a poll condition, trap mask trigger function, or a Perl Subroutine alarm action.

Syntax: AddNode(“node name”);

Arguments: node name is the IP address of the node to add to the managed node list and
must be a valid IP address enclosed in quotes, for example, “123.123.123.123”.

Description: Adds a node to the NerveCenter managed node list, with the following
attributes:

 Node name must be a valid IP address enclosed in quotes (for example “192.168.1.1”).

 The address assigned to the node will be the address specified for the node name.

 The node property group will be assigned based on the enterprise ID indicated by the
trap.

 The node community string will be assigned based on the community indicated by the
trap.

 The node will be marked as 'managed' and 'not suppressed'

 The SNMP version of the node will be assigned based on the version of the trap
received. A version 1 trap will create a version 1 node, a V2C trap will create a V2C
node.

 No action is taken if a node of the same name already exists in the node list. No
validation that the node name doesn't already exist is performed at compile time.
Designing and Managing Behavior Models Version 5.1220

Writing a Trigger Function 10
Variables for Use in Trigger Functions

NerveCenter defines several variables for use in trap mask trigger functions. For the most part,
these variables contains the values of the fields in a trap’s Protocol Data Unit (PDU), with the
exception of the variable bindings.

The complete list of variables that you can use in a trap mask trigger function is shown in
Table 10-1:

Examples of Trigger Functions

This section presents several trigger functions and explains what the functions do.

Example 1

if ($NodeName ne “troublemaker”) {
FireTrigger(“gotIt”);

}

If the node that sent the trap is any node except troublemaker, issue a trigger named gotIt. This
example would be useful if you had a device sending inappropriate traps. The trigger function
would allow you to pay attention to a trap only when it came from other, more dependable, devices.

TABLE 10-1. Variables Used in Trigger Functions

Variable Description

$NodeName The name of the node that was the source of the trap

$TrapPduAgentAddress The IP address of the SNMP agent that sent the trap

$TrapPduCommunity The community name included in the SNMP message

$TrapPduEnterprise An OID representing the object that generated the trap

$TrapPduGenericNumber The generic trap type

$TrapPduSpecificNumber A specific trap code

$TrapPduTime The time, in hundredths of a second, between the last initialization of
the network entity and the generation of the trap
Designing and Managing Behavior Models 221Version 5.1

Using Trap Masks10
Example 2

if (system.sysContact eq “Tom Jones”) {
FireTrigger(“jonesJob”);

} else {
FireTrigger(“otherAdmin”);

}

If the first variable binding containing the sysContact attribute has the value “Tom Jones,” a
jonesJob trigger is issued. Otherwise, an otherAdmin trigger is issued.

Example 3

if (snmp.snmpInBadCommunityNames > 25) {
FireTrigger(“tooManyIntrusions”, VbObject(2));

}

If the snmpInBadCommunityNames attribute is found in one of the variable bindings, its value is
checked. If there were at least 26 attempts to communicate with the trap’s node without the proper
community string before the trap was issued, a tooManyIntrusions trigger is issued. The subobject
assigned to the trigger is the subobject associated with the third variable binding.

This would be an effective way to ignore authorization traps until they became significant.

Example 4

if (ContainsString(VbValue(2)), “crucial message”) {
FireTrigger(“trig”);

}

If the third variable binding, assumed here to be defined as a DisplayString, contains the string
“crucial message,” the trigger trig is generated. This type of trigger function is useful when text
messages are sent to NerveCenter via traps.
Designing and Managing Behavior Models Version 5.1222

Writing a Trigger Function 10
Example 5

if ((VbNum() == 5) && (.8 * VbValue(3) < VbValue(4))) {
FireTrigger(“diskSpaceLow”, VbObject(1));

} elsif ((VbNum() == 4) && (VbValue(3) > 400000000)) {
FireTrigger(“diskSpaceLow”, VbObject(1));

}

This example assumes that there is an enterprise-specific trap that contains information about disk
space use. An older version of the vendor’s agent sent a trap with four variable bindings, the last
variable binding containing the amount of disk space used (VbValue(3) > 400000000)). A newer
version of the agent sends traps with five variable bindings: the last binding contains disk space
used, and the next to last contains the disk space capacity. If a trap arrives from a newer agent, you
want to fire a trigger only if available disk space is less than 20 percent. This trigger function not
only enables you to ignore noncritical situations, but handles all releases of your vendor’s device.

Example 6

if (VbValue(0) == 1) {
FireTrigger(“thisProblem”, VbObject(2), VbValue(1));

} elsif (VbValue(0) == 2) {
FireTrigger(“thatProblem”, VbObject(2), VbValue(1));

} elsif (VbValue(0) == 3) {
FireTrigger(“otherProblem”, VbObject(2), VbValue(1));

} else {
FireTrigger(“huhProblem”, VbObject(2), VbValue(1));

}

This example is illustrates how to deal with a class of traps sent by some vendors in which the
trap’s source and specific number are constant. These vendor’s agents insert a problem identifier
and the source of the problem into the trap’s variable bindings. This example assumes that the
problem identifier is in the first variable binding, the source node is in the second, and any other
associated data follows in successive positions.
Designing and Managing Behavior Models 223Version 5.1

Using Trap Masks10
Documenting a Trap Mask

This section explains how to add documentation (notes) to a trap mask and what should be covered
in that documentation.

 How to Create Notes for a Trap Mask on page 224

 What to Include in Notes for a Trap Mask on page 227

How to Create Notes for a Trap Mask

You can add notes to a trap mask by following the procedure outlined in this subsection.

TO ADD NOTES TO A TRAP MASK

1. From the client’s Admin menu, choose Mask List.

NerveCenter displays the Mask List window.
Designing and Managing Behavior Models Version 5.1224

Documenting a Trap Mask 10
2. Select the Open button.

The Mask Definition window appears.

3. Make sure that your mask is not enabled.

4. In the Mask Definition window, select the Notes button.

The Mask Notes window is displayed.
Designing and Managing Behavior Models 225Version 5.1

Using Trap Masks10
5. Enter your documentation for the trap mask by typing in this window. See the section What
to Include in Notes for a Trap Mask on page 227 for information on what type of
information you should enter here.

6. Select the OK button at the bottom of the Mask Notes window.

The Mask Notes window is dismissed.

7. Select the Save button in the Mask Definition window.

Your notes are saved to the NerveCenter database. They can now be read by anyone who
opens the definition for your mask and selects the Notes button.
Designing and Managing Behavior Models Version 5.1226

Documenting a Trap Mask 10
What to Include in Notes for a Trap Mask

The top pane of the Notes and Associations dialog box contains read-only information about the
mask. This data is retrieved from the NerveCenter database and, therefore, will change when the
mask’s definition is modified in the database.

This information includes:

 Triggers that are fired by the mask.

 Which alarms are transitioned by these triggers.

 What other NerveCenter objects fire the same triggers.

The bottom pane contains a general description of the mask and any useful information. Users with
administrator rights can add or edit this field when creating or customizing masks. Comments
should include anything other users might find helpful to know about NerveCenter masks.
Following are some suggestions:

 Provide a brief description of the mask, including its purpose and function.

 List vendor-specific information, if applicable.

 State the conditions under which the trigger will fire an alarm instance. If a trigger function
is defined, provide a brief description of the function.

We recommend that you include the following information in the notes for your trap mask:

 Purpose of the mask

 Associated alarms

 Vendor-specific information (if appropriate)

 Description of the trigger function (if appropriate)

For example, let’s consider the trap mask shown in Figure 10-6 and Figure 10-7.
Designing and Managing Behavior Models 227Version 5.1

Using Trap Masks10
FIGURE 10-6. Basic Definition

FIGURE 10-7. Trigger Function
Designing and Managing Behavior Models Version 5.1228

Enabling a Trap Mask 10
The notes for this trap mask should look something like this:

Purpose: Detects a trap indicating that a Frame Relay virtual circuit has
changed states.
Related alarms: IF-ifFramePVCStatus. This alarm tracks whether the Frame
Relay Permanent Virtual Circuit interface is active or inactive.
Vendor information: The trap of interest has an Enterprise of
1.3.6.1.2.1.10.32 (the Frame Relay group) and a Specific trap number of 1.
The second variable binding contains the value of frCircuitState, which
indicates whether a virtual circuit is invalid (1), active (2), or
inactive (3).
Trigger function: If frCircuitState equals 2, the function fires the
trigger If-FramePVCUp, and if frCircuitState equals 3, it fires If-
FramePVCDown.

Enabling a Trap Mask

For a trap mask to become functional, two conditions must be met:

 The trap mask must be enabled.

 There must be an enabled alarm with a pending state transition that can be affected by the
mask.

This section explains how to enable a trap mask.

TO ENABLE A TRAP MASK

2. Select the mask you want to enable from the list.

The Open button becomes enabled.

1. From the client’s Admin menu, choose Mask List.

The Mask List window is displayed.
Designing and Managing Behavior Models 229Version 5.1

Using Trap Masks10
3. Select the Open button.

The Mask Definition window is displayed and shows the definition of the mask you
selected.

4. Select the On radio button.

5. Select the Save button.

The trap mask is now enabled.

TIP

You can also enable a trap mask by selecting a mask in the Mask List
window, pressing the right mouse button while your cursor is over the
entry for the mask, and choosing On from the popup menu.
Designing and Managing Behavior Models Version 5.1230

11
Designing and Managing Behavior ModelsUsing Other Data Sources
For the most part, NerveCenter behavior models detect network and system conditions by using
polls and trap masks to poll SNMP agents and respond to SNMP traps, respectively. Thus, a
behavior model’s main source of information is devices running SNMP agents. However,
NerveCenter behavior models can obtain data from other sources as well.

For example, a behavior model on one NerveCenter server can receive information from a second
NerveCenter server. The second server uses an Inform alarm action to notify the behavior model on
the first server of a condition it has detected. This Inform action involves sending what appears to
be an SNMP trap to the first server. Actually, the message is not an SNMP trap—it is sent via TCP
rather than UDP—but the behavior model receiving it treats it as if it were a trap.

Finally, NerveCenter behavior models can obtain information about network conditions from
NerveCenter itself. In particular, when NerveCenter sends an SNMP or ICMP message to a device
and the message results in an error (perhaps because the node is unreachable), NerveCenter can
notify a behavior model of this condition. NerveCenter does this by using what are called built-in
triggers, such as NODE_UNREACHABLE, which can cause state transitions in an alarm just as
other triggers do. These triggers are necessary because devices that are down or unreachable cannot
respond normally to NerveCenter polls, or send SNMP traps to NerveCenter.

For further information about these additional sources of input, see the following sections:

Section Description

Built-In Triggers on page 232 Discusses what trigger NerveCenter can fire automatically and how to
use these triggers in behavior models.

Another NerveCenter on page
241

Explains how a behavior model on one NerveCenter server can inform
another server of a condition it has detected.
Designing and Managing Behavior Models 231Version 5.1

Using Other Data Sources11
Built-In Triggers

When NerveCenter requests a poll, the SNMP GetRequest or the ping that the poll initiates is
placed on either NerveCenter’s pending SNMP requests list or pending ICMP requests list.
NerveCenter waits for a reply from the node or the node’s SNMP agent (or from an intervening
router). If the node or its SNMP agent sends a non-error reply, then NerveCenter evaluates the poll
condition and fires the appropriate trigger.

However, if the node or its SNMP agent does not respond or returns an error—depending upon the
circumstances—NerveCenter either retries the request or fires a built-in trigger. Conditions that
cause NerveCenter to fire its built-in triggers can be broken down into five categories:

 SNMP Requests on page 232

 ICMP Requests on page 233

 ICMP Responses on page 233

 Matching Errors with Pending SNMP and Ping Requests on page 235

 Multi-homed Nodes on page 236

NOTENOTENOTENOTE

NerveCenter uses all uppercase letters to designate built-in trigger names.

For particular information about NerveCenter’s built-in triggers, see Built-In Triggers on page 237.
For information about the order in which NerveCenter fires built-in triggers, see Built-in Trigger
Firing Sequence on page 235.

SNMP Requests

NerveCenter retries SNMP requests as many times as configured or until a reply arrives on the
SNMP or ICMP socket that NerveCenter can match to a pending request. (NerveCenter uses the
number of retries and retry interval specified on the SNMP tab in the NerveCenter Administrator.
Refer to Specifying SNMP Poll Intervals for NerveCenter in Managing NerveCenter for details.)

If the reply is an SNMP error, NerveCenter does not retry the request but returns three built-in
triggers with the poll: an ERROR trigger, followed by an SNMP_ERROR trigger, and then the
appropriate SNMP built-in error trigger. (See Built-In Triggers on page 237, for more information.)

If NerveCenter receives no response after the configured number of retries, then NerveCenter fires
two built-in triggers: ERROR, followed by SNMP_TIMEOUT. For more information about the
order in which NerveCenter fires built-in triggers, see Built-in Trigger Firing Sequence on page
235.
Designing and Managing Behavior Models Version 5.1232

Built-In Triggers 11
ICMP Requests

NerveCenter retries ICMP requests as many times as configured or until NerveCenter receives a
good, non-error response that it can match to a pending ICMP request. (NerveCenter uses the
number of retries and retry interval specified on the SNMP tab in the NerveCenter Administrator.
Refer to Specifying SNMP Poll Intervals for NerveCenter in Managing NerveCenter for details.) If
NerveCenter receives no response after the configured number of retries, then NerveCenter fires
two built-in triggers: ERROR, followed by ICMP_TIMEOUT. For more information about the
order in which NerveCenter fires built-in triggers, see Built-in Trigger Firing Sequence on page
235.

After the configured number of retries is exceeded, NerveCenter examines the error list, determines
which of the matching errors occurred most often, and selects the last packet received from that set.
If there is a tie between two or more types of errors, NerveCenter selects the last error packet
received. (NerveCenter does not accumulate timeouts. One or more timeouts is counted as only one
timeout.)

ICMP Responses

Devices on the network, including the intended device of an SNMP or ICMP request, can respond
with an ICMP message. Such messages typically serve to notify of an existing network or
configuration issue which prevents normal passage or processing of the initial request. For
example, a router within the network may respond with an ICMP message that the intended
destination is not reachable per its configuration. Or, a destination host may respond with an ICMP
message that the SNMP Agent is not running.

Error details are stored in the attributes of the nl-ping Base Object that NerveCenter includes with
each instance of ICMP_ERROR that it fires. Using a Perl subroutine or a NerveCenter poll
expression, you can extract this data (Type, Code, Destination Address and Source Address) to
learn more specific information about the ICMP error that occurred.

NerveCenter fires a slightly different sequence of built-in triggers when reporting an ICMP error
response as when reporting the timeout of an ICMP request. For ICMP error responses, such as for
a net, host or port unreachable condition (where the ICMP fields Type=3 and Code=0, 1 or 3). In
this situation, NerveCenter fires an ERROR built-in trigger first, followed by an ICMP_ERROR
trigger, and then finally either a NET_UNREACHABLE, NODE_UNREACHABLE, or
PORT_UNREACHABLE built-in trigger.

If the poll times out, NerveCenter fires two built-in triggers: ERROR, followed by either an
ICMP_TIMEOUT or SNMP_TIMEOUT trigger.
Designing and Managing Behavior Models 233Version 5.1

Using Other Data Sources11
Multiple Errors Examples

For example, you poll a node with addresses A1, A2, A3, A4 and A5 with the number of retries set
to three in the NerveCenter Administrator. The replies are as follows:

Original response = ICMP error E1 from address A1

Response from First retry = ICMP error E1 from address A2

Response from Second retry = no reply within retry interval from address A3

Response from Third retry = ICMP error E2 from address A4

Even though error E2 (third retry) was the last error received, NerveCenter discards it and uses
error E1 to produce a response, because it occurred most often. The actual data packet that
NerveCenter returns with error E1 is from the first retry, because NerveCenter retains only the last
packet for each error code. (The packet from the first retry overwrote the packet from the original
response because their error codes matched.)

In this example if any of the ICMP errors contain values for a net, host, or port unreachable
condition (where the ICMP fields Type = 3 and Code = 0, 1, or 3), NerveCenter fires an ERROR
built-in trigger first, followed by an ICMP_ERROR trigger, and then finally either a
NET_UNREACHABLE, NODE_UNREACHABLE, or PORT_UNREACHABLE built-in
trigger. If error E1 is any other ICMP error, then NerveCenter fires two triggers: first, an ERROR
built-in trigger, followed by an ICMP_ERROR built-in trigger that contains data from the first
retry packet. For more information about the order in which NerveCenter fires built-in triggers, see
Built-in Trigger Firing Sequence on page 235.

Consider a second example in which the replies are as follows:

Original response = ICMP error E1 from address A1

Response from First retry = ICMP error E2 from address A2

Response from Second retry = ICMP error E3 from address A3

Response from Third retry = no reply within retry interval from address A4

NerveCenter uses error E3 to produce a response because it was the last error received, and no error
type occurred more than once. Even though a timeout occurred on the last response, NerveCenter
discards it because an error takes precedence over a timeout.
Designing and Managing Behavior Models Version 5.1234

Built-In Triggers 11
Built-in Trigger Firing Sequence

Table 11-1 shows the order in which NerveCenter fires built-in triggers.

Matching Errors with Pending SNMP and Ping Requests

Each poll packet that NerveCenter sends on a socket includes a unique identifier (the IP field
Sequence Number). When a poll returns ICMP errors within its configured number of retries,
NerveCenter collects the error messages that are returned. Each error message includes the
sequence number as well as the destination address of the associated node. Certain fields in the
ICMP error packet enable NerveCenter to attempt to match SNMP/ICMP error messages with a
poll’s pending SNMP/ping requests as follows:

 NerveCenter compares a reply on the SNMP socket to its list of pending SNMP requests and
attempts to match the reply with the sequence number of an SNMP request. If a match
cannot be found with a pending SNMP request, then NerveCenter discards the reply.

 NerveCenter compares a reply on the ICMP socket to its list of pending ICMP requests and
attempts to match the reply with the sequence number of an ICMP request. Table 11-2
summarizes how NerveCenter attempts to match ICMP replies to ICMP pending requests:

TABLE 11-1. NerveCenter Built-in Trigger Firing Sequence

If the First Trigger Fired is an...
Then the Second Trigger Fired
Can Be an...

And the Third Trigger Fired Can Be
a...

ERROR SNMP_ERROR Specific SNMP built-in trigger

ERROR ICMP_ERROR None or, NET_UNREACHABLE, or
NODE_UNREACHABLE, or
PORT_UNREACHABLE

ERROR SNMP_TIMEOUT None

ERROR ICMP_TIMEOUT None

ERROR CANNOT_SEND None

RESPONSE Specific non-built-in trigger or None None

INFORM_CONNECTION_DOWN None None

INFORM_CONNECTION_UP None None

INFORMS_LOST None None

UNKNOWN_ERROR None None
Designing and Managing Behavior Models 235Version 5.1

Using Other Data Sources11
If NerveCenter cannot match the sequence number of an ICMP reply with any pending ICMP
requests, but NerveCenter recognizes the destination address, the reply is saved because it might be
an error response to an SNMP request for that node; therefore, at regular intervals, NerveCenter
compares the destination address of saved ICMP error replies with pending SNMP requests.
NerveCenter attempts to match each ICMP reply with the destination address of the oldest pending
SNMP request. Only after attempting to match ICMP replies with both pending ICMP and SNMP
requests does NerveCenter finally discard the reply when it finds no matches.

Multi-homed Nodes

Polling multi-homed nodes will cause NerveCenter to rotate through the address list for that node
in the following manner. If the first address returns an ICMP error response, then NerveCenter flags
that address as “down” and will not retry the address until NerveCenter has tried all other addresses
for this node.

Upon each retry of a poll, NerveCenter chooses the next IP address to poll. If a node has more
addresses than the number of allowable retries, then second or subsequent polls of that node will
use the current address if it is “up” or the next un-tried address in the list. If all addresses have been
tried, then the “down” addresses will be used again. For an SNMP error, NerveCenter flags the
address as “up” because NerveCenter did receive a response from the node’s agent.

TABLE 11-2. Matching ICMP Replies with ICMP Requests

Sequence Number Match? Destination
Address In DB?

Action

Yes Yes NerveCenter fires the appropriate built-in
trigger for the poll.

No Yes NerveCenter saves reply to attempt to
match with a pending SNMP request.

No No NerveCenter discards the reply.
Designing and Managing Behavior Models Version 5.1236

Built-In Triggers 11
Built-In Triggers

Table 11-3 lists all the built-in triggers that NerveCenter can fire.

NOTENOTENOTENOTE

NerveCenter uses all uppercase letters to designate built-in trigger names.

TABLE 11-3. Built-In Triggers

Trigger Name Meaning

CANNOT_SEND A local error occurred while NerveCenter was trying to send an SNMP message.

ERROR An SNMP or ICMP request did not result in a valid response. After firing the
ERROR trigger, NerveCenter fires a second trigger that indicates the specific
nature of the error.

ICMP_ERROR Indicates an ICMP error. The ICMP_ERROR trigger contains the ICMP/IP fields
from the error message.

ICMP_TIMEOUT NerveCenter sent an ICMP ping to a node and did not receive a response. This
trigger generally indicates that the node in question is down.

NerveCenter uses the number of retries and retry interval specified on the SNMP
tab in the Administrator. Refer to Specifying SNMP Poll Intervals for NerveCenter
in Managing NerveCenter for details.

ICMP_UNKNOWN_ERROR NerveCenter sent an ICMP ping to a node and received an invalid response. This
trigger is no longer used except for the purpose of backward compatibility with
version 3.5. We recommend you use it sparingly in the current version.

INFORM_CONNECTION_DOWN A NerveCenter Inform host connection with OVPA or paserver is down.

INFORM_CONNECTION_UP A NerveCenter Inform host connection with OVPA or paserver was down but is
now back up.

INFORMS_LOST The number of NerveCenter Informs that were unacknowledged and lost, usually
while the inform host connection with OVPA was down.

NET_UNREACHABLE Indicates that the IP routing layer could not find a route to the network containing
the polled node, usually because at least one router was down. This trigger
indicates nothing about the status of the node.

This trigger can be issued only if you have a router between the workstation
running NerveCenter and the polled node.

NODE_UNREACHABLE Indicates that the IP routing layer could not find a route to the destination node.
This trigger indicates nothing about the status of the node.

This trigger can be issued only if you have a router between the workstation
running NerveCenter and the polled node.
Designing and Managing Behavior Models 237Version 5.1

Using Other Data Sources11
PORT_UNREACHABLE NerveCenter sent a message to a node, and there was no response from the port to
which the message was sent.

RESPONSE NerveCenter sent an SNMP message and received a valid response from the agent
on the destination node.

SNMP_AUTHORIZATIONERR An SNMPv3 authorization error caused because there is a mismatch between one
or all of the rows of vacmAccessTable and the packet. Reasons include: context
name mismatch (vacmAccessContextPrefix); security model is not used
(vacmAccessSecurityModel); incorrect security level
(vacmAccessSecurityLevel); unauthorized to read the MIB view for the SNMP
context (vacmAccessReadViewName); unauthorized to write to the MIB view
for the SNMP context (vacmAccessWriteViewName); unauthorized to notify the
MIB view for the SNMP context (vacmAccessNotifyViewName)

SNMP_BADVALUE NerveCenter tried to set the value of an attribute in a MIB, but the value it
supplied was inappropriate for the attribute. The value may have been of the
wrong type, of the wrong length, or invalid for some other reason.

SNMP_DECRYPTION_ERROR The SNMPv3 engine dropped packets because they could not be decrypted. The
32-bit counter, usmStatsDecryptionErrors, is greater than zero.

SNMP_ENDOFTABLE NerveCenter fires SNMP_ENDOFTABLE when it finds no more rows while
performing an SNMP walk of a MIB table. For example, you could walk IfTable
to determine the number of DSO interfaces a node contains.

SNMP_GENERR A GetRequest, GetNextRequest, or SetRequest failed for some unknown reason
(general error).

SNMP_NOSUCHNAME NerveCenter sent to an SNMP agent a GetRequest, a GetNextRequest, or a
SetRequest, and the agent that was contacted was unable to perform the requested
operation because:

 The name of the attribute to be read did not match exactly the name of an
attribute available for get operations in the relevant MIB view

 The name of the attribute to be read did not lexicographically precede the
name of an attribute available for get operations in the relevant MIB view

 The attribute to be set was not available for set operations in the relevant MIB
view

SNMP_NOT_IN_TIME_WINDOW The SNMPv3 engine dropped packets because the boots and timeticks sent in the
PDU appeared outside of the authoritative SNMP agent's time window. The 32-bit
counter, usmStatsNotInTimeWindows, is greater than zero.

TABLE 11-3. Built-In Triggers (Continued)

Trigger Name Meaning
Designing and Managing Behavior Models Version 5.1238

Built-In Triggers 11
One additional trigger, USER_RESET, is not available from the list of built-in triggers in
NerveCenter. NerveCenter fires USER_RESET to trigger another state for an existing alarm
instance when you reset the alarm instance using the right-click pop-up menu in the Alarm
Summary or Aggregate Alarm Summary windows.

SNMP_READONLY The error readOnly is not defined in RFC 1157. However, some vendors’ agents
do use this error-status code. As the name implies, the error usually indicates that
an agent has received a SetRequest (from NerveCenter, in this case) for an
attribute whose access type is read only.

SNMP_TIMEOUT NerveCenter sent an SNMP message to an agent and did not receive a response.
This trigger indicates either that a node’s SNMP agent is down or that the node
itself is down.

NerveCenter uses the number of retries and retry interval specified on the SNMP
tab in the Administrator. Refer to Specifying SNMP Poll Intervals for NerveCenter
in Managing NerveCenter for details.

SNMP_TOOBIG An SNMP agent did not respond normally to a GetRequest, GetNextRequest, or
SetRequest from NerveCenter because the size of the required GetResponse
would have exceeded a local limitation.

SNMP_UNAVAILABLE_CONTEXT The SNMPv3 engine dropped packets because the context contained in the
message was unavailable. The 32-bit counter, snmpUnavailableContexts, is
greater than zero.

SNMP_UNKNOWN_CONTEXT The SNMPv3 engine dropped packets because the context contained in the
message was unknown. The 32-bit counter, snmpUnknownContexts, is greater
than zero.

SNMP_UNKNOWN_ENGINEID The SNMPv3 engine dropped packets because they referenced an snmpEngineID
that was not known to the SNMPv3 engine. The 32-bit counter,
usmStatsUnknownEngineIDs, is greater than zero.

SNMP_UNKNOWN_USERNAME The SNMPv3 engine dropped packets because they referenced a user that was not
known to the SNMPv3 engine. The 32-bit counter,
usmStatsUnknownUserNames, is greater than zero.

SNMP_UNSUPPORTED_SEC_LEVE
L

The SNMPv3 engine dropped packets because the requested security level is
unknown or unavailable. The 32-bit counter, usmStatsUnsupportedSecLevels, is
greater than zero.

SNMP_WRONG_DIGEST The SNMPv3 engine dropped packets because they didn't contain the expected
digest value. The 32-bit counter, usmStatsWrongDigests, is greater than zero.

UNKNOWN_ERROR Some other error occurred.

TABLE 11-3. Built-In Triggers (Continued)

Trigger Name Meaning
Designing and Managing Behavior Models 239Version 5.1

Using Other Data Sources11
An Example Using Built-In Triggers

This section looks at how some of the built-in triggers are used in one of NerveCenter’s predefined
alarms: IcmpStatus. The behavior model of which this alarm is a part repeatedly pings a node to
determine its status.

NOTENOTENOTENOTE

To make the ICMP status behavior model functional, you must turn on the polls
IS_IcmpPoll and IS_IcmpFastPoll and the alarm IcmpStatus.

FIGURE 11-1. IcmpStatus Alarm
We won’t look at every transition in this alarm, but let’s look at the alarm’s basic design.

While the alarm is in the Ground state, NerveCenter is looking for a:

 An error response
(Not an nl-ping-response nor a port unreachable—both indicate that the node is up)

 No response
(ICMP timeout indicated by the built-in trigger ICMP_TIMEOUT)

If NerveCenter receives an error response or a timeout, the alarm transitions to the Error state.

From the Error state, several things can happen:

 If the node responds to a ping (in which case, either the ISnodeUp or ISnodeUpFast trigger
will be fired by a poll), the alarm transitions back to Ground.

 If the alarm receives another error response, it transitions to the Unreachable state. When the
alarm transitions to this state, it puts the node being monitored in a suppressed state.
Designing and Managing Behavior Models Version 5.1240

Another NerveCenter 11
 If the alarm receives another ICMP_TIMEOUT trigger, it transitions to the Down state. On
this transition, the alarm puts the node in a suppressed state and sends a message about the
problem to a network management platform.

This is only a cursory look at the IcmpStatus alarm, but it should give you an idea of how alarms
can make use of NerveCenter’s built-in triggers.

Another NerveCenter

The section Using Multiple NerveCenter Servers on page 33 introduced the idea of using
NerveCenter servers at the various sites within an enterprise to monitor the network conditions at
those sites and then to forward important events on to a central NerveCenter server. In this
situation, the central server can correlate the events it receives from the remote servers, take
appropriate corrective actions, and notify a network management platform of any serious problems
it discovers.

Remote servers communicate with the central server using an alarm action called Inform—the
same action used to communicate with a network management platform. (For complete information
about the Inform alarm action, see the section Inform on page 305.) When a remote server performs
this type of Inform action, it sends to the central server what looks like an SNMP trap. This trap’s
specific trap number is determined by the person who sets up the alarm that initiates the Inform
action. The trap also contains a set of variable bindings that include information about the alarm
transition that led to the Inform being sent.

NOTENOTENOTENOTE

These Inform “traps” are not true SNMP traps. Because their receipt by the central
server must be guaranteed, they are sent via TCP, not UDP. However, the receiving
server processes them as if they were SNMP traps.

The central server handles the traps sent from remote servers just as it handles other traps: by using
a trap mask. The only things special about the trap masks you use to receive traps from other
NerveCenter servers are that:

 For the trap’s enterprise OID, you must supply the OID of the NerveCenter MIB

 For the trap mask’s specific trap number, you must supply the specific trap number used in
the Inform action
Designing and Managing Behavior Models 241Version 5.1

Using Other Data Sources11
For further information about receiving traps from other NerveCenter servers, see the following
sections:

 Creating a Trap Mask on page 242

 Variable Bindings for NerveCenter Informs on page 245

 An Example Trigger Function on page 246

Creating a Trap Mask

This section explains specifically how to create a trap mask designed to receive an Inform trap sent
by a remote NerveCenter server. For general information about creating trap masks, see the section
Defining a Trap Mask on page 211.

TO CREATE A TRAP MASK FOR AN INFORM TRAP

2. Select the New button.

The Mask Definition window is displayed.

1. From the client’s Admin menu, choose Mask List.

The Mask List window is displayed.
Designing and Managing Behavior Models Version 5.1242

Another NerveCenter 11
3. Type a unique name for your trap mask in the Name field.

NOTE

The maximum length for trap mask names is 255 characters.

4. Select EntSpecific = 6 from the Generic drop-down list.

All traps you receive from remote NerveCenter servers are enterprise-specific traps.

5. Select the From Only radio button.

6. In the Enterprise field, type 1.3.6.1.4.1.78.

This value will match the value in the Enterprises field of all Inform traps sent from remote
NerveCenter servers.

7. Type a specific trap number in the Specific field. This value must match the Specific
Number used by the remote server’s Inform action.

If you want to fire a single trigger if the Generic, Enterprise, and Specific values in the
Inform trap match the corresponding values in your trap mask, proceed with step 8.
Otherwise, skip to step 11.

8. Select the Simple Trigger radio button.

9. Type a trigger name in the Simple Trigger field, or select a trigger from the Simple Trigger
drop-down list.
Designing and Managing Behavior Models 243Version 5.1

Using Other Data Sources11
10. Select the Save button.

This is the end of the procedure for trap masks that will fire a simple trigger. Be sure to
enable your mask when you’re ready to use it.

11. Select the Trigger Function radio button.

12. Select the Trigger Function tab.

The Trigger Function tab is displayed.

13. Enter your trigger function in the text area on the Trigger Function page.

For instructions on writing a trigger function, see the section Writing a Trigger Function on
page 216.

14. Select the Save button.

Be sure to enable your mask when you’re ready to use it.
Designing and Managing Behavior Models Version 5.1244

Another NerveCenter 11
Variable Bindings for NerveCenter Informs

Depending on how its behavior models are designed, a NerveCenter detecting particular network
conditions can send Inform packets to a network management platform or even another
NerveCenter Server. Although these Inform packets use TCP/IP, they are similar in content to an
SNMP trap, containing trap numbers (generic and specific), an enterprise OID, and a variable-
binding list. The lengthy varbinds contains information about the alarm that performed the Inform
action, such as the name of alarm, the object the alarm was monitoring, and the names of the origin
and destination alarm states.

The network management platform or NerveCenter Server receiving the trap can make use of the
information in the variable bindings much the same way it would use variable bindings found in an
SNMP trap. For example, the section An Example Trigger Function on page 246 shows how a
NerveCenter server might use some of this information in a trap mask trigger function.

Table 11-4 explains the contents of this variable-binding list.

TABLE 11-4. Inform Trap Variable Bindings

Variable Binding Value

0 The name of the domain where NerveCenter is running

1 The name of the host machine running the NerveCenter Server

2 The name of the managed node associated with the alarm

3 The base object associated with the alarm (for example, ifEntry for a monitored interface)

4 The base object instance associated with the alarm (for example, 4 for the fourth interface)

5 The name of the subobject. This would include the null string if the alarm is not associated with an
alarm.

6 The property group assigned to the node or the subobject

7 The name of the alarm

8 The alarm’s property

9 The name of the trigger that caused the alarm transition

10 The state of the alarm before the transition

11 The severity of the state of the alarm prior to the transition

12 The state of the alarm after the transition

13 The severity of the state of the alarm after the transition

14 The maximum severity of all active alarms for the managed node before this alarm transition
Designing and Managing Behavior Models 245Version 5.1

Using Other Data Sources11
An Example Trigger Function

This section explains how you might use an Inform trap’s variable bindings in a trigger function.
Consider this example: A poll (HighLoad) at a remote site discovers high traffic on an interface and
fires the trigger highLoad. This trigger prompts a transition from the medium state to the high state
in the alarm ifLoad. (All the objects referred to are actually shipped with NerveCenter.) As shipped,
the alarm ifLoad does not perform any actions when the transition from medium to high occurs, but
let’s say you’ve added an Inform action that uses the specific number 100005.

The ifLoad alarm (minus the Inform action) also exists at your central site. Therefore, when the
Inform trap arrives, you want a trap mask to fire a trigger identical to the one fired at the remote
site. In this way, the ifLoad alarm at your central site will stay in sync with the alarm at your remote
site.

Here’s the trigger function you would have to use in the trap mask at your central site:

FireTrigger(“highLoad”, VbValue(3).’.’.VbValue(4), VbValue(2));

If you recall, the arguments to FireTrigger() are:

 The name of the trigger

 The trigger’s subobject (base object plus attribute)

 The trigger’s node

The second and third arguments are being retrieved from the list of variable bindings in the Inform
trap. For a complete list of the variable bindings included in an Inform trap, see the section Variable
Bindings for NerveCenter Informs on page 245.

15 The maximum severity of all active alarms for the managed node after this alarm transition

16 The variable bindings in the poll or trap that caused the transition. These variable bindings are
formatted as follows:
Attribute ncTransitionVarBinds = attribute.instance=value;attribute=value;...

17 The identification number of the alarm instance

TABLE 11-4. Inform Trap Variable Bindings (Continued)

Variable Binding Value
Designing and Managing Behavior Models Version 5.1246

12
Designing and Managing Behavior ModelsUsing Alarms
Alarms enable you to monitor the state of objects such as interfaces and devices. Figure 12-1
depicts the role that an alarm typically plays in a behavior model.

FIGURE 12-1. The Role of an Alarm in a Behavior Model
The alarm contains a state transition diagram, and transitions are caused by triggers that are usually
generated by polls and trap masks. (Triggers can also be generated by alarms.) When the alarm
manager sees a trigger whose key attributes—such as name, subobject, and node—match those of a
pending transition in an alarm, the manager causes this transition to take place. Any actions
associated with the transition are performed when the transition occurs.

Poll

Nodes

Response

Trap

Poll

Mask

Trigger

Trigger

Alarm

Behavior model
Designing and Managing Behavior Models 247Version 5.1

Using Alarms12
The remainder of this chapter explains in detail how to create and work with alarms. Refer to the
following sections:

Section Description

Listing Alarms on page 249 Explains how to display a list of the alarms currently defined in the
NerveCenter database.

Defining an Alarm on page 251 Explains the procedure for creating a new alarm.

Alarm Scope on page 254 Discusses an alarm’s scope property. This property defines what an
alarm monitors: the entire enterprise, a single device, a subcomponent
of a device such as an interface, or multiple MIB objects in a single
alarm instance.

Defining States on page 256 Explains how to define a state in an alarm’s state diagram.

Defining Transitions on page
261

Explains how to define a transition in an alarm’s state diagram.

Documenting an Alarm on page
267

Explains how to write notes (documentation) for an alarm.

Enabling an Alarm on page 272 Explains how to turn an alarm on and off.

Correlation Expressions on
page 274

Explains how to create an alarm using a correlation expression.
Designing and Managing Behavior Models Version 5.1248

Listing Alarms 12
Listing Alarms

This section explains how to display a list of the alarms currently defined in the NerveCenter
database. The section also explains how to view the definition of a particular alarm.

For information on creating a new alarm, see Defining an Alarm on page 251.

TO DISPLAY A LIST OF ALARMS AND THEN DISPLAY A PARTICULAR ALARM’S DEFINITION

This window lists all the currently defined NerveCenter alarms and provides a brief
definition of each. For each alarm, the window specifies a name and the following
information:

 Whether the alarm is currently enabled

 The alarm’s property

 The alarm’s scope

2. Select an alarm from the alarm list.

3. Select the Open button

NerveCenter displays the Alarm Definition window.

1. From the client’s Admin menu, choose Alarm Definition List.

The Alarm Definition List window is displayed.
Designing and Managing Behavior Models 249Version 5.1

Using Alarms12
The alarm defined in this figure is named ifLinkUpDown. Each instance of it monitors a
single interface (subobject scope) on a device whose property group contains the property
ifEntry. If NerveCenter receives a generic trap 2 for an interface, an alarm instance is
instantiated, and the current state becomes DownTrap. If a linkUp trap for the same interface
arrives within three minutes, the state returns to Ground; otherwise, the state becomes
LinkDown. The state color indicates that LinkDown is a state of Major severity.

With a little investigation, you can find out much more about this alarm. For instance, if you right-
click a transition, you’ll see a pop-up menu that enables you to find out what masks, polls, and
alarms can produce the trigger that causes the transition. Table 12-1 shows what objects can fire the
triggers that affect this alarm.

TABLE 12-1. Trigger Sources

Transition Related Trigger Generator

linkDown Mask: LinkDown

linkUp Mask: LinkUp

linkTimer Alarm: IfLinkUpDown
Designing and Managing Behavior Models Version 5.1250

Defining an Alarm 12
You can also determine what actions will occur on a particular transition. Simply double-click the
transition to bring up the Transition Definition dialog. If you perform this task for each transition in
this alarm, you’ll find that the transition actions in Table 12-2have been defined.

Defining an Alarm

This section provides a high level overview of how to create a new alarm. Because creating an
alarm is a fairly involved process, you’ll need to consult some additional sections to get all the
information you need.

TO DEFINE A NEW ALARM

2. Select the New button.

The Alarm Definition window appears.

TABLE 12-2. Transition Actions

Transition Actions

linkDown (Ground to DownTrap) Fire the trigger linkTimer on a three minute delay.

linkUp (DownTrap to Ground) Clear the trigger linkTimer.

linkUp (LinkDown to Ground) None.

linkTimer (DownTrap to
LinkDown)

Inform a network management platform that the interface is down.

1. From the client’s Admin menu, choose Alarm Definition List.

The Alarm Definition List window is displayed.
Designing and Managing Behavior Models 251Version 5.1

Using Alarms12
3. Type a unique name for the alarm in the Name text field.

NOTE

The maximum length for alarm names is 255 characters.

4. Select a property from the Property list box. Or leave the Property set to NO_PROP.

The property you choose helps determine whether a particular trigger can cause an alarm
instance to be instantiated or cause a transition in an existing alarm instance. Generally, the
alarm’s property must match one of the properties in the property group of the node
associated with the trigger. The property NO_PROP matches any property.

For complete information regarding the matching rules that determine whether a trigger
causes an alarm transition, see the section, Rules for Matching on page 416.

5. Select a scope from the Scope list box.

The options are Enterprise, Instance, Node, and Subobject. An alarm instance with
Enterprise scope monitors all nodes managed by the NerveCenter server. An alarm instance
with Node scope monitors a single node. A subobject scope alarm monitors a node
subcomponent such as an interface (subobject). Instance scope lets you monitor different
base objects in a single alarm instance.

For further information on alarm scope, see the section Alarm Scope on page 254.
Designing and Managing Behavior Models Version 5.1252

Defining an Alarm 12
6. Select the Clear Triggers for Reset To Ground or Off checkbox if you want NerveCenter
to clear any pending triggers fired by this alarm when the alarm is turned off or manually
reset to ground. The alarm might have pending triggers if you associated a Fire Trigger
alarm action with this alarm.

7. Create the alarm’s state diagram in the drawing area at the top of the Alarm Definition
window.

This can be a big step. Before you actually draw the state diagram, you must design it. Your
resources for learning how to design an alarms are:

 This book.

 How to Use Alarms in Learning How to Create Behavior Models, which includes a
tutorial on creating alarms.

 The predefined alarms that ship with NerveCenter. Looking at these alarms and reading
the notes that accompany them should give you some ideas for creating your own
alarms.

Then, there are the mechanics of creating the state diagram. This subject is covered in the
following places:

 Defining States on page 256

 Defining Transitions on page 261

 Alarm Actions on page 283 for information about adding actions to alarm transitions

8. Select the Save button to save your alarm.

9. If you want to enable you alarm now, set the alarm’s Enabled status to On, and then select
the Save button again.
Designing and Managing Behavior Models 253Version 5.1

Using Alarms12
Alarm Scope

NerveCenter alarms can have one of four scopes: subobject, instance, node, or enterprise. A
subobject scope alarm monitors a subcomponent of a node, usually an interface (subobject).
Instance scope lets you monitor different base objects in a single alarm instance. Node scope
monitors activity on a single node, and enterprise scope monitors all managed nodes for a particular
behavior.

This is fairly straightforward, but let’s look at an example of how alarm scope might affect a
particular behavior model. Let’s say that you have a model that manages three workstations, each
of which has four interfaces.

FIGURE 12-2. Managed Nodes and Their Interfaces
One component of this behavior model is a poll that checks variables in each workstation’s ifEntry
table to find interfaces that are experiencing high traffic. This poll can fire a trigger up to twelve
times on any poll interval, as shown in Table 12-3.

TABLE 12-3. Triggers Fired by High-Traffic Poll

Node Subobject

Node 1 ifEntry.1

Node 1 ifEntry.2

Node 1 ifEntry.3

Node 1 ifEntry.4

Node 2 ifEntry.1

Node 2 ifEntry.2

Node 2 ifEntry.3

Node 2 ifEntry.4

Node 1

Four interfaces

Node 2

Four interfaces

Node 3

Four interfaces
Designing and Managing Behavior Models Version 5.1254

Alarm Scope 12
The behavior model also includes the alarm whose state diagram is shown in Figure 12-3:

FIGURE 12-3. High-Traffic Alarm
A beep action is associated with the highLoad transition.

Assuming that you’ve set the alarm’s property properly, you’ve enabled both the poll and the alarm,
and all interfaces are experiencing high traffic, how many beeps will you hear?

The answer depends on your alarm’s scope. If the alarm has subobject scope, twelve alarm
instances will be created, and you’ll hear twelve beeps, one per interface. Similarly, for instance
scope, twelve instances will occur and beep. The main difference between subobject and instance
scope is that, with instance scope, you could add another transition to the alarm to monitor some
base object other than ifEntry.

If the alarm has node scope, three alarm instances will be created, and you’ll hear three beeps. Once
an alarm instance for a node transitions out of the Ground state—upon receipt of the first highLoad
trigger for that node—any subsequent highLoad triggers that refer to that node have no effect.
Finally, if the alarm has enterprise scope, only one alarm instance is created, and you’ll hear just
one beep.

For behavior models that contain just one alarm, choosing an alarm scope is usually simple. Just
state the condition you want to be able to detect:

 “I want to be able to detect high traffic on any interface.” (Subobject scope)

 “I want to detect several conditions on any interface.” (Instance scope)

 “I want to monitor each node on which a particular condition occurs.” (Node scope)

 “I want to be notified the first time that high traffic occurs on any interface.” (Enterprise
scope)

Node 3 ifEntry.1

Node 3 ifEntry.2

Node 3 ifEntry.3

Node 3 ifEntry.4

TABLE 12-3. Triggers Fired by High-Traffic Poll (Continued)

Node Subobject
Designing and Managing Behavior Models 255Version 5.1

Using Alarms12
Defining States

When you first open the Alarm Definition window, the state-diagram drawing area contains one
state. This state is named Ground and is dark green (by default), indicating that the severity of the
state is “Normal.” This state is unique not only because every alarm must contain it, but because no
active alarm is ever in this state. The alarm manager instantiates an alarm when it receives a trigger
corresponding to a transition from Ground to some other state, and if an alarm instance transitions
back to Ground, that instance is deleted.

All of the other states that you want your alarm to track you must create yourself. For example, the
author of the predefined alarm IfLoad (interface load) created two nonground states: medium and
high.

FIGURE 12-4. IfLoad Alarm
The medium state is of Medium severity, and the high state is of High severity.

NOTENOTENOTENOTE

In the alarm in Figure 12-4, the author has renamed the Ground state “LowLoad.”
The Ground state can be renamed and its severity can be changed, but it cannot be
deleted.
Designing and Managing Behavior Models Version 5.1256

Defining States 12
For instruction on creating new states, resizing state icons, and deleting states, see the following
sections:

 Defining a State on page 257

 Changing the Size of the State Icons on page 259

 Deleting a State on page 260

Defining a State

When you add a new state to a state diagram, you must provide two pieces of information about the
state: its name and its severity. The name, of course, should indicate the role the state plays in the
state diagram. For instance, if a state will indicate that a device is down, you should name it
“DeviceDown,” or something similar. The alarm’s severity indicates whether the state represents a
fault condition or a traffic condition and how serious the problem is.

TO ADD A STATE TO A STATE DIAGRAM

2. Type the name of the state in the Name text field.

NOTENOTENOTENOTE

The maximum length for state names is 255 characters.

1. Select the Add State button at the top of the Alarm Definition dialog.

The State Definition dialog appears.
Designing and Managing Behavior Models 257Version 5.1

Using Alarms12
3. Select a severity from the Fault folder or the Traffic folder.

4. Select the OK button.

The new state appears in the diagram area. Drag the state icon to the spot you want it to
occupy in the diagram.

NOTE

If you don’t move the newly create state, subsequently created states
won’t be displayed.

If the state icon’s label won’t fit on the icon, you should resize the state icons in your
diagram. For information on how to resize these icons, see the section Changing the Size of
the State Icons on page 259.
Designing and Managing Behavior Models Version 5.1258

Defining States 12
Changing the Size of the State Icons

The default size of state icons is fairly small. As a result, the name of a state may not fit on the
octagon that represents it. If you encounter this problem, you can change the size of the state icons
in your state diagram.

NOTENOTENOTENOTE

You can’t change the size of a single state icon. A resize operation affects all the
state icons in the current state diagram.

TO CHANGE THE SIZE OF THE STATE ICONS IN A DIAGRAM

1. Right-click one of the state icons in the diagram, and select Size from the pop-up menu that’s
displayed.

The State/Transition Size window appears.

The rectangle beneath the State Size label indicates the current size of the state icons.

2. Drag the handles on the State Size rectangle to change the width or height of the rectangle.

To accommodate state names that won’t fit on icons of the default size, make the rectangle
wider.

3. Select the OK button.

The width and height of the state icons in your diagram are resized to match the size of the
State Size rectangle.

TIP

Your state diagram will look better if the names of your states are short.
Designing and Managing Behavior Models 259Version 5.1

Using Alarms12
Deleting a State

If you need to change the name or severity of a state, there’s no need to delete the state and create a
new one. You can double-click on the icon for the state to bring up the State Definition window and
change the state’s name or severity there. However, if you’ve created a state that you no longer
need, it’s a simple matter to delete it.

TO DELETE A STATE

1. Select the state’s icon in your state diagram.

The Remove State button is enabled.

3. Select the Yes button in the dialog.

The state icon is removed for the state diagram.

NOTENOTENOTENOTE

You can’t delete the Ground state.

2. Select the Remove State button at the top of the Alarm Definition window.

A pop-up dialog asks you whether you’re sure you want to remove the state and explains
that if you remove a state you also remove all the transitions associated with that state.
Designing and Managing Behavior Models Version 5.1260

Defining Transitions 12
Defining Transitions

Once you’ve created the states for an alarm, you must define the transitions between them. Each
transition has these components:

 A origin state.

 A destination state.

 A trigger. This is the trigger that will cause the transition.

 A list of actions that will be performed when the transition occurs. For a full description of
each action that can take place upon a transition, see Chapter 13, Alarm Actions

The sections below will lead you through the mechanics of creating a new transition in a state
diagram, changing the size of the transition icons in a state diagram, and deleting a transition:

 Defining a Transition on page 262

 Associating an Action with a Transition on page 263

 Changing the Size of Transition Icons on page 265

 Changing the Color of Transition Lines on page 266

 Deleting a Transition on page 267
Designing and Managing Behavior Models 261Version 5.1

Using Alarms12
Defining a Transition

When you add a transition to a state diagram, you must supply three pieces of information: an
origin state, a trigger name, and a destination state. Both of the states must already have been
created in the state diagram, and the trigger must already exist as well.

TO CREATE A NEW TRANSITION

2. Select an origin state from the From drop-down list.

This list contains the names of all the states currently defined in the state diagram, including
Ground. If an alarm is in the origin state when the appropriate trigger arrives, it may
transition to the destination state.

3. Select a trigger from the Trigger drop-down list.

This list contains the names of all the triggers defined in the NerveCenter database. Only a
trigger with the name you specify here will be able to cause this transition.

4. Select a destination state from the To drop-down list.

5. Select the OK button.

A transition is drawn between the source and destination states. This transition consists of a line
connecting the source and destination states with arrows pointing in the direction of the destination
state, and a rectangular icon on the line labeled with the trigger name. You can drag the rectangular
icon, and the line will move with it.

1. Select the Add Transition button at the top of the Alarm Definition window.

The Transition Definition dialog is displayed.
Designing and Managing Behavior Models Version 5.1262

Defining Transitions 12
Associating an Action with a Transition

A transition may or may not have alarm actions associated with it. If it has one or more actions
associated with it, these actions are performed each time the transition occurs.

You can add actions to an existing transition, or adding the actions can be part of the initial
definition of the transition.

TO ADD AN ACTION TO A TRANSITION

1. If you’re in the process of creating a new transition, the Transition Definition dialog should
already be open. If you want to add an action to an existing transition, double -click the
transition’s icon. The Transition Definition dialog appears.

2. Select the New Action list.

A list of available actions is displayed. The complete list of actions is:

 Action Router

 Alarm Counter

 Beep

 Clear Trigger

 Command

 Delete Node

 EventLog

 Fire Trigger
Designing and Managing Behavior Models 263Version 5.1

Using Alarms12
 Inform

 Inform Platform

 Log to Database

 Log to File

 Microsoft Mail

 Notes

 Paging

 Perl Subroutine

 Send Trap

 Set Attribute

 SMTP Mail

 SNMP Set

These actions are described in Chapter 13, Alarm Actions.

3. Select an action from the pop-up menu.

If you select the Action Router, Delete Node, or Notes action, the action is added
immediately to the Actions list in the Transition Definition window. However, because most
actions require you to supply parameters, NerveCenter generally displays an action dialog at
this point. The dialog varies from action to action.

4. Fill in the fields in the action dialog.

This step is very dependent on the action you’ve selected. For details on how to complete
this step, see the appropriate section in Chapter 13, Alarm Actions

5. Repeat step 2 through step 4 for any additional actions you want to add to the transition.

6. Select the OK button in the Transition Definition window.
Designing and Managing Behavior Models Version 5.1264

Defining Transitions 12
Changing the Size of Transition Icons

The default size of transition icons is fairly small. As a result, the name of a transition may well not
fit on the rectangle that represents the transition. If you encounter this problem, you can change the
size of the transition icons in your state diagram.

NOTENOTENOTENOTE

You can’t change the size of a single transition icon. A resize operation affects all
the transition icons in the current state diagram.

TO CHANGE THE SIZE OF THE TRANSITION ICONS IN A DIAGRAM

1. Right-click one of the transition icons in the diagram, and select Size from the pop-up menu
that is displayed.

The State/Transition Size dialog appears.

The rectangle beneath the Transition Size label indicates the current size of the transition
icons.

2. Drag the handles on the Transition Size rectangle to change the width or height of the
rectangle.

3. Select the OK button.

The width and height of the transition icons in your diagram are resized to match the size of
the Transition Size rectangle.

TIP

Your state diagram will look better if the names of your transitions (triggers) are
short.
Designing and Managing Behavior Models 265Version 5.1

Using Alarms12
Changing the Color of Transition Lines

Following transition paths with numerous states and transitions can be complicated. Changing the
color of the lines connecting states to transitions to make it easier to understand your alarm.

TO CHANGE THE COLOR OF THE TRANSITION LINES IN A DIAGRAM

1. Right-click one of the transition icons in the diagram, and select Color from the pop-up
menu that is displayed.

The Color Transition dialog appears.

2. Select a color.

 FROM State Color is the color of the state you transition from.

 TO State Color is the color of the state you transition to.

 Default Color is the color you define default to be.

You can define the Default color to any color you want.

a. Select Change Default Color.

The Color window is displayed.

b. Select the color box containing the color you want to assign to the transition line.

c. Select the OK button in the Color window.

You return to the Transition Color window.

3. Select the OK button.
Designing and Managing Behavior Models Version 5.1266

Documenting an Alarm 12
Deleting a Transition

This section explains how to delete a transition from an existing state diagram or one that you’re
currently drawing.

TO DELETE A TRANSITION

1. Select the transition you want to delete.

3. Select the Yes button in the dialog.

The transition is deleted from your state diagram.

Bear in mind that an alarm’s definition does not actually change until you save the alarm.

Documenting an Alarm

This section explains how to add documentation (notes) to an alarm and what should be covered in
that documentation.

 How to Create Notes for an Alarm on page 268

 What to Include in Notes for an Alarm on page 270

2. Select the Remove Transition button from the Alarm Definition window.

A dialog appears that asks if you’re sure you want to delete the transition.
Designing and Managing Behavior Models 267Version 5.1

Using Alarms12
How to Create Notes for an Alarm

You can add notes to an alarm by following the procedure outlined in this subsection.

TO ADD NOTES TO AN ALARM

2. Select an alarm to which you want to add a note.

3. Make sure that your alarm is not enabled.

4. Select the Open button.

The Alarm Definition window is displayed.

1. From the client’s Admin menu, choose Alarm Definition List.

The Alarm Definition List window is displayed.
Designing and Managing Behavior Models Version 5.1268

Documenting an Alarm 12
5. In the Alarm Definition window, select the Notes button.

The Alarm Notes and Associations dialog is displayed.

6. Enter your documentation for the alarm by typing in this dialog. See the section What to
Include in Notes for an Alarm on page 270 for information on what type of information you
should enter here.

7. Select the OK button at the bottom of the Alarm Notes and Associations dialog to close it.

8. Select the Save button in the Alarm Definition window.

Your notes are saved to the NerveCenter database. They can be read by anyone who opens
the definition for your alarm and selects the Notes button.
Designing and Managing Behavior Models 269Version 5.1

Using Alarms12
What to Include in Notes for an Alarm

The top pane of the Notes and Associations dialog box contains read-only information about the
alarm. This data is retrieved from the NerveCenter database and, therefore, may change from time
to time when the alarm’s definition is modified in the database.

This information includes:

 The alarm’s states and severities.

 Objects that trigger the alarm’s transitions.

 The alarm’s transitions and their associated actions.

The bottom pane contains a general description of the alarm and any useful information. Users with
administrator rights can add or edit this field when creating or customizing alarms. Comments
should include anything other users might find helpful to know about NerveCenter alarms.
Following are some suggestions:

 Define the purpose of the alarm.

 List any reports run against the data logged by the alarm.

 List the property groups that are affected by this alarm-that is, groups that contain the
property assigned to the alarm-and include any pertinent information about the nodes
assigned to those groups.

 Name any associated behavior model and mention whether customization is required to
work with the behavior model.

We recommend that you include the following information in the notes for your alarm:

 Purpose of the alarm

 Brief description of the alarm’s states

 Brief description of the alarm’s transitions

 List of the objects (polls, masks, and alarms) that fire triggers that affect this alarm

 Description of the actions specified for transitions, especially Fire Trigger and Perl
Subroutine actions

 Documentation for any program or script called from a Command action

 Names of any reports run against data logged by the alarm

 Information about other alarms that are part of the same behavior model
Designing and Managing Behavior Models Version 5.1270

Documenting an Alarm 12
For example, let’s consider the alarm definition shown in Figure 12-5.

FIGURE 12-5. IfData_LogToFile Alarm
The notes for this alarm should look something like this:

Purpose: Logs interface data to the log file ifdata.log.
States: Ground (Normal), Logging (Normal)
Transitions: ifData (Ground to Logging), ifData (Logging to Logging)
Associated poll: IfData fires the ifData trigger if it is able to retrieve
information about an interface from a node’s interface table.
Actions: ifData (Ground to Logging) - Log to File ifdata.log Enabled
Verbose
ifData (Logging to Logging) - Log to File ifdata.log Enabled Verbose
Designing and Managing Behavior Models 271Version 5.1

Using Alarms12
Enabling an Alarm

For a alarm to become functional, several conditions must be met:

 The alarm must be enabled.

 The alarm must receive a trigger that corresponds to one of the alarm’s transitions out of the
Ground state.

 The alarm’s property must be in the property group of the node associated with the trigger.

This section explains how to enable an alarm.

NOTENOTENOTENOTE

If you later turn an alarm off or reset the alarm to ground, any pending triggers fired
by that alarm are cleared if the Clear Triggers for Reset To Ground or Off
checkbox is checked in the alarm’s definition window.

TO ENABLE AN ALARM

2. Select the alarm you want to enable from the list.

The Open button becomes enabled.

1. From the client’s Admin menu, choose Alarm Definition List.

The Alarm Definition List window is displayed.
Designing and Managing Behavior Models Version 5.1272

Enabling an Alarm 12
3. Select the Open button.

The Alarm Definition window is displayed and shows the definition of the alarm you
selected.

4. Select the On radio button in the Enabled frame.

5. Select the Save button.

The alarm is now enabled.

TIP

You can also enable an alarm by selecting the alarm in the Alarm
Definition List window, right-clicking the entry for the alarm, and
choosing On from the popup menu.
Designing and Managing Behavior Models 273Version 5.1

Using Alarms12
Correlation Expressions

NerveCenter provides an additional method for Alarm Definition creation, the Correlation
Expression window. Correlation expressions allow the definition of alarm diagrams based on
Boolean expressions. The correlation expressions do not apply in every situation, but in cases
where multiple combinations of events need to be detected and acted upon, the correlation
expressions save tremendous amounts of time, both in alarm diagram designing and building.

To build a correlation expression, first create the necessary trap masks and poll conditions to fire
the desired triggers. Once the triggers have been created, the Correlation Expression Editor can be
used to create the expression.

There are three main components of the correlation expression. First, the Boolean expression is
created using and, or, parenthesis and triggers that are already existent. Second, the correlation reset
period determines the time limit in which the entire expression must become true once a portion has
been detected. Third, the correlation action must be specified, directing NerveCenter to act when
the expression becomes true.

For example take the sample alarm in Figure 12-6.

FIGURE 12-6. Sample Alarm: Error Rate Alarm Created with the Alarm Definition Window
In this alarm, you want an inform to be sent if you receive HighErrorRate and HighLoad triggers or
if you receive a HighErrorPersists trigger. The alarm will reset to Ground if the alarm is not
completed within the time period specified by the transition Reset. Creating this model takes
several steps. You need to create three states and eight transitions. Three of those transitions require
you to add the same action, send inform. The idea behind this model, however, can be expressed
simply with a boolean expression:

If (HighLoad AND HighErrorRate) OR HighErrPersists, then Inform IC/NV/OV

Correlation expressions allow you to create simple alarms quickly.
Designing and Managing Behavior Models Version 5.1274

Correlation Expressions 12
NOTENOTENOTENOTE

After a correlation expression reaches the final state, the Alarm reverts to Ground.

TO CREATE A CORRELATION EXPRESSION

2. Select the New button.

The Edit Correlation Expression window opens.

1. From the client’s Admin menu, choose Correlation Expression List.

The Correlation Expression List Window opens.
Designing and Managing Behavior Models 275Version 5.1

Using Alarms12
3. In the Expression Name field enter a name for the expression.

NOTE

The maximum length for correlation names is 255 characters.

4. Enter the Reset Period (must be greater than 0) and select a time unit (seconds, minutes or
hours) from the drop-down menu.

The correlation reset period is the time in which the entire alarm must complete before the
alarm resets. This counter starts when the first trigger occurs. The counter does not restart
when a second trigger occurs.

The time period must be greater than zero. You can choose between seconds, minutes or
hours.

5. Enter a correlation expression.

You enter information in the Correlation Expression field by using the buttons below the
field.

 To add a trigger:

 i. Select a trigger from the Trigger to Add drop down list.

 ii. Select Add Trigger.
Designing and Managing Behavior Models Version 5.1276

Correlation Expressions 12
 To add a boolean operator, select the AND or OR button.

NOTE

The AND operator has precedence over the OR operator. For
example, x or y and z is the same as x or (y and z).

 To add a parenthesis, select the (or) button.

The close parenthesis) button is not active until there is an open parenthesis (in the
correlation expression.

 To delete the previous element of the correlation expression, select the Del button.

6. Add Correlation Actions.

a. Select the New Action list.

A list of available actions is displayed. The complete list of actions is:

 Action Router

 Alarm Counter

 Beep

 Clear Trigger

 Command

 Delete Node

 EventLog

 Fire Trigger

 Inform

 Inform Platform

 Log to Database

 Log to File

 Microsoft Mail

 Notes

 Paging

 Perl Subroutine

 Send Trap
Designing and Managing Behavior Models 277Version 5.1

Using Alarms12
 Set Attribute

 SMTP Mail

 SNMP Set

These actions are described in Chapter 13, Alarm Actions.

b. Select an action from the pop-up menu.

If you select the Action Router, Delete Node, or Notes action, the action is added
immediately to the Actions list in the Edit Correlation Expression window. However,
because most actions require you to supply parameters, NerveCenter generally displays
an action dialog at this point. The dialog varies from action to action.

c. Fill in the fields in the action dialog.

This step is dependent on the action you’ve selected. For details on how to complete this
step, see the appropriate section in Chapter 13, Alarm Actions.

You can edit these selections later by selecting the Update Action button.

d. Repeat step a through step c for any additional actions you want to add to the correlation
expression.

To delete an action, select it from the Correlation Actions list and click Delete Action.

7. Select Save.

NOTE

The Save and Create Alarm buttons are not enabled until:
you give the correlation expression a name
you set the Reset Period to a number other than zero
the correlation expression is valid (for example, all open parenthesis

 are closed)
you select at least one Correlation Action

This saves the correlation expression.

After creating a correlation expression, you can use it as a building block to create alarms.

NOTENOTENOTENOTE

You do not have to save a correlation expression to create an Alarm. As long as the
correlation expression has a name, a reset period, a valid expression and an action,
you can create an Alarm from the expression.
Designing and Managing Behavior Models Version 5.1278

Correlation Expressions 12
TO COPY A CORRELATION EXPRESSION

2. Select a correlation expression and right-click.

3. Select Copy from the pop-up menu.

The Edit Correlation Expression window opens.

4. In the Expression Name field enter a new name for the expression.

NOTE

The maximum length for correlation names is 255 characters.

5. Select Save.

1. From the client’s Admin menu, choose Correlation Expression List.

The Correlation Expression List Window opens.
Designing and Managing Behavior Models 279Version 5.1

Using Alarms12
TO CREATE AN ALARM FROM A CORRELATION EXPRESSION

1. From the Edit Correlation Expression window, click Create Alarm.

The Create Alarm using Correlation Expression window opens.

2. In the Alarm Name field, enter a name for the alarm.

NOTE

The maximum length for alarm names is 255 characters.

3. Select a property from the Property list box or leave the Property set to NO_PROP.

The property you choose helps determine whether a particular trigger can cause an alarm
instance to be instantiated or cause a transition in an existing alarm instance. Generally, the
alarm’s property must match one of the properties in the property group of the node
associated with the trigger. The property NO_PROP matches any property.

4. Select a scope from the Scope list box.

The options are Enterprise, Instance, Node, and Subobject. Briefly, an alarm instance with
Enterprise scope monitors all the nodes managed by the NerveCenter server. An alarm
instance with Node scope monitors a single node. A subobject scope alarm monitors a
subcomponent of a node, usually an interface (subobject). Instance scope lets you monitor
different base objects in a single alarm instance.

For further information on alarm scope, see Alarm Scope on page 254.

5. Select the Clear Triggers for Reset To Ground or Off checkbox if you want NerveCenter
to clear any pending triggers fired by this alarm when the alarm is turned off or manually
reset to ground. The alarm might have pending triggers if you associated a Fire Trigger
alarm action with this alarm.
Designing and Managing Behavior Models Version 5.1280

Correlation Expressions 12
6. If you want to enable you alarm now, set the alarm’s Enabled status to On.

7. Select Save Alarm.

When you save the alarm, you can now access it through the Alarm Definition List and edit
it as any other alarm. For details on using the Alarm Definition window, see Defining
Transitions on page 261.

Figure 12-7 shows the correlation expression that creates the alarm shown in Figure 12-6 on
page 274. Figure 12-8 shows the alarm generated with the Error Rate correlation expression.

FIGURE 12-7. Error Rate Correlation Expression

FIGURE 12-8. Error Rate Alarm Generated from the Error Rate Correlation Expression
Designing and Managing Behavior Models 281Version 5.1

Using Alarms12
TO ADD NOTES TO A CORRELATION EXPRESSION

1. From the Correlation Expression window, select Notes.

The Correlation Expression Notes dialog box displays.

2. Enter your comments.

3. Select Save to close the Notes dialog box.

A dialog box asking Are you sure? displays.

4. Select Yes.

5. Click Save in the Correlation Expression window to save the notes.

NOTE

These notes document the correlation expression. They are not copied
over to any alarm created by a correlation expression.
Designing and Managing Behavior Models Version 5.1282

13
Designing and Managing Behavior ModelsAlarm Actions
When you create an alarm, you can specify that one or more alarm actions take place on any alarm
transition. These actions fall into two categories: those that affect how the alarm works and those
that perform some type of corrective action. An example of the first type of action is the Fire
Trigger action. This action (as its name implies) fires a trigger that can cause a transition in its own
or another alarm. An example of the second type of action is the Command action, which enables
you to run any script or executable when a transition occurs.

NOTENOTENOTENOTE

NerveCenter alarm actions are asynchronous. Alarm actions do not execute in the
order that you specify them—actions can fire in any order. Therefore, action2
should not be dependant on action1, for example.

The only exception is the Clear Trigger action; when you include a Clear Trigger
action with other alarm actions, the Clear Trigger action is always performed first.
This prevents the possibility of a trigger being fired and then cleared during the
same transition.

The remainder of this chapter discusses how to use each of the NerveCenter alarm actions:

Section Description

Action Router on page 285 Explains how to send information about an alarm transition to the
Action Router facility. The Action Router enables you to performs
actions if certain conditions are met.

Alarm Counter on page 287 Explains how to count the number of times that a particular transition
has occurred.

Beep on page 291 Explains how to send audible alarm to the workstation at which the
NerveCenter Client is running.

Clear Trigger on page 292 Explains how to clear a trigger that was fired on a delayed basis.

Command on page 294 Explains how to execute a program or script from an alarm action.

Delete Node on page 296 Explains how to delete the node being monitored by an alarm instance.
Designing and Managing Behavior Models 283Version 5.1

Alarm Actions13
EventLog on page 296 Explains how to log information about an alarm transition to a system
log file (UNIX) or the Event Log (Windows).

Fire Trigger on page 300 Explains how to fire a trigger as an alarm action.

Inform on page 305 Explains how to send the equivalent of an SNMP trap to OpenView
Network Node Manager or another NerveCenter when a significant
network event is detected.

Inform Platform on page 308 Explains how to send an event to the IBM Tivoli Netcool/OMNIbus
network management platform.

Log to Database on page 311 Explains how to log information about an alarm transition to the
NerveCenter database.

Log to File on page 312 Explains how to log information about an alarm transition to a file.

Microsoft Mail on page 314 Explains how to send e-mail to a client of a Microsoft Exchange server.

Notes on page 315 Explains how to display the notes (documentation) for an alarm.

Paging on page 317 Explains how to send a page as an alarm action.

Perl Subroutine on page 318 Explains how to execute a Perl script as an alarm action. Perl scripts are
different from other scripts in that they have access to a great deal of
internal NerveCenter information.

Send Trap on page 330 Explains how to send an SNMP trap as an alarm action.

Set Attribute on page 334 Explains how to set an attribute of an alarm, a mask, a node, or a poll as
an alarm action.

SMTP Mail on page 336 Explains how to send SMTP mail.

SNMP Set on page 337 Explains how to send an SNMP SetRequest to set the value of an
attribute in an agent’s MIB.

Section Description
Designing and Managing Behavior Models Version 5.1284

Action Router 13
Action Router

Normally, when an alarm transition occurs, the actions associated with that transition are performed
automatically. However, it’s possible to specify that one or more actions be performed
conditionally. To define this type of behavior, you must:

 Add the Action Router action to the appropriate alarm transition. (This section explains how
to perform this task.)

 Use the Action Router’s rule composer to define the conditions under which you want the
Action Router to perform one or more actions and the actions to be taken under those
conditions. These conditions can be specified using any Perl expression that evaluates to true
or false. However, NerveCenter provides a large set of variables for use in these conditions.
These variables enable you to set up conditions based (among other things) on:

 The name of the alarm that underwent the transition

 The day of the week

 The name of the node being monitored

 The property group associated with the node being monitored

 The severity of the transition’s destination state

 The time of day

 The name of the trigger that caused the transition

In addition, the actions that can be associated with a set of conditions can be selected from
almost all the actions that can be performed during an alarm transition. For complete
information about using the rule composer, see Chapter 14, Performing Actions
Conditionally (Action Router)

Once you’ve done this setup, when the transition with the Action Router action takes place, the
Action Router process will receive information about the transition. The Action Router will then
evaluate all of its rules to determine any of them are satisfied. If a rule is satisfied, the Action
Router performs all of the actions associated with that rule. For example, if you’ve set up a rule that
tells the Action Router to page an administrator if a transition’s destination state is of Critical
severity, the Action Router will check the transition’s destination state and page an administrator if
that state is Critical.
Designing and Managing Behavior Models 285Version 5.1

Alarm Actions13
TO ADD THE ACTION ROUTER ACTION TO AN ALARM TRANSITION

1. In the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Action Router from the pop-up menu.

The new action appears in the Actions list in the Transition definition window.

3. Select the OK button in the Transition Definition window.

4. Select Save in the Alarm Definition window.
Designing and Managing Behavior Models Version 5.1286

Alarm Counter 13
Alarm Counter

Suppose that you want to write an alarm to detect more than five authentication-failure traps from a
node within five minutes. A possible state diagram for this problem is shown in Figure 13-1.

FIGURE 13-1. First Solution to Authentication-Failure Problem
Designing and Managing Behavior Models 287Version 5.1

Alarm Actions13
Presumably, the trigger authFail is fired by a trap mask that detects generic authentication-failure
traps. Also, on the transition from Ground to Alert1, the trigger authClear is fired on a five minute
delay. This trigger is cleared on the transition from Alert5 to Intrusion.

With seven states, this diagram doesn’t look too bad. But what if you had been asked to write an
alarm that detected more than twenty authentication failures? Clearly, a better approach is needed.

The NerveCenter feature that you can use to simplify this type of state diagram is the Alarm
Counter alarm action. This action enables you to loop in an alert state until you’re ready to move to
the Intrusion state. Thus, a revised state diagram might look like Figure 13-2:

FIGURE 13-2. Solution Using the Alarm Counter Action
The firing and clearing of the authClear trigger are handled as they were in the previous example.
The new actions in this state diagram are Alarm Counter actions on both the transition from Alert to
Alert and the transition from Alert to Ground.

The Alarm Counter action associated with the circular transition from Alert to Alert:

 Creates a counter variable if it does not already exist.

 Increments the counter. (The initial value of the counter is zero.)

 Checks to see whether the value of the counter is 5. (The test is for 5 instead of 6 because
one authorization failure has to occur for the alarm to reach the Alert state.)

 Fires the trigger intrusion if the value of the counter is greater than 4.

The Alarm Counter action associated with the transition from Alert to Ground:

 Creates the counter if it does not already exist.

 Sets the value of the counter to 0.

This example shows both of the main uses of the Alarm Counter action: to set up a loop in which a
trigger is fired when the counter reaches a certain value and to set or reset the value of the counter.
Designing and Managing Behavior Models Version 5.1288

Alarm Counter 13
NOTENOTENOTENOTE

You can use the Counter() Function in a Perl subroutine or Action Router rule to
get the value of a counter associated with a particular transition. For more
information, see Counter() Function on page 325.
You can also use the NC::AlarmCounters Perl object in Perl subroutines. However,
the NC::AlarmCounters object is completely separate from the Counter() function
and does not share data with the Counter () function. For more details about the
NC::AlarmCounters, see the Release Notes.

TO CREATE AN ALARM COUNTER

1. In the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Alarm Counter from the pop-up menu.

The Alarm Counter Action dialog is displayed.

3. Type a counter name in the Counter Name text field, or select a counter name from the
Counter Name drop-down list.

The drop-down list will contain values only if another transition in the same alarm has
already defined an alarm counter.

The scope of the alarm counter name is the alarm instance in which the counter is created.

4. To set up a loop—that is, you want to fire a trigger after a transition has occurred a certain
number of times—perform these steps:
Designing and Managing Behavior Models 289Version 5.1

Alarm Actions13
a. Select either the Increment or Decrement radio button.

Obviously, this choice determines whether the counter will be incremented or
decremented when the Alarm Counter action is performed. Normally, you increment a
counter because the counter is initialized to 0. However, it is possible to set the counter
to a nonzero value in one Alarm Counter action and then to decrement it in another.

The counter is incremented or decremented before it is used in any comparison.

b. Type an integer in the when counter equals field.

The Alarm Counter action can fire a trigger when the counter equals this value.

c. Type the name of a new trigger in the Fire Trigger field, or select an existing trigger
from the Fire Trigger drop-down list.

If you do not enter a trigger name, any value you enter in the “when counter equals”
field is lost when you save the alarm.

5. To set or reset the value of a counter, perform these steps:

a. Check the Set Counter checkbox.

b. Enter an integer in the Value field.

The counter will be set to this value when the Alarm Counter action occurs.

6. Select the OK button in the Alarm Counter Action dialog.

7. Select the OK button in the Transition Definition window.

8. Select the Save button in the Alarm Definition window.
Designing and Managing Behavior Models Version 5.1290

Beep 13
Beep

If you add the Beep alarm action to a transition, NerveCenter sends an audible alarm to all of the
clients connected to the server when that transition occurs. This is one method of notifying network
administrators of a condition that requires their attention.

TO ADD A BEEP ALARM ACTION TO A TRANSITION

1. In the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Beep from the pop-up menu.

The Beep Action dialog is displayed.

3. Type a value in the Frequency field, or leave the default value of 300.

This value specifies the beep’s frequency in hertz.

4. Type a value in the Duration field, or leave the default value of 50.

This value specifies the beep’s duration in milliseconds.

5. Select the OK button in the Beep Action dialog.

6. Select the OK button in the Transition Definition window.

7. Select the Save button in the Alarm Definition window.
Designing and Managing Behavior Models 291Version 5.1

Alarm Actions13
Clear Trigger

When you define a Fire Trigger alarm action, you can use a delay to determine when the trigger
actually fires. (For details about the Fire Trigger action, see the section Fire Trigger on page 300.)
After a Fire Trigger action has been initiated, but before the delay has elapsed, you can cancel the
firing of the trigger using the Clear Trigger action. A Clear Trigger action cancels any pending
triggers of a specified name that have been queued by its own alarm instance.

When you include a Clear Trigger action with other alarm actions, the Clear Trigger action is
always performed first. This prevents the possibility of a trigger being fired and then cleared during
the same transition.

A good example of the use of Fire Trigger and Clear Trigger is the predefined alarm
IfLinkUpDown.

FIGURE 13-3. IfLinkUpDown Alarm
This alarm is designed to transition from Ground to Down Trap upon the receipt of a linkDown
trigger. When this transition occurs, a Fire Trigger action fires the trigger linkTimer on a three-
minute delay. If a linkUp trap arrives within three minutes, the linkUp transition occurs, and a Clear
Trigger action clears the linkTimer trigger. Otherwise, the linkTimer trigger is fired, and the alarm
transitions to the LinkDown state.
Designing and Managing Behavior Models Version 5.1292

Clear Trigger 13
TO ADD A CLEAR TRIGGER ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select the Clear Trigger action.

The Clear Trigger Action dialog is displayed.

3. Type the name of the trigger you want to clear in the Trigger Name field, or select it from
the Trigger Name drop-down list.

Pending triggers of this name will be cleared only in the alarm instance that invokes the
Clear Trigger action.

4. Select the OK button in the Clear Trigger Action dialog.

5. Select the OK button in the Transition Definition window.

6. Select the Save button in the Alarm definition window.
Designing and Managing Behavior Models 293Version 5.1

Alarm Actions13
Command

The Command alarm action enables you to execute any command or script when a particular alarm
transition occurs. An example of an alarm that uses this action is the predefined alarm IPSweep.

FIGURE 13-4. IPSweep Alarm
When the IPSweep transition occurs, this alarm executes a program called ipsweep. This is the
program that actually discovers the devices on the subnets you’re managing.

TO ADD A COMMAND ACTION TO A TRANSITION

1. In the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Command from the pop-up menu.

The Command Action dialog is displayed.

3. Type the command to be executed in the Command field.

On Windows systems, the command can be any .exe, .bat, or .cmd file you can invoke from
the command line. You can omit the command suffix because the operating system will
locate the appropriate file. On UNIX systems, the command can be any executable binary or
script file that you can invoke from a shell.
Designing and Managing Behavior Models Version 5.1294

Command 13
4. Enter any parameters that the command requires after the command.

NOTE

The command plus its parameters can be up to 2020 characters in length.
If you exceed this length, the error “Command line too long” is written to
the event or system log.

If the parameters are constants, you can simply type them in the Command field following
the command name. However, if they will vary from alarm instance to alarm instance (and
NerveCenter maintains the information you need in one of its variables), you can use the
Special Symbol drop-down list and the button beside it to enter the parameters. For more
information, see NerveCenter Variables on page 327.

To enter a variable in your command:

a. Place your cursor at the appropriate spot in the Command field.

b. Select a variable from the Special Symbol drop-down list.

c. Select the button to the right of the Special Symbol field.

5. Select the OK button in the Command Action dialog.

6. Select the OK button in the Transition Definition window.

7. Select the Save button in the Alarm Definition window.
Designing and Managing Behavior Models 295Version 5.1

Alarm Actions13
Delete Node

The Delete Node action deletes the node being monitored by the current alarm instance from the
NerveCenter database.

An example of using Delete Node might be to remove a node from the NerveCenter database that
does not respond to a ping for five minutes after an alarm transitions to a down state.

TO ADD A DELETE NODE ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Delete Node from the pop-up menu.

The Delete Node action is added to the Actions list in the Transition Definition window.

3. Select the OK button in the Transition Definition window.

4. Select the Save button in the Alarm Definition window.

EventLog

The EventLog alarm action writes information about an alarm transition to the Windows
Application event log or a UNIX system log file. On Solaris the system log file is
/var/adm/messages.

TO ADD AN EVENTLOG ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select EventLog from the pop-up menu.

The Event Log Action dialog is displayed.
Designing and Managing Behavior Models Version 5.1296

EventLog 13
This dialog provides default values for the three standard event log parameters—Source,
Type, and Event—and allows you to change them.

NOTE

If you’re working in a UNIX environment, you can skip to step 6 because
UNIX does not use these parameters.

3. Leave the default value in the Source text field, or type in a new registered source.

In the Windows environment, use the default value (NerveCenter) for the Source unless you
are familiar with the intricacies of the event log and have created another registered source.
The source is the program generating the log entry.

4. Select one of the standard event log types from the Type drop-down list.

Select the most appropriate option for the situation your alarm transition detects. The options
are Error, Warning, Informational, Audit Success, and Audit Failed.

5. Leave the default event ID in the Event field, or type a new one.

Under Windows, use the default value (3221356553) in the Event field unless you’re
familiar with the inner workings of the event log, have changed your Source value from the
default, and have defined an associated ID. The event log uses this event ID to find the text
message format for the log entry.

6. Select the OK button in the Event Log Action dialog.

7. Select the OK button in the Transition Definition window.

8. Select the Save button in the Alarm Definition window.

A sample event log entry is shown in Figure 13-5.
Designing and Managing Behavior Models 297Version 5.1

Alarm Actions13
FIGURE 13-5. Event Detail
Table 13-1 lists the fields in a NerveCenter log entry or mail message and discusses the value of
each field.

TABLE 13-1. Fields in Log Entry or Mail Message

Field Contains

Time Date and time the record was logged. The format of the time is mm/dd/yyyy
hh:mm:ss day (for example, 10/29/1997 14:32:22 Sat).

LogID Identification number of the log entry. NerveCenter assigns a sequential number
to each log entry.

Severity The severity of the transition’s destination state.

PropertyGroup Property group of the node that caused the alarm to change states.

Node Name of the node that caused the alarm to change states.

Alarm Name of the alarm.

Ostate Name of the state from which the alarm moves when the logged transition occurs.

Trigger Name of the trigger that causes the alarm to move from the Ostate to the Nstate.

Nstate State of the alarm after the logged transition occurs.
Designing and Managing Behavior Models Version 5.1298

EventLog 13
TrapTime The contents of a trap’s timestamp field. Used only when the transition was
caused by a trap-mask trigger.

GenericTrapNumber The contents of a trap’s generic-trap field. Used only when the transition was
caused by a trap-mask trigger.

Enterprise The contents of a trap’s enterprise field. Used only when the transition was
caused by a trap-mask trigger.

SpecificTrapNumber The contents of a trap’s specific-trap field. Used only when the transition was
caused by a trap-mask trigger.

Instance The specific base object instance for which the transition occurred.

Object The base object associated with the transition.

Attribute ... The variable bindings of the trigger that caused the transition. Each variable
binding is printed in the format Attribute attribute=value.

TABLE 13-1. Fields in Log Entry or Mail Message (Continued)

Field Contains
Designing and Managing Behavior Models 299Version 5.1

Alarm Actions13
Fire Trigger

In NerveCenter, you have several ways of generating a trigger. For instance, you can use a poll, a
mask, or the FireTrigger() function to fire the trigger. You can also use the Fire Trigger alarm action
to produce a trigger. This action is useful when you need one alarm to send a trigger to itself or to
another alarm.

Here are some examples of when you might need to use the Fire Trigger alarm action:

 You want an alarm transition to fire a trigger on a delayed basis so that your alarm will know
when a certain amount of time has passed.

This strategy is used in the predefined alarm IfLinkUpDown, shown in Figure 13-6.

FIGURE 13-6. IfLinkUpDown Alarm
On the linkDown transition, this alarm fires the linkTimer trigger on a three-minute delay. If
a linkUp trigger does not cause a transition to Ground within three minutes, the linkTimer
trigger is fired, and the alarm transitions to the LinkDown state.

Using the action for its timing capabilities is the most common use of the Fire Trigger
action.

 You want to send information to an alarm instance about an event that is outside its scope.

As an example, let’s look at the predefined alarm BetterNode, which tracks the status of a
node on a different subnet from the NerveCenter server.
Designing and Managing Behavior Models Version 5.1300

Fire Trigger 13
FIGURE 13-7. BetterNode Alarm
If NerveCenter is unable to ping a node, the node’s alarm instance transitions to the IcmpFail
state. What happens next, however, depends on a trigger fired by an alarm instance
monitoring the router that sits between the NerveCenter server and the node being monitored
with BetterNode. If the alarm instance monitoring the router generates the routerUp trigger,
the BetterNode alarm transitions to the critical NoResponse state, but if the router’s alarm
generates the routerDown trigger, the BetterNode alarm transitions to the normal
RouterDown state.

 A behavior model requires alarms of different scopes to detect a condition.

For example, suppose you want to create a behavior model that detects high interface traffic
at the node level. You’ll need to create a subobject scope alarm that detects high traffic on a
single interface and fires a trigger that notifies a node scope alarm that the interface is busy.
You’ll also need a node scope alarm that tracks the triggers being fired by the subobject
scope alarms. Behavior models of this type are called multi-alarm behavior models.

NOTENOTENOTENOTE

If you later turn an alarm off or reset the alarm to ground, any pending triggers fired
by that alarm are cleared if the Clear Triggers for Reset To Ground or Off
checkbox is checked in the alarm’s definition window.
Designing and Managing Behavior Models 301Version 5.1

Alarm Actions13
TO ADD A FIRE TRIGGER ACTION TO AN ALARM TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Fire Trigger from the pop-up menu.

The Fire Trigger Action dialog is displayed.

3. In the Trigger Name field, specify the name of the trigger to be fired when the transition
occurs.

You can either type in the name of a new or existing trigger or select the name of an existing
trigger from the Trigger Name drop-down list.

4. Either leave the default values in the SubObject, Node, and Property fields, or enter new
values using the keyboard or the associated drop-down lists.

If you want your Fire Trigger action to simply provide a timer for its own alarm instance, the
default values are fine. The defaults ensure that the resulting trigger affects only alarm
instances concerning the same node and subobject as the current alarm instance.

If the trigger being fired will affect instances of a different alarm, you may need to change
the default values. The steps below explain the values you can provide for these attributes.

a. To change the value in the SubObject field, either type in a new value or select a value
from the SubObject drop-down list.

NOTE

When choosing a SubObject value, keep in mind that alarm
instances with subobject scope must reference the same
subobject to be transitioned by this trigger. For transitions with
instance scope, only the instances must match; the base objects
can be different. Any alarm instances with a node or enterprise
scope will ignore the value in the SubObject field.
Designing and Managing Behavior Models Version 5.1302

Fire Trigger 13
The following table lists the acceptable values for the SubObject field.

Value Explanation

$SO The trigger inherits the originating alarm’s subobject. This is the
default.

$ANY The trigger is assigned a subobject that matches any destination
alarm subobject. Think of this as a subobject wildcard.

$ON.$OI If the originating alarm has a subobject that consists of a base object
plus an instance joined by a period, the trigger inherits the
originating alarm’s subobject (same as $SO). However, if the
originating alarm does not have this type of subobject, the trigger’s
subobject is null (see $NULL below).

$ON If the originating alarm has a subobject that consists of a base object
plus an instance joined by a period, the trigger inherits the base
object portion of the alarm’s subobject and appends to this base
object a period and a wildcard for the instance. The resulting trigger
can drive alarm instances with a subobject containing a matching
base object and any instance. For example, let’s say that an alarm
instance with the subobject ifEntry.3 fires a trigger using $ON. The
trigger’s subobject will be ifEntry.*, and the trigger will affect alarm
instances with subobjects such as ifEntry.1, ifEntry.2, and so on. If
the originating alarm instance does not have a subobject that consists
of a base object plus an instance, $ON is equivalent to $NULL.

$NULL The trigger is assigned a null subobject. The only subobject scope
alarm that can be affected by such a trigger is one that has a null
subobject itself.

baseObject.instance You can type the subobject. The trigger’s subobject is set to the
subobject you specify, for example, ifEntry.3 or system.0.

anyString This feature enables you to take advantage of the matching rules for
triggers and alarm transitions by making creative use of the
subobject attributes of these objects. For example, you could use the
name of an application as the subobject in order to correlate all
events relating to that application.
Designing and Managing Behavior Models 303Version 5.1

Alarm Actions13
b. To change the value of the Node field, either type in a new value or select a value from
the Node drop-down list.

The following table lists the acceptable values for the Node field.

c. To change the value of the Property field, either type in a new value or select a value
from the Property drop-down list.

The following table lists the acceptable values for the Property field.

When a trigger contains a property, the property group of the node found in a destination
alarm instance’s node data member must contain the trigger’s property. Otherwise, no
alarm transition will occur.

5. Select a delay for the trigger by entering a positive integer in the Delay text field and
selecting the appropriate radio button: Days, Hours, Minutes, or Seconds.

6. Select the OK button in the Fire Trigger Action dialog.

7. Select the OK button in the Transition Definition window.

8. Select the Save button in the Alarm Definition window.

Value Explanation

$NODE The trigger inherits the originating alarm instance’s node. This is the default.

$ANY The trigger is assigned a node that matches any destination alarm instance
node. Think of this as a node wildcard.

nodeName You assign the name of any managed node to this attribute. Use the Node
drop-down list to prevent spelling errors.

Value Explanation

$PROPERTY The trigger inherits the originating alarm instance’s property. This is the
default.

$NO_PROP The trigger is assigned no property. In this case, NerveCenter ignores the
trigger’s property attribute when determining which alarm transitions the
trigger can affect.

property The trigger is assigned the property you type in or select from the Property
drop-down list.
Designing and Managing Behavior Models Version 5.1304

Inform 13
Inform

Once NerveCenter has used its event-correlation abilities to detect a problem, it can notify a
network management platform or another NerveCenter server of the problem using the Inform
action. This alarm action enables you to notify OpenView Network Node Manager or another
NerveCenter when a significant network event is detected.

NOTENOTENOTENOTE

For information about sending messages to IBM Tivoli Netcool/OMNIbus, see the
section Inform Platform on page 308.

(For information about integrating NerveCenter with OpenView, see Integrating with HP
OpenView Network Node Manager in Integrating NerveCenter with a Network Management
Platform.)

Inform sends the equivalent of an SNMP trap to its recipients, and the specific trap number in the
trap indicates the nature of the problem. The recipients of the trap must be set up to interpret this
trap properly and to take appropriate action. For example, when OpenView Network Node
Manager receives an Inform message from NerveCenter, it usually displays a customized message
in its event browser.

NOTENOTENOTENOTE

Although the message that the Inform action sends to its recipients contains the
same information as a trap, the message is not sent via UDP. Because the delivery
mechanism must be reliable, the message is sent via TCP.

Typically, a behavior model uses the Inform alarm action on a transition to some terminal state. For
example, consider the predefined alarm SnmpStatus, shown in Figure 13-8.
Designing and Managing Behavior Models 305Version 5.1

Alarm Actions13
FIGURE 13-8. SnmpStatus Alarm
Only one transition in this alarm contains an Inform action. That is the transition SS_ICMP_Failed,
which leads to the DeviceDown state. An alarm does not specify who is to receive Inform
messages. The recipients of these messages are set up in the NerveCenter Administrator by the
person who configures NerveCenter.

If the destination is a network management platform, such as OpenView Network Node Manager,
you must create a new event message for the platform that will be posted when OpenView receives
your Inform message. If the destination is another NerveCenter server, you must create a trap mask
in the destination NerveCenter to capture the Inform message. (For information on how to create
such a trap mask, see the section Creating a Trap Mask on page 242.)

TO ADD AN INFORM ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Inform from the pop-up menu.

The Inform Action dialog is displayed.
Designing and Managing Behavior Models Version 5.1306

Inform 13
3. Type a number in the range 100000 to 199999 in the Specific Number text field, or leave
this field blank.

For more information about the specific number field, see Inform Specific Numbers on page
310.

4. Select the OK button in the Inform Action dialog.

5. Select the OK button in the Transition Definition window.

6. Select the Save button in the Alarm Definition window.

As mentioned earlier, each Inform message looks like an SNMP trap. Thus, it contains a great deal
of information other than a specific-trap number that you can display in an OpenView event
message or use in a NerveCenter trap mask. This information is listed below:

 A timestamp.

 A generic trap number. This number will always be 6.

 An enterprise. The enterprise OID will always be 1.3.6.1.4.1.78.

 A list of variable bindings. For a list of these variable bindings, see the section Variable
Bindings for NerveCenter Informs on page 245.
Designing and Managing Behavior Models 307Version 5.1

Alarm Actions13
Inform Platform

You can design alarms to notify the IBM Tivoli Netcool/OMNIbus network management platform
of significant events that require your attention. In addition, you must have a corresponding
network management platform event configured to listen for the specific trap number.

TO CONFIGURE AN INFORM PLATFORM ACTION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Inform Platform from the pop-up menu.

The Inform Platform Action dialog is displayed.

3. In the Specific Number field, enter the specific trap value you want to use for the Inform.
Typically, this number would be between 100000 and 199999.

For more about the specific number field, see Inform Specific Numbers on page 310.

4. Select the OK button.

The new action is added to the transition.

5. Select the OK button again to close the Transition Definition dialog box and save your
action.

NOTE

When you are finished making changes to an alarm’s definition, select
Save to save all changes before closing the Alarm Definition window.
Designing and Managing Behavior Models Version 5.1308

Inform Platform 13
Informs contain the following information in addition to the specific trap number you enter:

 A timestamp.

 A generic trap number. This number will always be 6.

 An enterprise. The enterprise OID will always be 1.3.6.1.4.1.78.

 A list of variable bindings. For a list of these variable bindings, see the section Variable
Bindings for NerveCenter Informs on page 245.

The following information about the MIB objects is inserted at the end of the variable bindings.

ObjectName1.ObjectInstance1=Value1;ObjectName2.ObjectInstance2=Value2; ...

A NerveCenter MIB definition for these variable bindings is located in the following directories,
depending on whether you are using Windows or UNIX:

 Windows: \Program Files\OpenService\NerveCenter\Mib\nervectr.mib

 UNIX: /opt/OSInc/mibs/nervectr.mib

If you incorporate this MIB into your network management platform, the attribute names of the
variable bindings are displayed in the platform’s message browser.
Designing and Managing Behavior Models 309Version 5.1

Alarm Actions13
Inform Specific Numbers

When creating an Inform or Inform Platform action, you are expected to supply a Specific Number
for the Inform. Normally, you should enter a number in the range 100000 to 199999 or leave this
field blank. The trap numbers 0 to 99999 are reserved for NerveCenter use, and the numbers
200000 and above are reserved for future use.

The number you supply becomes the specific trap number in the trap-like message that is sent to all
the destinations that have been configured to receive Inform messages. If the destination is a
network management platform, such as OpenView Network Node Manager, you must create a new
event message for the platform that will be posted when OpenView receives your Inform message.

If the destination is another NerveCenter server, you must create a trap mask in the destination
NerveCenter to capture the Inform message. (For information on how to create such a trap mask,
see the section Creating a Trap Mask on page 242.) The portion of NerveCenter that must be
installed with a network management platform defines general event messages for these default
specific-trap values. However, other NerveCenter servers know nothing of default values in Inform
messages sent by this NerveCenter server. For that reason, you must create a trap mask in the
destination NerveCenter to receive the Inform message.

If you leave the Specific Number field blank, NerveCenter supplies a default specific trap number.
NerveCenter creates this default value by adding 1000 to the severity level of the destination alarm
state. Thus, if the Inform action takes place on a transition to a Critical state, the default specific
number is 1012, because the severity level of Critical is 12.

You can determine a severity's number by choosing Severity List from the client’s Admin menu.

When NerveCenter sends Informs to your platform, NerveCenter first checks the minimum severity
value configured in NerveCenter Administrator to ensure that the trap value for the Inform matches
or exceeds that severity. There is one case when NerveCenter disregards the minimum severity
value specified in Administrator: After NerveCenter sends an Inform, if the condition returns to a
normal state-that is, a state below the minimum severity threshold you configure-it’s important that
NerveCenter notify the platform of this change. Therefore, if a node transitions the alarm from a
severity above the minimum value to a severity below the minimum value, and the transition
includes and Inform action, NerveCenter will send a Normal Inform to the platform. This allows
the platform to reset the mapped severity color associated with the node.
Designing and Managing Behavior Models Version 5.1310

Log to Database 13
Log to Database

The Log to Database alarm action, available only on Windows systems, writes information about
an alarm transition to the NerveCenter database. You can extract logged data from the database
using any ODBC-compliant reporting tool.

NOTENOTENOTENOTE

Overuse of Log to Database may slow down NerveCenter’s performance.

TO ADD A LOG TO DATABASE ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Log to Database from the pop-up menu.

The Log to Database Action dialog is displayed.

3. Enter a number in the Log Identity text field.

Since all Log to Database actions write their output to the same database, you need some
way to determine which data was written by which alarm. This number gives you that
ability.

4. To log particular information instead of NerveCenter’s default data, do the following:

a. Deselect the Default Data checkbox.

b. In the Custom Data field, type or paste the variables you want included in the log,
separating each variable with a space.
Designing and Managing Behavior Models 311Version 5.1

Alarm Actions13
5. Select the OK button in the Log to Database Action dialog.

6. Select the OK button in the Transition Definition window.

7. Select the Save button in the Alarm Definition window.

See the table Fields in Log Entry or Mail Message on page 298 for a list of the values that
constitute a log file entry. These are the values you can retrieve from the database.

Log to File

The Log to File alarm action writes information about an alarm transition to an ASCII text file.

NOTENOTENOTENOTE

Over use of Log to File may slow down NerveCenter’s performance.

TO ADD A LOG TO FILE ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Log to File from the pop-up menu.

The Log to File Action dialog is displayed.

TIP

You can also select a variable from the Special Symbol drop-down listbox
and then click the red arrow.
Designing and Managing Behavior Models Version 5.1312

Log to File 13
3. In the File Name text field, type in either a filename or a full pathname for your log file.

If you enter a filename, the log file is written to the directory install_directory/Log
(Windows) or install_directory/userfiles/logs (UNIX). If you enter a full pathname, the log
file is written to the directory you specify.

4. To log particular information instead of NerveCenter’s default data, do the following:

a. Deselect the Default Data checkbox.

b. In the Custom Data field, type or paste the variables you want included in the log,
separating each variable with a space.

Table 13-2 lists the variables you can include in the Custom Data field.

5. Select either the On or Off radio button in the Enable frame.

This option gives you the ability to disable logging without disabling the alarm of which the
logging action is a part.

6. Select either the On or Off radio button in the Verbose Output frame.

If you turn Verbose Output on, NerveCenter labels each value it writes to the log file.
Otherwise, NerveCenter writes only the values, separated by commas, to the log file. This
may be what you want if you are using the log file only as the basis for reports.

TIP

You can also select a variable from the Special Symbol drop-down listbox
and then click the red arrow.
Designing and Managing Behavior Models 313Version 5.1

Alarm Actions13
7. Select the OK button in the Log to File Action dialog.

8. Select the OK button in the Transition Definition window.

9. Select the Save button in the Alarm Definition window.

See Table 13-2, NerveCenter Variables on page 327 for a list of the values that constitute a log file
entry. And remember that if you create your log file in non-verbose mode, the values in an entry are
not labeled; they are separated by commas. You may need to refer to the table mentioned above to
interpret the contents of a log entry. Table 13-2 also lists the variables you can use in log actions
that log alarm data to a file or database.

Microsoft Mail

The Microsoft Mail alarm action—available when the NerveCenter server is running on a Windows
platform—enables an alarm to send mail concerning a transition to clients of a Microsoft Exchange
Server. This mail contains the name of the alarm that underwent the transition, the name and
severity of the destination state, the name of the node being monitored, and so on.

NOTENOTENOTENOTE

Before you can use this action, the person who configured NerveCenter must have
set up a Microsoft Exchange Server profile and set up NerveCenter correctly. This
setup is covered fully in Configuring NerveCenter to Send Microsoft Mail in
Managing NerveCenter.

TO ADD A MICROSOFT MAIL ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Microsoft Mail from the pop-up menu.

The Microsoft Mail Action dialog is displayed.
Designing and Managing Behavior Models Version 5.1314

Notes 13
3. Enter a recipient for the mail in the Receiver text field.

4. Select the OK button in the Microsoft Mail Action dialog.

The new action appears in the list of actions in the Transition Definition window.

5. Select the OK button in the Transition Definition window.

6. Select the Save button in the Alarm Definition window.

For an explanation of the values that appear in a mail message that results from this action, see the
table Fields in Log Entry or Mail Message on page 298.

Notes

Whenever you create an alarm, you can—and should—create notes that document the alarm.
Generally, this documentation should accomplish the following goals:

 Explain the purpose of the alarm

 Briefly describe the alarm’s states and transitions

 List the polls, masks, and alarms that fire triggers that can affect the alarm

 Describe the actions that take place during alarm transitions, especially Fire Trigger and Perl
Subroutine actions

 Document any programs or scripts that are called via a Command action

 Name any reports that are run against data logged by the alarm

 Explain any customization required to work with the alarm

Using the Notes alarm action you can cause an alarm’s notes to be displayed by a behavior model.
The notes are displayed in the Alarm Definition Notes window when the transition with which the
Notes action is associated occurs. For example, adding a Notes action to the first transition in the
predefined alarm IfDataLogger would cause the notes in Figure 13-9 to be displayed whenever that
transition occurred:
Designing and Managing Behavior Models 315Version 5.1

Alarm Actions13
FIGURE 13-9. Notes for IfData_LogToFile Alarm

TO ADD THE NOTES ALARM ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Notes from the pop-up menu.

The Notes action is added to the list of actions in the Transition Definition window.

3. Select the OK button in the Transition Definition window.

4. Select the Save button in the Alarm Definition window.
Designing and Managing Behavior Models Version 5.1316

Paging 13
Paging

The Paging action dials a pager using a modem attached to the machine running the NerveCenter
server. The Paging action then relays to the pager a numeric code that corresponds to the alarm that
initiated the action. If you want to send a text message to an alphanumeric pager, you must use one
of the mail alarm actions (Microsoft Mail or SMTP Mail) with third-party software that includes a
mail spool monitoring function. In this case, the mail spool monitor detects a message, calls the
pager on a special line, and downloads the mail message.

Before you can use the Paging action, someone must have configured NerveCenter to handle
paging actions correctly. This configuration is done from the NerveCenter Administrator and is
documented in Managing NerveCenter Alarm Actions in Managing NerveCenter.

TO ADD A PAGING ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Paging from the pop-up menu.

The Paging Action dialog is displayed.

3. Type the pager’s phone number in the Pager Number field.

The pager number is the sequence of digits and special Hayes AT commands needed by the
Paging action to reach the pager. Special Hayes commands include the comma or p, which
causes a pause (while the Paging action waits for a secondary dial tone) and many others.
For a list of valid commands, see your modem manual.

4. Type in the Alarm Code field a number that identifies the network situation being reported.

The alarm code is a sequence of digits that is displayed on the pager. The maximum number
of digits that a pager can display varies from pager to pager. If you don’t supply an alarm
code, a default value of 911 is used.
Designing and Managing Behavior Models 317Version 5.1

Alarm Actions13
TIP

If most of your transitions that include Paging actions also include Inform
actions, you might consider using each Inform’s specific trap number as
the alarm code for the corresponding Paging action.

5. Type the character that terminates the paging connection in the Terminate String field.

This character is a key used by the paging system to terminate the connection and send the
page. It differs from system to system, but is usually # (pound sign) or * (asterisk). Consult
your paging system manual to determine the correct key for your system. If you don’t
specify a key, the Paging action uses the default value #.

6. Select the OK button in the Paging Action dialog.

The new action appears in the Actions list in the Transition Definition window.

7. Select the OK button in the Transition Definition window.

8. Select the Save button in the Alarm Definition window.

Perl Subroutine

The Perl Subroutine alarm action enables you to execute a Perl subroutine when a particular alarm
transition occurs. This action is similar to the Command action in that it enables you to execute a
script. However, the Perl Subroutine action can be much more powerful than the Command action
because:

 NerveCenter provides a set of functions for use in Perl subroutines. These functions enable
you to access the contents of a trigger’s variable bindings, fire triggers, assign property
groups to nodes, and so on. For complete information about these functions, see the section
Functions for Use in Perl Subroutines on page 323.

 NerveCenter provides a set of variables for use in Perl subroutines that give you access to a
great deal of internal NerveCenter information about the alarm transition that just occurred.
For details, see the section NerveCenter Variables on page 327.

NOTENOTENOTENOTE

You can call Perl subroutines defined outside of NerveCenter from the command
line; however, these Perl subroutines use the Perl interpreter installed by the user
and not the Perl engine embedded in NerveCenter. Also, Perl programs run outside
of NerveCenter will not have access to any NerveCenter variables or data
structures.
Designing and Managing Behavior Models Version 5.1318

Perl Subroutine 13
Using these functions and variables, you can create scripts that you could not write using another
language. The section Perl Subroutine Example on page 329 presents an example of how you
might use the Perl Subroutine action.

TO ADD A PERL SUBROUTINE TO A TRANSITION

1. Define the Perl subroutine. This task is documented in the section Defining a Perl
Subroutine on page 320.

2. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

3. Select Perl Subroutine from the pop-up menu.

The Perl Subroutine Action dialog is displayed.

4. Select a Perl subroutine from the Name drop-down list.

This list contains all the compiled Perl subroutines stored in the NerveCenter database.

5. Select the OK button in the Perl Subroutine Action dialog.

6. Select the OK button in the Transition Definition window.

7. Select the Save button in the Alarm Definition window.
Designing and Managing Behavior Models 319Version 5.1

Alarm Actions13
Defining a Perl Subroutine

Before you can add a Perl subroutine to a transition, you must write it (obviously) and store a
compiled version of it in the NerveCenter database.

NOTENOTENOTENOTE

Perl subroutines that you define inside NerveCenter use the Perl engine embedded
in NerveCenter and not any Perl interpreters installed outside of NerveCenter. Any
Perl programs run outside of NerveCenter will not have access to any NerveCenter
variables or data structures.

TO DEFINE A PERL SUBROUTINE WITHIN NERVECENTER

This window contains a list with an entry for each Perl subroutine defined in your
NerveCenter database. The Compiled Status column indicates whether the subroutine has
been successfully compiled. From this window, you can add a new subroutine, modify an
existing subroutine, or view the notes for a subroutine.

1. From the Admin menu in the main client window, choose Perl Subroutine List.

The Perl Subroutine List window appears.
Designing and Managing Behavior Models Version 5.1320

Perl Subroutine 13
2. To add a new subroutine to NerveCenter, select the New button.

The Perl Subroutine Definition window appears.

This window enables you to name and define a new Perl subroutine.

3. Type the name of your new Perl subroutine in the Name field.

NOTE

The maximum length for Perl subroutine names is 255 characters.

4. To document your Perl subroutine, select the Notes button, enter a description in the Perl
Subroutine Notes window, and select the OK button in that window.

5. Type your Perl subroutine in the Subroutine text entry box.

Use Perl version 5 to write your subroutine. You can also make use of the NerveCenter
functions and variables discussed in the sections Functions for Use in Perl Subroutines on
page 323 and NerveCenter Variables on page 327

If you right-click in the Perl-subroutine editing area, you’ll see a pop-up menu that lists all
the functions and variables available for writing Perl subroutines. For more information
about this pop-up menu, see the section Using the Pop-Up Menu for Perl on page 194.

NOTE

The maximum length for identifiers in Perl subroutines is 251 characters
(252 including the variable type identifier character $, %, and so on).
Designing and Managing Behavior Models 321Version 5.1

Alarm Actions13
6. If you want to use the shared Perl interpreter, select the Execute Perl in Global Space
checkbox.

NOTE

If you select Execute Perl in Global Space, the poll condition executes in a
shared Perl interpreter. You can use Global variables in your poll condition
to share information between other Perl routines such as trigger functions
or Perl subroutines, however, Perl intensive poll conditions may impede
NerveCenter’s performance.
If you do not select Execute Perl in Global Space, the poll condition
executes in a Perl interpreter dedicated to poll conditions. This will
improve NerveCenter’s performance, however you cannot use global
variables in your poll condition to share information between other Perl
routines such as trigger functions or Perl subroutines.
For more information about the various Perl interpreters, see NerveCenter
and Perl on page 56.

7. Select the Save button in the Perl Subroutine Definition window.

NerveCenter automatically attempts to compile the subroutine. If your Perl subroutine does
not compile correctly, NerveCenter displays an error message from the Perl compiler. It also
saves the subroutine and places it in the Perl Subroutine List, with the Compiled Status listed
as Not Compiled.

If your Perl subroutine compiles successfully, the saved subroutine is available for use in a
Perl Subroutine alarm action. It won’t be executed unless it’s made the object of a Perl
Subroutine action and the associated alarm transition occurs.

CAUTION

Do not call the exec or exit function from within your Perl subroutine.
These statements may cause the NerveCenter server to terminate.
Designing and Managing Behavior Models Version 5.1322

Perl Subroutine 13
Functions for Use in Perl Subroutines

NerveCenter provides a number of functions that you can use in your Perl subroutines. The list
below indicates what types of functions are available and where you can find detailed information
about each function:

 Variable-binding functions. These functions enable you to determine the number of
variable bindings in a trigger’s variable-binding list and to obtain information about each
variable binding. For instance, you can retrieve the subobject and attribute associated with a
variable-binding and the value of a variable-binding.

For reference information about these functions, see the section Variable-Binding Functions
on page 218.

 String-matching functions. These functions enable you to determine whether a string
contains another string or a particular word. The functions are useful in conditions that test
the value of a variable binding for a substring.

For reference information about these functions, see the section String-Matching Functions
on page 193.

 DefineTrigger(). This function enables you to create triggers which you can assign to
variables and fire using FireTrigger() in NerveCenter Perl expressions.

For reference information about this function, see the section DefineTrigger() Function on
page 187.

 FireTrigger(). This function enables you to fire a trigger from your Perl subroutine. You can
specify the name, subobject, and node attributes of the trigger.

For reference information about this function, see the section FireTrigger() Function on
page 189.

 AssignPropertyGroup(). This function enables you to assign a property group to the node
associated with a trigger.

For reference information about this function, see the section AssignPropertyGroup()
Function on page 187.

 in(). This function determines whether one scalar value is in a set of scalar values.

For reference information about this function, see the section in() Function on page 191.

 AddNode(). This function enables you to add a node to the NerveCenter managed node list
from a NerveCenter Perl expression.

For reference information about this function, see the section AddNode() Function on page
324.
Designing and Managing Behavior Models 323Version 5.1

Alarm Actions13
 Counter(). This function returns the current value of an alarm counter. For reference
information about this function, see the section Counter() Function on page 325.

 NC::AlarmCounters. This function enables you to do any of the following: increment
alarm counters by a number other than one, decrement alarm counters by a number other
than one, create alarm counters, set alarm counters, and retrieve alarm counters. For
reference information about this function, see the section NC::AlarmCounters on page 191.

NC::AlarmCounters are independent of and not related to the alarm action Alarm Counter.
See Alarm Counter on page 287 for details.

 Node relationship functions. These functions enable you to import, export, and delete node
parenting relationships from the NerveCenter database. You can use these functions in Perl
subroutines that are called from alarms that you transition on demand. Node Relationship
Functions on page 325.

AddNode() Function

The AddNode() function adds a node to the NerveCenter managed node list. This function can be
called from a poll condition, trap mask trigger function, or a Perl Subroutine alarm action.

Syntax: AddNode(“node name”);

Arguments: node name is the IP address of the node to add to the managed node list and
must be a valid IP address enclosed in quotes, for example, “123.123.123.123”.

Description: Adds a node to the NerveCenter managed node list, with the following
attributes:

 Node name must be a valid IP address enclosed in quotes (for example “192.168.1.1”).

 The address assigned to the node will be the address specified for the node name.

 The node property group will be assigned to the “NCDefaultGroup”

 The node community string will be assigned the default V1 community string value
(“public”).

 The node will be marked as 'managed' and 'not suppressed'

 The SNMP version of the node will be assigned as V1.

 No action is taken if a node of the same name already exists in the node list. No
validation that the node name doesn't already exist is performed at compile time.
Designing and Managing Behavior Models Version 5.1324

Perl Subroutine 13
Counter() Function

You use the Counter() function to get the value of an alarm counter for a particular alarm instance.
The function can only be called from a Perl Subroutine alarm action or an Action Router rule.

The syntax of the Counter() function is shown below:

Counter()

Syntax: Counter(“counterName”)

Arguments:

counterName - The name of an existing alarm counter.

Description: The function returns the value of the specified counter.

Node Relationship Functions

The following functions import, export, and delete node parenting relationships from the
NerveCenter database. You can use these functions in Perl subroutines that are called from alarms
that you transition on-demand. One use for these functions is with the downstream alarm
suppression behavior model that is shipped with NerveCenter. For more information, refer to
Appendix C, Downstream Alarm Suppression.

LoadParentsFromFile()

Syntax: LoadParentsFromFile(filename)

Arguments:

filename - The name of the OVPA or manually created file containing the child parent
relationships. This file should list each child node followed by the parent nodes in
space-delimited fashion.

Description: Imports an OVPA or manually created file containing node parenting
relationship information into the NerveCenter database.

Example: This statement loads the node relationship file data from the file nodeparents.dat
into the NerveCenter database:

NC:: LoadParentsFromFile(nodeparents.dat)
Designing and Managing Behavior Models 325Version 5.1

Alarm Actions13
DumpParentsToFile()

Syntax: DumpParentsToFile(filename)

Arguments:

filename - The name of the file NerveCenter will output containing the child parent
relationships exported from NerveCenter database.

Description: Exports node parenting relationship information from the NerveCenter
database to the specified file on the local machine.

Example: This statement exports node relationship information from the NerveCenter
database to the file nodeparents.dat:

NC:: DumpParentsToFile(nodeparents.dat)

RemoveAllParents()

Syntax: RemoveAllParents()

Description: Deletes node parenting relationship information from the NerveCenter
database.

Example: This statement deletes node relationship information from the NerveCenter
database.

NC:: RemoveAllParents

NerveCenter Variables

NerveCenter defines a number of variables for use in Perl subroutines, Command Alarm actions,
and logging actions. These variables contain information about the alarm transition that just
occurred and about the trigger that caused the transition.

The variables (and functions) available to you for use in poll conditions, trigger functions, Action
Router rule conditions, and Perl Subroutine alarm actions are summarized in a pop-up menu for
Perl accessible via a right mouse click in the respective editing area. (See the section, Using the
Pop-Up Menu for Perl on page 194, for more information.)

The variables available to you for use in Command Alarm actions and the logging actions are
available to you via the Special Symbol drop-down listbox.

The complete list of NerveCenter variables that you can use are shown in Table 13-2:
Designing and Managing Behavior Models Version 5.1326

Perl Subroutine 13
TABLE 13-2. NerveCenter Variables

Variable Contains

$AlarmInstanceID String. The unique identifier for an alarm instance managed by a NerveCenter Server. If
you are connected to more than one server, you can use the $NCHostName variable to
identify the server associated with the alarm instance.

$AlarmName String. The name of the alarm whose instance just underwent a transition.

$AlarmProperty String. The name of the alarm’s property.

$AlarmTransitionTime String. The time at which the alarm transition occurred. This time is formatted as follows:
mm/dd/yyyy hh:mm:ss day. An example of an alarm transition time is 06/02/1998 11:02:26
Tue.

$Date Number. The date on which the alarm transition occurred. When you use this variable in a
comparison, compare it to a value of the form mm/dd/yyyy. Before using this value in the
comparison, NerveCenter converts it to a number of seconds since January 1, 1970.

$DayOfWeek Number. The day of the week on which the alarm transition occurred. When you use this
variable in a comparison, compare it to one of the following values: SUNDAY,
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, and SATURDAY. These
values are converted to numbers between 0 and 6 before they are used in the comparison.

$DestState String. The state of the alarm instance following the current transition.

$DestStatePlatformSev String. The network management platform severity that is mapped to $DestStateSev.

$DestStateSev String. The severity of the state where the transition ended.

$NCHostName String. The NerveCenter Server associated with an alarm instance.

$NewMaxNodePlatformSev String. The network management platform severity that is mapped to $NewMaxNodeSev.

$NewMaxNodeSev String. The maximum severity associated with a node, following the current transition.
This maximum severity is determined by looking at the states of all alarm instances that
are monitoring the node.

$NodeAddress String. The IP address of the node being monitored.

$NodeAddressList String. A comma-separated list of all the IP addresses associated with the node being
monitored. No white space is allowed in this list.

$NodeName String. The name of the node being monitored by the alarm instance that underwent the
transition.

$NodePropertyGrp String. The property group of the node being monitored.

$NoOfVarBinds Number. The number of variable bindings in the trigger that caused the alarm transition.
These variable bindings may have been derived from a poll condition or an SNMP trap.
Designing and Managing Behavior Models 327Version 5.1

Alarm Actions13
$OrigState String. The state of the alarm instance prior to the current transition.

$OrigStatePlatformSev String. The network management platform severity that is mapped to $OrigStateSev.

$OrigStateSev String. The severity of the state where the transition began.

$PollKey String. If a poll caused the transition, this variable contains a value that uniquely describes
the poll and the alarm instance with which it interacted. That value has the format
pollID.nodeID.baseObject.instance. $PollKey is usually used as an index into a Perl hash.

$PrevMaxNodePlatformSev String. The network management platform severity that is mapped to $PrevMaxNodeSev.

$PrevMaxNodeSev String. The maximum severity associated with a node, prior to the current transition. This
maximum severity is determined by looking at the states of all alarm instances that are
monitoring the node.

$ReadCommunity String. The read community string of the node being monitored.

$Time Number. The time at which the alarm transition occurred. When you use this variable in a
comparison, compare it to a value of the form hh:mm. NerveCenter converts this value to
a number of seconds before performing the comparison.

$TrapPduAgentAddress String. If an SNMP trap caused the transition, this variable contains the trap’s agent
address.

$TrapPduCommunity String. If an SNMP trap caused the transition, this variable contains the trap’s community
string.

$TrapPduEnterprise String. If an SNMP trap caused the transition, this variable contains the trap’s enterprise
OID.

$TrapPduGenericNumber Number. If an SNMP trap caused the transition, this variable contains the trap’s generic
trap number.

$TrapPduSpecificNumber Number. If an SNMP trap caused the transition, this variable contains the trap’s specific
trap number.

$TrapPduTime Number. If an SNMP trap caused the transition, this variable contains the trap’s
timestamp.

$TriggerBaseObject String. The base object portion of the trigger’s subobject attribute. For example, if the
trigger’s subobject is IfEntry.2, the base object is ifEntry.

$TriggerInstance Number. The instance portion of the trigger’s subobject attribute. For example, if the
trigger’s subobject is IfEntry.2, the instance is 2.

$TriggerName String. The name of the trigger that caused the alarm transition.

TABLE 13-2. NerveCenter Variables (Continued)

Variable Contains
Designing and Managing Behavior Models Version 5.1328

Perl Subroutine 13
Perl Subroutine Example

As a simple example, suppose that you want to poll a node for the value of an attribute and to fire
different triggers depending on the value. Let’s say that you’re interested in the value of
ifEntry.ifOperStatus and that you want to fire different triggers for the values 1 (up), 2 (down), and
3 (testing). You also want to fire a fourth trigger if the value is some other number.

You could solve this problem by using multiple polls with the poll conditions ifEntry.ifOperStatus
== 1, ifEntry.ifOperStatus == 2, and so on. However, this would be very inefficient. A better
solution would be to use the poll to retrieve the value of the attribute and to fire a trigger if it is
successful. So the poll condition would simple be:

ifEntry.ifOperStatus present

Then, on the transition associated with the poll’s trigger, you could execute a Perl subroutine. This
subroutine might look something like this:

if (ifEntry.ifOperStatus == 1) {
FireTrigger(“OperStatusUp”);

}
elsif (ifEntry.ifOperStatus == 2) {

FireTrigger(“OperStatusDown”);
}
elsif (ifEntry.ifOperStatus == 3) {

FireTrigger(“OperStatusTest”);
}
else {

FireTrigger(“OperStatusBad”);
}

$VarBinds String. The list of all variable bindings in the form attribute=value. In the case of Perl
subroutines and Action Router rules, it makes sense to use attribute name, value or object
for an individual variable binding.

$VB(n) String. The nth variable binding. You can use $VB(n) in Log to File and Log Database
alarm actions only.

$WriteCommunity String. The write community string of the node being monitored.

TABLE 13-2. NerveCenter Variables (Continued)

Variable Contains
Designing and Managing Behavior Models 329Version 5.1

Alarm Actions13
Send Trap

The Send Trap alarm action enables you to send an SNMPv1 trap when a transition occurs and
gives you virtually complete control over the contents of the trap.

NOTENOTENOTENOTE

NerveCenter does not send SNMPv3 traps, because under SNMPv3, a node’s IP
address is no longer sent in the packet’s header; therefore, NerveCenter cannot
simulate a node’s IP address and send the SNMPv3 trap.

Generally, when one alarm must communicate with another, the first uses the Fire Trigger action to
fire a trigger that causes a transition in the second. However, Send Trap can also be used for this
type of inter-alarm communication. The first alarm can send a trap to the NerveCenter server, the
server can process the trap using a trap mask (which can fire a trigger), and the trigger can cause a
transition in the second alarm. This is a more roundabout way of firing the required trigger, but
gives you the ability pass the trap’s variable bindings, along with the trigger, to the second alarm. In
addition, Send Trap enables an alarm being managed by one NerveCenter server to communicate
with an alarm being managed by another server, while Fire Trigger does not.

Of course, you aren’t limited to sending traps to NerveCenter. You can send a trap to any
application that knows how to process SNMP traps.

TO ADD A SEND TRAP ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Send Trap from the pop-up menu.

The Send Trap Action dialog is displayed.
Designing and Managing Behavior Models Version 5.1330

Send Trap 13
3. In the Source field, enter information about node whose address you want to appear in the
agent-address field of the trap PDU.

The valid values for this field are:

 $NodeName (the default value), which represents the node associated with the trigger
that caused the transition.

 $NCHostName, which represents the node on which the active NerveCenter server is
running.

 A node name.

 An IP address. Using an IP address is generally more efficient than using a node name
because it eliminates the name-to-address translation.

4. In the Destination field, enter information about the node to which the trap should be sent.

The valid values for this field are the same as those for the Source field. $M is the default.

5. Enter in the Port field the number of the port on the destination machine to which the trap
should be sent.

Generally, SNMP traps are received on port 162, so 162 is the default value.
Designing and Managing Behavior Models 331Version 5.1

Alarm Actions13
6. Enter a community name in the Community field.

This is the community name that a manager needs to know in order to access the agent that is
sending the trap. The default value is public.

7. Select one of the three options from the Trap Numbers drop-down list: Default, Trap, and
Custom.

If you select Default, your trap’s generic trap number will be 6, and its specific trap number
will be 1.

If you select Trap, your trap’s generic and specific trap numbers will match those of the trap
associated with the trigger that caused the alarm transition.

If you select Custom, you can specify a generic trap number using the Generic drop-down
list. In addition, if you select a generic trap number of 6, you can enter a specific trap number
in the Specific field.

8. In the Enterprise field, enter an object identifier, or the corresponding name, for the device
that is the source of the trap.

The valid values for this field are:

 $P (the default), which indicates that the enterprise field in the trap you’re sending
should match the enterprise field in the trap associated with the trigger that caused the
alarm transition.

Note that if the trigger that caused the transition with which this action is associated is
not caused by a trap, $P will not have a value, and the Send Trap action will not take
place.

 An object identifier, such as 1.3.6.1.4.1.9.

 A name associated with an object identifier in an ASN.1 file.

CAUTION

Be aware that traps from the LogMatrix object ID
(1.3.6.1.4.1.78) cannot be seen by NerveCenter because they are
forwarded to your platform.

9. Enter information for each variable binding to be included in the trap PDU.

For each variable binding, perform the following steps.

a. If you want a variable binding to contain exactly the same information as the
corresponding variable binding in the trap associated with the trigger that caused the
alarm transition, select $P from the Base Object list and then select the Insert button
Designing and Managing Behavior Models Version 5.1332

Send Trap 13
If you perform step a, you can the skip the remaining steps in this procedure. Otherwise,
go on to step b.

b. Select a base object from the Base Object list.

c. Select an attribute from the Attribute list.

d. Type an instance in the Instance field.

Using your base object, attribute, and instance, NerveCenter creates the object identifier
portion of the variable binding. For example, if you supply the base object system, the
attribute sysUpTime, and the instance 0, NerveCenter builds an OID of
1.3.6.1.2.1.1.3.0.

e. Enter a value for the attribute instance in the Attribute Value field.

f. Select the Insert button.

10. Select the OK button in the Send Trap Action dialog.

11. Select the OK button in the Transition Definition window.

12. Select the Save button in the Alarm Definition window.
Designing and Managing Behavior Models 333Version 5.1

Alarm Actions13
Set Attribute

The Set Attribute alarm action enables you to set selected attributes of an alarm, a mask, a poll, or a
node. For alarms, masks, and polls, you can turn an object on or off. For nodes, you can assign the
node a property group, or you can suppress or unsuppress the node.

A good example of the use of this action occurs in the predefined alarm DwnStrmSnmpStatus,
which is part of a behavior model that suppresses alarms from nodes that are downstream from a
router that is down. The state diagram for this alarm is shown in Figure 13-10.

FIGURE 13-10. DwnStrmSnmpStatus Alarm
When the behavior model discovers that a node is unreachable because of a router that is down, it
fires the trigger Down and uses the Set Attribute action to turn suppression on for the node it is
tracking. Suppressing the node causes all insuppressible polls to stop polling the node. Similarly, if
the poll IcmpPoll or IcmpFastPoll (both of these polls are insuppressible) determines that the node
is reachable again, the alarm uses the Set Attribute action to turn suppression off for the node. At
this point, normal polling resumes.

NOTENOTENOTENOTE

If your Set Attribute alarm action turns an alarm off, any pending triggers fired by
that alarm are cleared if the Clear Triggers for Reset To Ground or Off checkbox
is checked in the alarm’s definition window.
Designing and Managing Behavior Models Version 5.1334

Set Attribute 13
TO ADD A SET ATTRIBUTE ALARM TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select Set Attribute from the pop-up menu.

The Set Attribute Action dialog is displayed.

In this release of NerveCenter, the Host field is not used.

3. From the Object Type drop-down list, select the type of object for which you want to set an
attribute.

4. Select the name of the object whose attribute you want set from the Name drop-down list.

For an alarm, a mask, or a poll, your options include all the objects of that type in the
NerveCenter database. For a node, you can select any of the nodes in the NerveCenter
database or the variable $NodeName. This variable contains the name of the node associated
with the trigger that caused the transition.

5. Select the object attribute you want to set using the Attribute drop-down list.

If the Object Type is Alarm, Mask, or Poll, the Attribute field is read only because the only
attribute you can set is State (the object’s Enabled status). For a node, you can select either
Property Group or Suppress.

6. Select the value to which you want to set the attribute from the Value drop-down listbox.

7. Select the OK button in the Set Attribute Action dialog.

8. Select the OK button in the Transition Definition window.

9. Select the Save button in the Alarm Definition window.
Designing and Managing Behavior Models 335Version 5.1

Alarm Actions13
SMTP Mail

The SMTP Mail alarm action enables an alarm to send mail concerning a transition to anyone with
access to an SMTP server. This mail contains the name of the alarm that underwent the transition,
the name and severity of the destination state, the name of the node being monitored, and so on.

NOTENOTENOTENOTE

Before you can use this action, NerveCenter must specify an SMTP server. This
setup is covered fully in Specifying an SMTP Server for Mail Notification in
Managing NerveCenter.

TO ADD AN SMTP MAIL ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select SMTP Mail from the pop-up menu.

The SMTP Mail Action dialog is displayed.

3. Enter a recipient for the mail in the Receiver text field.

4. Select the OK button in the SMTP Mail Action dialog.

The new action appears in the list of actions in the Transition Definition window.

5. Select the OK button in the Transition Definition window.

6. Select the Save button in the Alarm Definition window.

For an explanation of the values that appear in a mail message that results from this action, see the
table Fields in Log Entry or Mail Message on page 298.
Designing and Managing Behavior Models Version 5.1336

SNMP Set 13
SNMP Set

The SNMP Set alarm action enables you to set one or more values in the MIB of an SNMP agent
residing on one of your managed nodes. When the transition with which this action is associated
occurs, NerveCenter sends an SNMP set request, which includes information you’ve supplied, to
the node where the agent resides.

TO ADD AN SNMP SET ACTION TO A TRANSITION

1. From the Transition Definition window, select the New Action list.

A list of available actions is displayed.

2. Select SNMP Set from the pop-up menu.

The SNMP Set Action window is displayed.

3. Enter the destination for the SNMP set request in the Destination Host/IP Address field, or
leave the default value, $NODE.
Designing and Managing Behavior Models 337Version 5.1

Alarm Actions13
The valid values for this field are:

 $NODE, a variable that contains the node associated with the trigger that caused the
alarm transition. For example, if a poll generates the trigger, $NODE contains the name
of the node that was polled.

 The name of a node.

 The IP address of a node.

4. Enter a write community string in the Community String field, or leave the default value,
$WRITE_COMMUNITY.

The valid values for this field are:

 $WRITE_COMMUNITY, a variable containing the write community value associated
with the destination node.

 A community name.

5. Enter a port number in the Port field, or leave the default value, $PORT. This field indicates
the port to which the SNMP message will be sent.

The valid values for this field are:

 $PORT, a variable containing the port number associated with the destination node. If
the node’s Port attribute is blank, $PORT represents the value 161.

 A port number.

6. Build a list of variable bindings to be included in your set request’s PDU (protocol data unit).
Each variable binding specifies an attribute to be set and the value to which it should be set.

For each variable binding you want to add to the PDU, perform these steps:

a. Select a base object from the Base Object list.

The base object list contains all the base objects referred to in your compiled MIB. Once
you select a base object, the attributes of that object are listed in the Attribute list.

b. Select an attribute from the Attribute list.

c. Type a value for your attribute in the Attribute Value field.

d. Specify which instance of the attribute you want to set using the Instance field.

If the attribute is a zero-instance attribute, NerveCenter automatically supplies the
instance (0) when you insert the variable binding into the Variable Binding list. In
addition, NerveCenter provides a variable, $I, that you can use to refer to instance
information in the poll or trap mask that generated the trigger.
Designing and Managing Behavior Models Version 5.1338

SNMP Set 13
e. Select the Insert button.

Your variable binding is appended to the Variable Binding list.

NOTE

The SNMP Set Action dialog also enables you to modify and
delete existing variable bindings. Use the Update, Delete, and
Delete All buttons for these operations.

7. Select the OK button in the SNMP Set Action dialog.

The new action is added to the Actions list in the Transition Definition window.

8. Select the OK button in the Transition Definition window.

9. Select the Save button in the Alarm Definition window.
Designing and Managing Behavior Models 339Version 5.1

Alarm Actions13
Designing and Managing Behavior Models Version 5.1340

14
Designing and Managing Behavior ModelsPerforming Actions Conditionally

(Action Router)
When an alarm transition occurs, all the actions associated with that transition are performed
unconditionally. However, the responsibility of one action—Action Router—is to send information
about the transition to the Action Router facility, which performs actions conditionally. That is, the
Action Router action always takes place, but the Action Router facility may or may not initiate
some other action.

Whether the Action Router facility performs one or more actions—such as executing a command
or logging data to a file—depends on rules that you’ve set up using the Action Router. For example,
you might want to specify that if a particular alarm transition occurs at night or on the weekend, an
administrator should be paged. In this case, the alarm transition has the Action Router action
associated with it, and the Action Router rule looks like this:

$DayOfWeek >= MONDAY and $DayOfWeek <= FRIDAY and ($Time < 08:00 or $Time
> 17:00)or ($DayOfWeek == SATURDAY or $DayOfWeek == SUNDAY)
-> Paging 5551234567:911:#

All actions that can be performed from an alarm transition can be performed from the Action
Router, except for the Alarm Counter and Action Router actions. Also, rule conditions can be built
using many types of data, for example:

 The name of an alarm. Did the transition take place in an instance of this alarm?

 The name of a node. Was the alarm instance in which the transition took place monitoring
this node?

 The name of a property group. Does the node that was being monitored have this property
group?

 The severity of the destination alarm state.

 The name of the trigger that caused the transition.

For a complete list of the variables that can be used in an Action Router rule condition, see the table
NerveCenter Variables on page 326.

The remainder of this chapter explains how to determine what Action Router rules have already
been defined and how to create new rules. See the following sections:
Designing and Managing Behavior Models 341Version 5.1

Performing Actions Conditionally (Action Router)14
Listing Existing Action Router Rules

This section explains how to display a list of the Action Router rules currently defined in the
NerveCenter database. The section also explains how to view the definition of a particular rule.

For information on creating a new rule, see Creating an Action Router Rule on page 344.

TO DISPLAY A LIST OF ACTION ROUTER RULES AND THEN DISPLAY A PARTICULAR RULE’S
DEFINITION

1. From the client’s Admin menu, choose Action Router Rule List.

The Action Router Rule List window is displayed.

This window lists all currently defined Action Router rules. If enough room is available in
the window, you can see, for each rule, the condition under which actions will be performed
(the rule condition) and the actions that will be performed under those conditions (the rule
actions).

If you can only see part of the rule, you can either enlarge the window or perform the
following steps.

Section Description

Listing Existing Action Router
Rules on page 342

Explains how to display a list of the Action Router rules currently
defined in the NerveCenter database.

Creating an Action Router Rule
on page 344

Explains how to create a new Action Router rule.
Designing and Managing Behavior Models Version 5.1342

Listing Existing Action Router Rules 14
2. Double-click the rule whose definition you want to see.

The Action Router Rule Definition window is displayed.

3. Select the Rule Condition tab to see the rule condition and the Rule Action tab to see the
actions defined for the rule.

In the figure above, the condition says, “If the alarm transition occurs after hours on a week
day or on a weekend, take the actions listed on the Rules Action page.”
Designing and Managing Behavior Models 343Version 5.1

Performing Actions Conditionally (Action Router)14
Creating an Action Router Rule

There are two components to an Action Router rule: a condition and a list of actions. For example,
suppose you need to develop a rule that will cause NerveCenter to send you e-mail if a device goes
down. The rule’s condition might be:

$TriggerName eq “deviceDown”

This means that you want to know if the Action Router is notified of a transition that occurred as a
result of a deviceDown trigger.

The rule’s action might be:

SMTP Mail networkadmin@yourcompany.com

This means that if the condition is met, NerveCenter should send SMTP mail to the address shown.

The next two subsections explain how to create such rule conditions and rule actions:

 Defining a Rule Condition on page 345

 Defining a Rule Action on page 350

Note that you must create both a condition and one or more actions to complete an Action Router
rule.
Designing and Managing Behavior Models Version 5.1344

Creating an Action Router Rule 14
Defining a Rule Condition

Defining a rule condition is one part of defining an Action Router rule. After defining the rule
condition, you must define a rule action to complete the Action Router rule. For information on
defining a rule action, see the section Defining a Rule Action on page 350.

TO DEFINE A RULE CONDITION

1. From the client’s Admin menu, choose Action Router Rule List.

The Action Router Rule List window is displayed.

2. Select the New button in the Action Router Rule List window.

The Action Router Rule Definition window is displayed.

3. Enter a unique name for your Action Router rule in the Name field.

NOTE

The maximum length for Action Router rule names is 255 characters.

4. Write your rule condition in the Rule Condition text area.

You write this rule condition using Perl. However, you need not write a complete Perl
statement. You can assume the following context:

if (...) {
ruleAction;}

All you must supply is the condition that would fit inside the parentheses. For example,
$OriginStateSev eq “Normal” is a complete rule condition.
Designing and Managing Behavior Models 345Version 5.1

Performing Actions Conditionally (Action Router)14
To help you write rule conditions, NerveCenter provides several aids:

 A set of variables that contain data you can use in your rule condition. We’ve already seen a
number of these, such as $DayOfWeek, $Time, and $OriginStateSev. For a complete list of
the variables available to you, see the section NerveCenter Variables on page 326.

 A set of functions that you can use in your rule conditions. These functions enable you to
determine whether a variable contains a substring, to access information in the variable
bindings of a trap that caused an alarm transition, and more.

For more information about these functions, see the section Functions for Use in Action
Router Rule Conditions on page 347.

 A pop-up menu that lists the variables and functions you can use in a rule condition and
enables you to enter the name of a variable or function in the rule-condition editing area. For
further information about this pop-up menu, see the section Using the Pop-Up Menu for Perl
on page 194.

 Lists of the alarms, days, nodes, properties, property groups, severities, and triggers that you
can use in a rule condition. Selecting an item from one of these list writes the name of the
selected object to the rule-condition editing area.

For further information about these lists, see the section Using Action Router Object Lists on
page 348.

NOTE

When creating poll conditions, trigger functions, and Perl subroutines, you
can choose between using multiple Perl interpreters or a Global Perl
interpreter. If you configure your poll conditions, trigger functions, and
Perl subroutines to use the Global Perl interpreter, Action Router rules that
take a long time to run, such as logging to a file, performing database
queries, or issuing external system calls, can slow down NerveCenter’s
performance. If you have need of such Perl scripts in your environment,
use the scripts sparingly. See NerveCenter and Perl on page 56 for more
information.

Once you’ve finished building your rule condition, you must go to the Rule Action page and build
a list of rule actions. For instructions on how to build this list, see the section Defining a Rule
Action on page 350.
Designing and Managing Behavior Models Version 5.1346

Creating an Action Router Rule 14
Functions for Use in Action Router Rule Conditions

NerveCenter provides a number of functions that you can use in your Action Router rule
conditions. The list below indicates what types of functions are available and where you can find
detailed information about each function:

 Variable-binding functions. These functions enable you to determine the number of
variable bindings in a trigger’s variable-binding list and to obtain information about each
variable binding. For instance, you can retrieve the subobject and attribute associated with a
variable-binding and the value of a variable-binding.

For reference information about these functions, see the section Variable-Binding Functions
on page 218.

 String-matching functions. These functions enable you to determine whether a string
contains another string or a particular word. The functions are useful in conditions that test
the value of a variable or variable binding for a substring.

For reference information about these functions, see the section String-Matching Functions
on page 193.

 in(). This function determines whether one scalar value is in a set of scalar values.

For reference information about this function, see the section in() Function on page 191.

 Counter(). This function returns the current value of an alarm counter. For reference
information about this function, see the section Counter() Function on page 325.

 NC::AlarmCounters. This function enables you to do any of the following: increment
alarm counters by a number other than one, decrement alarm counters by a number other
than one, create alarm counters, set alarm counters, and retrieve alarm counters. For
reference information about this function, see the section NC::AlarmCounters on page 191.

NC::AlarmCounters are independent of and not related to the alarm action Alarm Counter.
See Alarm Counter on page 287 for details.
Designing and Managing Behavior Models 347Version 5.1

Performing Actions Conditionally (Action Router)14
Using Action Router Object Lists

If you are writing an Action Router rule condition and need to enter the name of an alarm, you do
not need to:

 Look up the name of the alarm in the Alarm Definition List window.

 Type the name of the alarm in the Rule Condition editing area.

Instead, you can select the name of the alarm from a list of alarms on the Rule Condition page.
Selecting this name copies the name to the Rule Condition editing area, at the point of the cursor.

In addition to a list of alarms, the Rule Condition page provides lists of:

 Days (Days are not really NerveCenter objects.)

 Nodes

 Properties

 Property groups

 Severities

 Triggers
Designing and Managing Behavior Models Version 5.1348

Creating an Action Router Rule 14
HOW TO ENTER THE RULE CONDITION $ALARMNAME EQ ‘AUTHENTICATION’

1. In the Rule Condition editing area enter the text $AlarmName eq using the editing area’s
pop-up help menu or your keyboard.

2. Select the More button on the Rule Condition page to expand the page.

3. Select Alarm from the Condition Type drop-down list.

The list to the right of the drop-down list is populated with the names of all the alarms in the
NerveCenter database.

NOTE

If you were writing a different rule condition, you could have selected a
different object from the drop-down list.

4. Double-click Authentication in the Alarms list.

This action causes the text ‘Authentication’ to be added to the rule condition.

5. After you’ve defined your rule’s action, select the Save button.
Designing and Managing Behavior Models 349Version 5.1

Performing Actions Conditionally (Action Router)14
Defining a Rule Action

Once you’ve created an Action Router rule condition, as described in the section Defining a Rule
Condition on page 345, you must create a rule action to complete your Action Router rule. This
action rule contains descriptions of one or more actions that you want to be performed when the
rule condition is met.

TO CREATE AN ACTION RULE

1. In the Rule Composition window, select the Rule Action tab.

The Rule Action page is displayed.
Designing and Managing Behavior Models Version 5.1350

Creating an Action Router Rule 14
2. Select the New Action list.

A list of available actions is displayed. Except for the Action Router and Alarm Counter
actions, you can add to the rule any action that you can perform from an alarm transition:

 Beep

 Clear Trigger

 Command

 Delete Node

 EventLog

 Fire Trigger

 Inform

 Inform Platform

 Log to Database

 Log to File

 Microsoft Mail

 Notes

 Paging

 Perl Subroutine

 Send Trap

 Set Attribute

 SMTP Mail

 SNMP Set

For a description of what an action does, see the appropriate section in Chapter 13, Alarm
Actions.

3. Select an action from the list.

All of the actions except Delete Node and Notes require parameters, so a dialog box appears.
Again, refer to the appropriate section in Chapter 13, Alarm Actions for an explanation of
how to supply the necessary parameters.

4. Repeat step 2 and step 3 for each action that you want to add to the rule action.

5. Select the Save button at the bottom of the Rule Composition window.
Designing and Managing Behavior Models 351Version 5.1

Performing Actions Conditionally (Action Router)14
Designing and Managing Behavior Models Version 5.1352

15
Designing and Managing Behavior ModelsCreating Multi-Alarm Behavior

Models
Most behavior models employ only one alarm. However, some models require two or more alarms.
If a model uses more than one alarm, the alarms generally communicate using the Fire Trigger
alarm action. That is, one alarm fires a trigger that causes a transition in a second alarm.

This chapter presents an example of a multi-alarm behavior model (sometimes referred to as multi-
tier behavior models), which might serve as an example for your own models.

NOTENOTENOTENOTE

Another good example of a multi-alarm behavior model is the downstream alarm
suppression model, NodeStatusDwnStrm, that ships with NerveCenter. For more
information, refer to Appendix C, Downstream Alarm Suppression.

Section Description

IfUpDownStatusByType on
page 354

Presents a multi-alarm model that monitors interface operation status.
Designing and Managing Behavior Models 353Version 5.1

Creating Multi-Alarm Behavior Models15
IfUpDownStatusByType

IfUpDownStatusByType is one of the multi-alarm behavior models shipped with NerveCenter and
provides interface management for devices that can be managed using the MIB-II and Frame Relay
MIBs. This model manages the following types of interfaces:

 Asynchronous Transfer Mode (ATM)

 Integrated Services Digital Network (ISDN)

 Fiber Distributed Data Interface (FDDI)

 Frame Relay Permanent Virtual Circuit (PVC) subinterfaces

 Frame Relay

 Local Area Network (LAN)

 Switched Multimegabit Data Service (SMDS)

 Synchronous Optical Network (SONET)

 Wide Area Network (WAN)

The majority of the alarms in this model are subobject scope alarms that categorize an interface (the
possible categories are listed above) and then monitor its status. For most interfaces, the interface
can be up, down, or in testing mode. (The exception is a Frame Relay PVC, which can only be up
or down.)

IF-IfStatusIf-IfTypeNotAdminOp

If-IfTypeNotAdminOp

IF-IfSelectType

If-IfATMNotAdminOp

If-IfFDDINotAdminOp

IF-IfATMStatus

IF-IfFDDIStatus
Designing and Managing Behavior Models Version 5.1354

IfUpDownStatusByType 15
When an alarm instance transitions to one of these states, it executes an Inform action to notify
OpenView Network Node Manager of the new state. For this Inform action to have the desired
effect, you must integrate the trapd.conf.txt file supplied with these models with the standard
NerveCenter trapd.conf. The trapd.conf.txt file along with the .mod file resides in the
/model/interface_status/updown_bytype directory. For information about importing behavior
models into NerveCenter, see Importing Node, Object, and Behavior Model Files on page 401.

The interface status alarms are listed below:

 IF-IfATMStatus

 IF-IfFDDIStatus

 IF-IfFramePVCStatus

 IF-IfFrameRelayStatus

 IF-IfISDNStatus

 IF-IfLANStatus

 IF-IfSMDSStatus

 IF-IfSonetStatus

 IF-IfWANStatus

The model file also includes three other alarms: IF-IfStatus, IF-IfColdWarmStart, and IF-
IfNmDemand.
Designing and Managing Behavior Models 355Version 5.1

Creating Multi-Alarm Behavior Models15
IF-IfStatus Alarm

The predefined alarm IF-IfStatus is a subobject scope alarm that monitors interfaces on the
network. Its definition is shown in Figure 15-1.

FIGURE 15-1. IF-IfStatus Alarm
IF-IfStatus listens for the trigger IF-IfTypeNotAdminOp, which is fired whenever an interface is
not operationally up (either down or in testing mode). When IF-IfStatus transitions to IF-
IfTypeNotAdminOp, the alarm fires a Perl subroutine, IF-SelectType.
Designing and Managing Behavior Models Version 5.1356

IfUpDownStatusByType 15
IF-SelectType Perl Subroutine

IF-SelectType is a Perl subroutine composed of an If statement that reads the instance of
ifEntry.ifType to determine the interface type being monitored and to fire the appropriate trigger.

FIGURE 15-2. IF-SelectType Perl Subroutine
IF-SelectType fires the appropriate trigger to instantiate the correct interface-type alarm for the
interface that is in a non-operational status.
Designing and Managing Behavior Models 357Version 5.1

Creating Multi-Alarm Behavior Models15
Interface-type Alarms

The IfUpDownStatusByType behavior model has an alarm for each interface type (ATM, ISDN,
FDDI, and so on) that it monitors. The interface alarms (with the exception of IF-
IfFramePVCStatus) are identical. The definition for these alarms, is shown in Figure 15-3.

FIGURE 15-3. Interface-type Alarms State Diagram
The interface-type alarms (with the exception of IF-IfFramePVCStatus) contain the following
states:

 Ground - No evidence that the interface is down, or in testing mode.

 IfNotAdminOp - An initial indication that an interface is either down or in testing mode has
been received by a poll. The interface is categorized (ATM, FDDI, LAN, and so on) and the
appropriate alarm is transitioned.

 IfUpDownTrap - Mask indicates that a link is either up or down. The interface is polled. If
the interface is up, NerveCenter sends a 1512 Inform to the platform and returns to Ground.
If a cold or warm start is detected, returns to Ground. If the interface is down or in testing,
NerveCenter sends a 1514 Inform to the platform and goes to IfDown.
Designing and Managing Behavior Models Version 5.1358

IfUpDownStatusByType 15
 IfDown - Poll indicates that an interface down. NerveCenter sends a 1514 Inform to the
platform. The interface is polled. If the interface is up, NerveCenter sends a 1512 Inform to
the platform and returns to Ground. If a cold or warm start is detected, returns to Ground. If
the interface is in some test mode, NerveCenter sends a 1513 Inform to the platform and
goes to IfTesting.

 IfTesting - Poll indicates that an interface is in some test mode. NerveCenter sends a 1513
Inform to the platform. The interface is polled. If the interface is up, NerveCenter sends a
1512 Inform to the platform and returns to Ground. If a cold or warm start is detected,
returns to Ground. If the interface is down, NerveCenter sends a 1514 Inform to the platform
and goes to IfDown.

IF-IfFramePVC

Unlike the other interface-type alarms, the IF-IfFramePVC relies on a frame relay MIB with which
to monitor frame relay permanent virtual circuit (PVC) subinterfaces. NerveCenter instantiates IF-
IfFramePVC when a frame relay PVC interface is non-active. The definition for IF-IfFramePVC, is
shown in Figure .

FIGURE 15-4. IF-IfFramePVC State Diagram
IF-IfFramePVCStatus contains the following states:

 Ground - No evidence that the interface is down. If the interface is down, goes to
FramePVCUp/Down. If the interface is active, goes to IfFramePVC.

 FramePVCUp/Down - Mask indicates that a link is either up or down. The interface is
polled. If the interface is up, NerveCenter sends a 1510 Inform to the platform and returns to
IfFramePVC. If a cold or warm start is detected, returns to Ground. If the interface is down,
NerveCenter sends a 1511 Inform to the platform and goes to IfFramePVCDown.
Designing and Managing Behavior Models 359Version 5.1

Creating Multi-Alarm Behavior Models15
 IfFramePVCDown - Poll indicates that an interface down. NerveCenter sends a 1511
Inform to the platform. The interface is polled. If the interface is up, NerveCenter sends a
1510 Inform to the platform and goes to IfFramePVC. If a cold or warm start is detected,
returns to Ground. If the interface is up or down, goes to FramePVCUp/Down.

 IfFramePVC - Interface is active. If a cold or warm start is detected, returns to Ground. If
the interface is up or down, goes to FramePVCUp/Down. If the interface is down,
NerveCenter sends a 1511 Inform to the platform and goes to IfFramePVCDown.

IfColdWarmStart Alarm

The IfColdWarmStart alarm detects that a device has been restarted and fires a trigger that causes
all the interface-type alarms monitoring that device to return to Ground state.

FIGURE 15-5. IF-IfColdWarmStart Alarm
The IfColdWarmStart alarm also fires a trigger that causes a transition in an IfNmDemand alarm.
Designing and Managing Behavior Models Version 5.1360

IfUpDownStatusByType 15
IfNmDemand Alarm

An IfNmDemand alarm is instantiated whenever an interface-type alarm transitions to the up,
down, testing, or ground state.

FIGURE 15-6. IF-IfNmDemand Alarm
When the alarm is created and transitions to the IfNmDemandPoll state, it executes an Inform
action that causes HP OpenView Network Node Manager to demand poll the appropriate device
and reflect the current state of the device and its interfaces in Network Node Manager's topology
maps. The Inform action that requests the demand poll is made outside of the status alarms—in a
node-scope alarm—to help cut back to the number of requests that can be sent to Network Node
Manager.
Designing and Managing Behavior Models 361Version 5.1

Creating Multi-Alarm Behavior Models15
Designing and Managing Behavior Models Version 5.1362

16
Designing and Managing Behavior ModelsManaging NerveCenter Objects
The majority of this book has discussed the function of the various NerveCenter objects and how to
create those objects.

This chapter discusses how to perform other operations on objects, such as copying and deleting
them. It also covers how to change selected object attributes without returning to the object
definition windows. For example, the chapter explains how to change an alarm’s property without
returning to the Alarm Definition window.

Section Description

Deleting Objects on page 368 Explains how to delete an object from the NerveCenter database.

Changing an Object Property
or Property Group on page 370

Explains how to change an alarm’s or a poll’s property or a node’s
property group.

Changing an Alarm Scope on
page 373

Explains how to change an alarm’s scope from the Alarm Definition
List window.

Suppressing Polling on page
374

Explains how to suppress polling by setting a node’s Suppressed
attribute and a poll’s Suppressible attribute.

Changing Other Node
Attributes on page 376

Explains how to change a node’s Managed or Auto Delete attribute.
Designing and Managing Behavior Models 363Version 5.1

Managing NerveCenter Objects16
Enabling Objects

As we’ve mentioned many times, a behavior model does not become functional until all of the
polls, masks, and alarms in the model are enabled. This section explains how you can quickly
enable, or disable, any poll, trap mask, or alarm.

TO ENABLE ONE OF THESE OBJECTS

1. Open the appropriate list window: the Poll List, Mask List, or Alarm Definition List
window. In this example, the Poll List window.

2. Select the object whose enabled status you want to change.

3. With your cursor positioned over the selected object, click the right mouse button to display
a pop-up menu listing actions you can perform against the object.

If the object is disabled, the Off entry will be grayed out, and if the object is enabled, the On
entry will be grayed out.

4. Select On from the menu to enable the object, or Off to disable it.

The object is now enabled. It’s not necessary to save this change in order for it to take effect.
Designing and Managing Behavior Models Version 5.1364

Copying Objects 16
Copying Objects

Being able to copy objects can be very convenient. For example, if you want to create a property
group that is exactly the same as an existing one except that it contains one additional property, it’s
nice to be able copy the existing property group, give the copy a name, and add the one property—
instead of creating a new property group and adding a long list of properties to it. The same is true
if you need to create a new alarm that is similar to an existing alarm, or a new poll that is similar to
an existing one.

NerveCenter enables you to copy most objects. To copy a property group, you select a Copy button
in the Property Group List button. To copy any other object (that supports a copy operation), you
select Copy from a pop-up menu associated with the object. For complete instructions on how to
copy a property group or another object, see the appropriate section below:

 Copying a Property Group on page 366

 Copying Other Objects on page 367
Designing and Managing Behavior Models 365Version 5.1

Managing NerveCenter Objects16
Copying a Property Group

This section explains how to create a copy of an existing property group.

TO COPY A PROPERTY GROUP

2. Select the property group you want to copy from the Property Group list.

3. Enter a name for the copy of the property group in the New Property Group field.

The Copy button is enabled.

4. Select the Copy button.

5. Select the Save button.

You now have an exact copy of the property group you began with. You’ll probably want to add
properties to, or remove properties from, the new property group and save it again.

1. Open the Property Group List window.
Designing and Managing Behavior Models Version 5.1366

Copying Objects 16
Copying Other Objects

This section explains how to make a copy of any one of the following objects:

 Alarm

 Poll

 Mask

 Node

 Action Router rule

 Perl subroutine

TO COPY ONE OF THESE OBJECTS

1. Open the appropriate list window.

2. Select the object you want to copy from the list.

3. With your cursor over the selected object, click the right mouse button to display a pop-up
menu of actions you can perform against the object.

4. Select Copy from the pop-up menu.

A definition window is displayed. The window contains a complete definition except for a
name.

5. In the definition window, enter a name for the copied object.

6. Select the Save button in the definition window.

You now have an exact copy of the object you began with. Make any necessary changes to the
copy, and save it again.
Designing and Managing Behavior Models 367Version 5.1

Managing NerveCenter Objects16
Deleting Objects

If you have objects in your NerveCenter database that you know you’ll never use again, you can
delete them.

There are two methods of deleting objects in NerveCenter. You delete some objects by selecting a
Delete button in the appropriate definition window. The objects you delete in this way are:

 Property groups

 OID to property group mappings

 Severities

You delete other objects using a pop-up menu in a list window. The objects you delete in this way
are:

 Alarms

 Polls

 Masks

 Nodes

 Action Router rules

 Perl subroutines

The two procedures for deleting objects are discussed in more detail in the following sections:

 Using a Delete Button on page 369

 Using a Pop-Up Menu on page 370
Designing and Managing Behavior Models Version 5.1368

Deleting Objects 16
Using a Delete Button

This section explains how to delete a property group, an OID to property group mapping, or a
severity.

TO DELETE ONE OF THESE OBJECTS

1. Open the appropriate list window.

2. Select from the list the object you want to delete.

A Delete button is enabled.

3. Select the Delete button.

A property group can not be deleted if it is currently assigned to a node or is being used in an
OID to property group mapping. If you attempt to delete a property group that is being used
in one of these ways, you’ll see a warning message. Of course, you can remove the
dependency and then delete the property group.

Similarly, you can’t delete a severity that is being used in an alarm. If you try to do so, you
see a dialog similar to the one shown in Figure 16-1:

FIGURE 16-1. Replace Severity Dialog
The dialog in the figure indicates that the selected severity is being used in the alarm
SynBoardChannel. If you want to go ahead and delete the severity, you must first change the
severity of the affected state in this alarm. You do this by selecting a severity from the drop-
down list and selecting the Save button. (You’ll also have to confirm that you want to replace
the severity.)
Designing and Managing Behavior Models 369Version 5.1

Managing NerveCenter Objects16
Using a Pop-Up Menu

This section explains how to delete an alarm, a poll, a mask, a node, an Action Router rule, or a Perl
subroutine.

CAUTION

Before deleting a an alarm, a poll, a mask, a node, an Action Router rule, or a Perl
subroutine, make sure that it is not used in a behavior model and is not required to
transition any alarms.

TO DELETE ONE OF THESE OBJECTS

1. Open the appropriate list window.

2. Select the object you want to delete.

3. With your cursor positioned over the selected object, click your right mouse button to
display a pop-menu that lists actions you can perform from this window.

4. Select the Delete entry from the pop-up menu.

A Confirm Deletion dialog appears, asking if you’re sure you want to delete the object.

5. Select the Yes button in the Confirm Deletion dialog.

The object is deleted.

Changing an Object Property or Property Group

NerveCenter provides shortcuts for changing a poll’s or an alarm’s property and for changing a
node’s property group. For instructions on how to perform the operation you’re interested in, see
the appropriate subsection:

 Changing Poll or Alarm Properties on page 371

 Changing a Node Property Group on page 372
Designing and Managing Behavior Models Version 5.1370

Changing an Object Property or Property Group 16
Changing Poll or Alarm Properties

This section explains how to change the property attribute of a poll or an alarm.

TO CHANGE AN OBJECT’S PROPERTY

1. Make sure that the poll’s or alarm’s enabled status is off.

For instructions on how to disable an object, see Enabling Objects on page 364.

2. With the Poll List or Alarm Definition List window open, select the object whose property
you want to change.

3. With your cursor positioned over the selected object, click your right mouse button to
display a pop-menu that lists actions you can perform from the list window.

4. Select Property from the pop-up menu.

The Property dialog is displayed.

5. Select a new property for your object from the drop-down listbox in the Property dialog.

The Save button is enabled.

6. Select the Save button.

The object’s property is changed. Re-enable the object if necessary.
Designing and Managing Behavior Models 371Version 5.1

Managing NerveCenter Objects16
Changing a Node Property Group

This section explains how to change a node’s property group without going to the Node Definition
window.

TO CHANGE A NODE’S PROPERTY GROUP

2. Select the node whose property group you want to change.

3. With your cursor positioned over the selected node, click your right mouse button to display
a pop-up menu that lists the actions you can take from the Node List window.

4. Select Property Group from the pop-up menu.

The Property Group dialog is displayed.

5. Select the node’s new property group from the drop-down listbox in the Property Group
dialog.

The dialog’s Save button is enabled.

6. Select the dialog’s Save button.

The node’s property group is changed.

1. Select Node List from the client’s Admin menu.

The Node List window appears.
Designing and Managing Behavior Models Version 5.1372

Changing an Alarm Scope 16
Changing an Alarm Scope

It’s rarely necessary to change the scope of an alarm since determining the alarm’s scope is usually
a very fundamental part of designing the alarm. However, if the need to change an alarm’s scope
does arrive, you can make this change from the Alarm Definition List window.

TO CHANGE AN ALARM’S SCOPE

2. Select the alarm whose scope you want to change.

3. With your cursor positioned over the selected alarm, click your right mouse button to display
a pop-up menu that lists the operations you can perform from the Alarm Definition List
window.

4. Select Scope from the pop-up menu.

The Scope dialog appears.

5. Select a scope from the drop-down listbox in the Scope dialog.

The dialog’s Save button is enabled.

6. Select the Save button.

The alarm’s scope is changed.

1. Choose Alarm Definition List from the client’s Admin menu.

The Alarm Definition List window is displayed.
Designing and Managing Behavior Models 373Version 5.1

Managing NerveCenter Objects16
Suppressing Polling

To prevent a particular poll from being sent to a particular node, the node must be suppressed, and
the poll must be suppressible. By default, polls are suppressible; however, nodes are not. Therefore,
keeping a poll from being sent to a node usually involves turning on the node’s Suppressed
attribute. You may have to edit the poll as well if someone has turned off its Suppressible attribute.

The two sections listed below provide instructions on how to perform these tasks:

 Suppressing a Node on page 374

 Making a Poll Suppressible on page 375

Suppressing a Node

This section explains how to suppress a node by enabling its Suppressed attribute.

TO ENABLE THIS ATTRIBUTE

2. Select the node whose Suppressed attribute you want to enable.

3. With your cursor positioned over the selected node, right-click to display a pop-up menu.

4. Select Suppress from the pop-up menu.

This operation is the equivalent of checking the Suppressed in the Node Definition window.

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.
Designing and Managing Behavior Models Version 5.1374

Suppressing Polling 16
Making a Poll Suppressible

This sections explains how to make a poll suppressible by enabling its Suppressible attribute.

By default, polls in NerveCenter are suppressible and poll only those nodes that are not suppressed.
However, there may be specific polls that you want to occur on a node even when it is suppressed.
In this case, you can set the poll to insuppressible. An insuppressible poll will occur for a node even
if the node is suppressed. This is useful for a poll that checks the status of a node to determine if it
has returned to normal.

TO ENABLE THIS ATTRIBUTE

2. Select from the list the poll whose Suppressible attribute you want to enable.

3. With your cursor positioned over the selected poll, click your right mouse button to display a
pop-up menu listing actions you can take from the Poll List window.

4. Select Suppressible from the pop-up menu.

The poll is now suppressible, which means that the poll cannot cause NerveCenter to poll a
suppressed node.

1. From the client’s Admin menu, choose Poll List.

The Poll List window is displayed.
Designing and Managing Behavior Models 375Version 5.1

Managing NerveCenter Objects16
Designing and Managing Behavior Models Version 5.1376

Changing Other Node Attributes

Earlier sections of this chapter explained how to change a node’s property group and its Suppressed
setting:

 For information on changing a node’s property group, see the section Changing a Node
Property Group on page 372.

 For information on turning on a node’s Suppressed attribute, see the section Suppressing a
Node on page 374.

This section explains how to change the values of a node’s Managed and Auto Delete attributes.

TO CHANGE ONE OF THESE ATTRIBUTES

2. Select a node from the list.

3. With your cursor positioned over the selected node, click your right mouse button to display
a pop-up menu listing the actions you can take from this window.

4. From the pop-up menu, choose Managed, Unmanaged, Auto Delete, or No Auto Delete.

Choosing Managed is the equivalent of checking the Managed checkbox in the Node
Definition window, and choosing Auto Delete is the equivalent of checking the Auto Delete
checkbox. Choosing Unmanaged or No Auto Delete is the equivalent of unchecking the
appropriate checkbox.

The new node setting takes effect.

1. From the client’s Admin menu, select Node List.

The Node List window is displayed.

17
Designing and Managing Behavior ModelsNerveCenter Severities
Severities are NerveCenter objects that indicate the seriousness of a network or system condition.
For instance, a severity is an important part of the definition of each alarm state. In the alarm
definition in Figure 17-1, you can see that the state LinkDown has the severity Major associated
with it because it is colored orange.

FIGURE 17-1. Alarm State Severities
In addition, NerveCenter categorizes the conditions it has detected by severity in alarm summary
windows.

The remainder of this chapter explains in detail what constitutes the definition of a severity and
how severities are used in NerveCenter, what predefined severities are supplied with NerveCenter,
and how to create new severities.
Designing and Managing Behavior Models 377Version 5.1

NerveCenter Severities17
For information on these topics, see the sections listed below:

Definition of a Severity

A severity object has the following data set described and defined in Table 17-1.

For more information about these attributes, see the sections:

 Severity Attributes Used by NerveCenter on page 379

 Severity Attributes and Network Management Platforms on page 380

Section Description

Definition of a Severity on page 378 Explains what a NerveCenter severity is and how it is used.

Default Severities on page 381 List the severities that ship with the NerveCenter product.

Creating a New Severity on page 382 Explains how to create a new severity.

Creating Custom Colors on page 384 Explains how to create a new color for use in a severity.

TABLE 17-1. Definitions of Severity Attributes

Data Member Definition

Name A unique name.

Group The name of the severity group to which the severity belongs. A group name
should describe a general type of condition that NerveCenter can detect; for
instance, the two predefined groups are Fault and Traffic, and all the predefined
severities belong to one of these groups. You can also define new groups.

Color Each severity has a color associated with it. These severity colors are used in
state diagrams to indicate the severity of alarm states.

Level A severity’s level is intended to reflect the seriousness of an associated alarm
state. That is, an alarm state whose severity has a level of 0 represents a
harmless condition, whereas an alarm state whose severity has a high level
represents a serious condition.

Platform name The name of a severity used by your network management platform. If
NerveCenter informs your platform of a condition, the platform uses the
severity defined by this attribute when it displays information about the event.
Designing and Managing Behavior Models Version 5.1378

Definition of a Severity 17
Severity Attributes Used by NerveCenter

The severity attributes Name, Group, and Color are used by NerveCenter when it displays
information about current alarm instances in the Alarm Summary or Aggregate Alarm Summary
window. The figure below shows the correspondence between these attributes and the objects used
in the tree view of the Alarm Summary window.

FIGURE 17-2. Severity Names, Groups, and Colors
In this figure, there is a severity named Critical, which belongs to the severity group Fault and is
associated with the color red. You can add new severities to the existing groups (Fault and Traffic),
or add severities that belong to a new group. In the latter case, NerveCenter will create a new folder
to represent the new severity group.

NOTENOTENOTENOTE

Severity colors are also used in alarm state diagrams to indicate the severity of
particular states.

Color
Group

Name
Designing and Managing Behavior Models 379Version 5.1

NerveCenter Severities17
Severity Attributes and Network Management Platforms

The severity attributes Level and Platform Name are used to help define how NerveCenter interacts
with a network management platform. For more details, see Configuring a Node Map with
NerveCenter Alarm Severity Colors in Integrating NerveCenter with a Network Management
Platform.

Level

Each NerveCenter severity must have a unique severity level, which is represented by an integer.
You associate severities that have low severity levels with alarm states representing benign
conditions, and severities that have high levels with states representing serious conditions.

Now, here’s how severity levels affect NerveCenter’s interaction with a network management
platform. When NerveCenter is set up, an administrator can define an “Inform Configuration.” This
configuration indicates where NerveCenter should send messages when it performs Inform alarm
actions. The configuration also specifies a “Minimum Severity.” If the administrator sets the
Minimum Severity to 4, only transitions to alarm states with severity levels of 4 or more can cause
Inform messages to be sent to a platform.

Platform Name

You can associate with each NerveCenter severity the name of a severity defined by your network
management platform. For example, the predefined severity Saturated has associated with it the
platform name Normal. Given this situation, if NerveCenter sends to the platform an Inform
message whose variable bindings indicate that the destination alarm state in NerveCenter had a
severity of Saturated, the platform will interpret this as an event of Normal severity. That is, the
event will show up in the platform’s event browser as an event of Normal severity, and if the map
icon representing the node whose interface was saturated is (color), that icon will remain (color).
Designing and Managing Behavior Models Version 5.1380

Default Severities 17
Default Severities

Table 17-2 lists the thirteen predefined NerveCenter severities.

TABLE 17-2. Predefined NerveCenter Severities

Severity
Name

Severity
Level

Severity
Group

Platform
Name Color

Normal 0 Fault Normal Dark Green

VeryLow 1 Traffic Normal White

Low 2 Traffic Normal Yellow Green

Medium 3 Traffic Normal Light Aqua

High 4 Traffic Normal Cyan

VeryHigh 5 Traffic Normal Sky Blue

Saturated 6 Traffic Normal Magenta

Special 7 Fault Normal Burgundy

Inform 8 Fault Normal Violet

Warning 9 Fault Warning Royal Blue

Minor 10 Fault Minor Yellow

Major 11 Fault Major Orange

Critical 12 Fault Critical Red
Designing and Managing Behavior Models 381Version 5.1

NerveCenter Severities17
Creating a New Severity

If your behavior models require severities other than those supplied with NerveCenter, you can
create new severities.

TO CREATE A NEW SEVERITY

2. Select the New button in the Severity List window.

The New Severity window is displayed.

1. From the client’s Admin menu, choose Severity List.

The Severity List window is displayed. This window presents information about all the
severities currently defined in the NerveCenter database.
Designing and Managing Behavior Models Version 5.1382

Creating a New Severity 17
3. Enter a unique name for your severity in the Severity Name field (255 characters
maximum).

4. Enter a unique severity level, an integer in the range 0 to 255, in the Severity Level field.

Since the predefined severities use the levels 0 through 12, you should avoid those numbers
(unless you’ve modified the levels of the predefined severities).

In general, you should set up your severity levels so that the lowest priority severities have
the lowest levels and the highest priority severities have the highest levels. This is true
because if NerveCenter is set up to forward information about important alarm transitions to
a network management platform, NerveCenter forwards information about any transition
whose destination state has a severity whose level is greater than or equal to x, where x is
defined when NerveCenter is configured.

5. Enter the name of a severity group in the Severity Group field.

This group can be one of the preexisting groups—Fault or Traffic—or a user-defined group.
In either case, the severity group should indicate the type of problem that the severity
reflects.

6. In the Platform Name field, enter the name of a severity on your network management
platform, or if you’re not using a network management platform, leave the value set to
“Unknown.”

When you enter a platform severity name, you establish a mapping between the NerveCenter
severity you’re defining and a severity on your network management platform. For example,
the predefined NerveCenter severity VeryHigh (traffic) is mapped by default to the platform
severity Normal. Given this situation, if NerveCenter informs a platform of a condition of
VeryHigh severity, the platform will indicate (in its event browser) that an event of Normal
severity has occurred.

7. Assign a color to the severity.

To assign this color, perform the following steps:

a. Select the Change Color button in the New Severity window.

The Color window is displayed.

b. Select the color box containing the color you want to assign to the severity.

c. Select the OK button in the Color window.

8. Select the Save button in the New Severity window.

Information about the new severity is saved to the NerveCenter database.
Designing and Managing Behavior Models 383Version 5.1

NerveCenter Severities17
Creating Custom Colors

One attribute of a NerveCenter severity is it color. This color can be one of 48 predefined colors or
one of 16 custom (user-defined) colors. This section explains how to create a custom color that you
can use later in the definition of a severity.

TO CREATE A CUSTOM COLOR

2. Select the New button in the Severity List window.

The New Severity window is displayed.

3. Select the Change Color button in the New Severity window.

The Color window is displayed. This window shows NerveCenter’s predefined colors and
any previously defined custom colors.

4. Select the Define Custom Colors button in the Color window.

The Color window expands to include an area for creating custom colors.

1. From the client’s Admin menu, choose Severity List.

The Severity List window is displayed.
Designing and Managing Behavior Models Version 5.1384

Creating Custom Colors 17
5. Specify the custom color you want to define by following the directions below. The color is
displayed in the Color|Solid color box.

a. Drag the crosshairs in the large colored area horizontally to establish the desired hue.

b. Drag the crosshairs vertically to establish the desired amount of saturation.

Moving the crosshairs up increases the amount of saturation, and moving them down
decreases the amount of saturation.

c. Drag the arrowhead to the right of the long, narrow colored area to establish the color’s
luminance.

Moving the arrowhead up increases the color’s luminance, and moving it down
decreases the color’s luminance.

NOTE

You can also specify a color by entering values in the Hue, Sat,
and Lum fields or the Red, Green, and Blue fields.

6. Select the color square in the “Custom color” area to in which you want to save the new
custom color.

You can overwrite an existing custom color with a new one.

7. Select the Add to Custom Colors button.

The new color is saved and is available for assignment to a severity.
Designing and Managing Behavior Models 385Version 5.1

NerveCenter Severities17
Designing and Managing Behavior Models Version 5.1386

18
Designing and Managing Behavior ModelsImporting and Exporting NerveCenter

Nodes and Objects
Unlike SerializeDB, with which you back up or restore an entire NerveCenter database, the
NerveCenter Client import and export features enable you to choose which NerveCenter behavior
models, objects, or nodes to import or export. Perhaps you have developed a behavior model that
you want to propagate across a multi-NerveCenter server environment. With the export feature, you
can selectively load one or more behavior models, (or individual objects) into another NerveCenter
server’s database.

In addition to directly exporting to another NerveCenter server’s database, you can also export
NerveCenter objects, nodes, and behavior models to a file. Using the import feature, you then
import such files into a NerveCenter database. For example, you might want to create a master
node list and then divide it into smaller lists to export to remote NerveCenter installations. Or,
perhaps, create a node list as a backup for quick recovery should the system go down.

For a complete list of the types of NerveCenter objects that you can export, see the section, More
about Exporting Objects on page 399.

NerveCenter ships with object and behavior model files (.mod) that include fixes and vendor-
specific behavior models. Because not everyone will want to use them, these objects and models
are not loaded into the NerveCenter database by default. With the import feature, you can load
these definitions into your NerveCenter database.
Designing and Managing Behavior Models 387Version 5.1

Importing and Exporting NerveCenter Nodes and Objects18
For complete information about exporting and importing nodes, objects, and behavior models see
the following sections:

Section Description

Exporting Behavior Models to
Other Servers on page 389

Describes how to export all the objects associated with a behavior
model from one NerveCenter database to another NerveCenter server.

Exporting Behavior Models to
a File on page 391

Explains how to export all the objects associated with a behavior model
from the NerveCenter database to a file.

More About Exporting
Behavior Models on page 393

Lists exactly what NerveCenter exports when you select a behavior
model.

Exporting NerveCenter Objects
and Nodes to Other Servers on
page 394

Describes how to export individual nodes and objects from one
NerveCenter database to another server.

Exporting NerveCenter Objects
and Nodes to a File on page
397

Explains how to export individual nodes and objects from the
NerveCenter database to a file.

More about Exporting Objects
on page 399

Lists the types of NerveCenter objects that you can export and what
actually gets exported.

Importing Node, Object, and
Behavior Model Files on page
401

Explains how to import exported NerveCenter node, object and
behavior model files.
Designing and Managing Behavior Models Version 5.1388

Exporting Behavior Models to Other Servers 18
Exporting Behavior Models to Other Servers

When you don’t want to export an entire NerveCenter database, NerveCenter enables you to pick
and choose those behavior models you want to export to other NerveCenter servers. For example,
for a multi-NerveCenter site, you might want to propagate particular behavior models across your
NerveCenter servers.

For more about what NerveCenter actually exports when you select a behavior model, see the
section More About Exporting Behavior Models on page 393.

To export behavior models to a file, see Exporting Behavior Models to a File on page 391. For
information about exporting a set of nodes or individual NerveCenter objects, see the following
sections:

 Exporting NerveCenter Objects and Nodes to Other Servers on page 394

 Exporting NerveCenter Objects and Nodes to a File on page 397

TO EXPORT BEHAVIOR MODELS TO ANOTHER NERVECENTER SERVER

1. Be sure that you are connected to the NerveCenter server(s) to which you want to export the
behavior model. (See Connecting to a Server on page 67 for more information.)

3. Select the alarm whose behavior model you want to export.

You can select any number of alarms at one time.

2. From the client’s Admin menu, choose Alarm Definition List.

The Alarm Definition List window is displayed.
Designing and Managing Behavior Models 389Version 5.1

Importing and Exporting NerveCenter Nodes and Objects18
4. Right-click the selected alarm to bring up the alarm pop-up menu, and select Export Model.

The Export Model/Object dialog is displayed.

5. Select the Export to Servers checkbox.

6. Select the Select Servers button.

The Server Selection dialog box is displayed.

a. Select the servers to which you’re exporting from the list.

b. Select the >> button. To select all servers to export to, select the All >> button.

The selected servers are added to the Selected Servers list.

You can remove servers from the Selected Servers list by selecting the object and then
selecting the << button.

Repeat this step for each server to which you want to export behavior models.

c. When finished, select OK to save your choices and close the Server Selection dialog.

7. Select the OK button

The behavior model(s) you’ve selected are exported to the selected NerveCenter server(s)’
database.
Designing and Managing Behavior Models Version 5.1390

Exporting Behavior Models to a File 18
Exporting Behavior Models to a File

Situations can arise when you might want to export particular NerveCenter behavior model to a
file. Having one or more behavior models in a separate file can be useful when troubleshooting
NerveCenter or sharing behavior models between different NerveCenter sites.

For more about what NerveCenter actually exports when you select an behavior model, see the
section More About Exporting Behavior Models on page 393.

When you export one or more behavior models to a file, NerveCenter actually creates two files:

 A file with a .mod extension that contains the data required to re-create the behavior models.
This is the file that is imported later into the destination database.

 A text file (*.txt) that contains a textual description of the exported behavior models.
Although not required during an import, this file is important because it serves as
documentation for the corresponding .mod file and is the only method of knowing what
models reside in the .mod file prior to actually importing the models.

To export behavior models to a file, see Exporting Behavior Models to Other Servers on page 389.
For information about exporting a set of nodes or individual NerveCenter objects, see the following
sections:

 Exporting NerveCenter Objects and Nodes to Other Servers on page 394

 Exporting NerveCenter Objects and Nodes to a File on page 397

TO EXPORT BEHAVIOR MODELS TO A FILE

1. From the client’s Admin menu, choose Alarm Definition List.

The Alarm Definition List window is displayed.
Designing and Managing Behavior Models 391Version 5.1

Importing and Exporting NerveCenter Nodes and Objects18
2. Select the alarm whose behavior model you want to export.

You can select any number of alarms at one time.

3. Right-click the selected alarm to bring up the alarm pop-up menu, and select Export Model.

The Export Model/Object dialog is displayed.

4. In the File Name text field, type a filename without an extension or a pathname including a
filename without an extension.

NerveCenter will create two files. One will have the filename extension .mod and contain
the actual data for the behavior model you export. This is the file that you can import into
another NerveCenter database. The second file will have a .txt extension and contain a
textual description of the behavior model. This file is not used during an import operation,
but it is the only source of documentation for the .mod file contents.

If you specify a pathname in the File Name field, the file will be written to the directory you
specify. By default, NerveCenter places the file in the NerveCenter model directory.

5. Select the OK button.
Designing and Managing Behavior Models Version 5.1392

More About Exporting Behavior Models 18
More About Exporting Behavior Models

When you export a behavior model to another NerveCenter server or to a file, you export an alarm
(or alarms) and all of the objects associated with that alarm. These associated objects include:

 Any object that can fire a trigger that can cause a transition in the alarm, including polls,
masks, and other alarms.

 All triggers referred to in any exported object, including:

 For masks, simple trigger and triggers used in the trigger function.

 For alarms, triggers used in Clear/Fire Trigger actions.

 For polls, True and False trigger.

 Any alarm that can be affected by a trigger fired by the alarm.

 Any properties used by any of the exported objects.

 Any property groups that contain any of the properties mentioned above.

NOTENOTENOTENOTE

The exported property groups include only those properties used by the behavior
model.

 Any property groups used in AssignPropertyGroup() functions in polls, masks, and Perl
Subroutine expressions. Also, any property groups used in SetAttribute alarm actions in
alarm transitions. No properties are included from the group.

 The severities used by the exported alarms.

 Any Perl subroutines called by a Perl Subroutine action in an exported alarm.

NerveCenter does not export the following objects with behavior models:

 Alarms that listen to Clear Trigger alarm actions.

 Objects that fire triggers used only in Clear Trigger alarm actions of the exported alarms.

 Polls and trap masks that fire triggers used only in Fire Trigger alarm actions of the exported
alarms. (Perl subroutines in this situation are exported.)

 Perl subroutines that are not used as an action in one of the exported alarms.

 Action Router rules.
Designing and Managing Behavior Models 393Version 5.1

Importing and Exporting NerveCenter Nodes and Objects18
Exporting NerveCenter Objects and Nodes to Other Servers

When you don’t want to export an entire NerveCenter database, NerveCenter enables you to pick
and choose those nodes and objects you want to export to other NerveCenter servers. For example,
for a multi-NerveCenter site, you might want to propagate particular masks across your
NerveCenter servers.

CAUTION

If you export nodes to a NerveCenter Server on another segment, any applicable
parenting information is exported with the nodes. However, this information might
not be valid for the new topology into which the node information is imported.

For a complete list of the object types and what NerveCenter actually exports when you select an
object, see the section More about Exporting Objects on page 399.

To export nodes and objects to a file, see Exporting NerveCenter Objects and Nodes to a File on
page 397. For information about exporting a behavior model—an alarm and all of the objects
associated with it—see the following sections:

 Exporting Behavior Models to Other Servers on page 389

 Exporting Behavior Models to a File on page 391
Designing and Managing Behavior Models Version 5.1394

Exporting NerveCenter Objects and Nodes to Other Servers 18
TO EXPORT A SET OF NODES OR OBJECTS TO ANOTHER NERVECENTER SERVER

1. Be sure that you are connected to the NerveCenter server(s) to which you want to export the
nodes or objects. (See Connecting to a Server on page 67 for more information.)

3. To export:

 Objects—select the Export Objects to Selected Servers to choose servers for objects
you’re exporting.

 Nodes—select Export Nodes to Selected Servers to choose servers for nodes you’re
exporting.

CAUTION

If you export nodes to a NerveCenter Server on another segment,
any applicable parenting information is exported with the nodes.
However, this information might not be valid for the new
topology into which the node information is imported.

2. From the client’s Admin menu, choose Export Objects and Nodes.

The Export Objects and Nodes dialog is displayed.
Designing and Managing Behavior Models 395Version 5.1

Importing and Exporting NerveCenter Nodes and Objects18
4. Select the Select Servers button.

The Server Selection dialog is displayed.

a. Select the servers to which you’re exporting from the list.

b. Select the >> button. To select all servers to export to, select the All >> button.

The selected servers are added to the Selected Servers list.

You can remove servers from the Selected Servers list by selecting the object and then
selecting the << button.

Repeat this step for each server to which you want to export objects or nodes.

c. When finished, select OK to save your choices and close the Server Selection dialog.

5. Select Node or the type of object that you want to export from the Object Type radio set.

6. Create a list of nodes or objects to be exported. Creating a node or object list is similar to
how you selected the server(s) in step 4.

The selected objects or nodes are added to the Selected Objects list.

Repeat step 5 and step 6 for each type of object that you want to export.

7. Select the OK button.

The definition of the objects or nodes you’ve selected are exported to the selected
NerveCenter server(s)’ database.

.

Designing and Managing Behavior Models Version 5.1396

Exporting NerveCenter Objects and Nodes to a File 18
Exporting NerveCenter Objects and Nodes to a File

Situations can arise when you might want to export particular NerveCenter nodes and objects to a
file. Having nodes or objects in a separate file can be useful when troubleshooting NerveCenter or
sharing nodes and objects between different NerveCenter sites.

For a complete list of the object types and what NerveCenter actually exports when you select an
object, see the section More about Exporting Objects on page 399.

When you export objects to a file, NerveCenter actually creates two files:

 A file with a .mod extension that contains the data required to re-create the objects. This is
the file that is imported later into the destination database.

 A text file (*.txt) that contains a textual description of the exported objects. Although not
required during an import, this file is important because it serves as documentation for the
corresponding .mod file and is the only method of knowing what models reside in the .mod
file prior to actually importing the models.

When you export nodes, NerveCenter creates a .node file that contains the data to re-create the
nodes.

To export nodes and objects to a NerveCenter database on another NerveCenter server, see
Exporting NerveCenter Objects and Nodes to Other Servers on page 394. For information about
exporting a behavior model—an alarm and all of the objects associated with it—see the following
sections:

 Exporting Behavior Models to Other Servers on page 389

 Exporting Behavior Models to a File on page 391
Designing and Managing Behavior Models 397Version 5.1

Importing and Exporting NerveCenter Nodes and Objects18
TO EXPORT A SET OF OBJECTS FROM NERVECENTER

2. In the Objects File text field, type a filename for the serialized text file you want to export.
You can include the path in order to write the file to a certain location; by default,
NerveCenter places the file in the NerveCenter installation/model directory.

NerveCenter will create two files. One will have the filename extension .mod and contain
the actual data for the objects you export. This is the file that you can import into another
NerveCenter database. The second file will have a .txt extension and contain a textual
description of the objects. This file is not used during an import operation, but it is the only
source of documentation for the .mod file contents.

3. If you are exporting nodes, NerveCenter also creates a .node file by default in the model
directory. You must provide a name for this file in the Node File field. This file can later be
imported using the importutil.exe tool, which is described in Reconfiguring a NerveCenter
Server from the Command Line in Managing NerveCenter.

4. Create a list of objects to be exported by following the directions below:

1. From the client’s Admin menu, choose Export Objects and Nodes.

The Export Objects and Nodes dialog is displayed.
Designing and Managing Behavior Models Version 5.1398

More about Exporting Objects 18
a. Select the radio button for the type of object you want to export, such as Property
Group.

A list of objects of that type is displayed in the Available Objects list box.

b. Select the objects you want to export from the list.

c. Select the >> button. To select all objects for export, select the All >> button.

The selected objects are added to the Selected Objects list.

You can remove objects from the Selected Objects list by selecting the object and then
selecting the << button.

Repeat this step for each type of object that you want to export.

5. Select the OK button.

The definition of the objects you’ve selected are exported.

More about Exporting Objects

Using the client’s Export Objects and Nodes command (Admin menu), you can export the
following NerveCenter objects:

 Alarm

 Mask

 OID to Group

 Perl Subroutine

 Poll

 Property

 Property Group

 Rule

 Severity

When you export an object to another server, NerveCenter actually exports not only that object, but
any objects that the object contains and some related objects. Table 18-1 lists the objects that
NerveCenter exports for each object type.
Designing and Managing Behavior Models 399Version 5.1

Importing and Exporting NerveCenter Nodes and Objects18
TABLE 18-1. Exporting Objects

Object Type Objects Exported

Alarm The alarm

 The alarm’s property

 Any property groups that contain the alarm’s property or is used by the set
attribute action

 The triggers that can affect the alarm, including those called by Perl subroutines

 The severities used by the alarm’s states

 Any action, including but not limited to Perl subroutines called by a Perl
Subroutine action

Mask The mask

 The triggers fired by the mask, including simple triggers and triggers referenced
by FireTrigger()

 Any property groups referenced by the trigger function AssignPropertyGroup()

OID to Group The OID to property group mapping

 The property group referred to in the mapping

Perl Subroutine The Perl subroutine

 Any property groups referenced by AssignPropertyGroup()

 Any triggers referenced by FireTrigger()

Poll The poll

 The poll’s property

 Any property groups that contain the poll’s property, including any referenced by
AssignPropertyGroup()

 The triggers fired by the poll, including any referenced by FireTrigger()

Property The property

 The property groups that contain the property

Property Group The property group

 The properties in the property group

 Any property groups that are a superset of this property group

Rule The Action Router rule conditions and actions
Designing and Managing Behavior Models Version 5.1400

Importing Node, Object, and Behavior Model Files 18
Importing Node, Object, and Behavior Model Files

You can copy node, object, and behavior model definitions into another NerveCenter database.
Node files (.node) contain node definitions that have been exported to a file with the NerveCenter
export feature. Object and behavior model files (.mod) contain definitions of objects and behavior
models. Object/model files come from one of two places:

 Object or behavior model files created using NerveCenter’s export feature.

 Models files shipped with NerveCenter. These files reside in NerveCenter’s model directory.

For more information about the behavior models shipped with NerveCenter, see the Behavior
Models Cookbook.

When you import a behavior model, you are also importing the objects associated with that model.
For every object/model file (.mod) there is a text file that contains descriptions of the objects in the
model. (This text file is the only documentation for the .mod file.)

CAUTION

Any existing object with the same name as an imported object is overwritten.

Whatever the source of your node or object/model files, and regardless of whether they contain
individual objects or behavior models, you use the same procedure to import the file contents.

NOTENOTENOTENOTE

You can also use the utility ImportUtil to import behavior models. This utility is
discussed in Importing Behavior Models or Nodes with ImportUtil on page 403.

TO IMPORT THE CONTENTS OF A NODE OR OBJECT/MODEL FILE

1. If the objects you are importing use base objects or attributes not in the current NerveCenter
MIB, add the necessary MIB definitions and recompile the NerveCenter MIB before
proceeding. See Managing Management Information Bases (MIBs) in Managing
NerveCenter.

Severity The severity name

 The severity color

 The severity numeric level

 The severity mapped name, if applicable

TABLE 18-1. Exporting Objects (Continued)

Object Type Objects Exported
Designing and Managing Behavior Models 401Version 5.1

Importing and Exporting NerveCenter Nodes and Objects18
NOTENOTENOTENOTE

IP filters set in the NerveCenter Administrator also apply to nodes imported via a
node file. For more information, refer to Filtering Nodes in Managing NerveCenter
and Enabling and Disabling IP and Hostname Filters in Managing NerveCenter.

2. Move the node or object/model file to a location available to the destination NerveCenter
server.

On Windows, if the destination NerveCenter server is running as a service under the system
account, copy the node or object/model file to a directory that physically resides on the
destination server, because a service under the system account cannot access shared files.

4. In the File Name field, enter the path of the node or object/model file.

CAUTION

Any existing object with the same name as an imported object is
overwritten.

If you don’t specify a pathname, NerveCenter looks in the server’s current working
directory. On Windows systems, this working directory is \Winnt\system32 if the server is
being run as a service, and the NerveCenter Bin directory otherwise. On UNIX systems, the
server’s current working directory is always the NerveCenter bin directory.

5. Select the OK button in the Import window.

NerveCenter imports the node or object/model file definitions into the new server’s
database.

NOTENOTENOTENOTE

If you are missing objects in a behavior model you have imported, you must update
the compiled NerveCenter MIB file. Adding MIB definitions is described in
Managing Management Information Bases (MIBs) in Managing NerveCenter.

3. From the client’s Server menu, choose Import Objects and Nodes.

The Import Objects and Nodes dialog is displayed.
Designing and Managing Behavior Models Version 5.1402

Importing Behavior Models or Nodes with ImportUtil 18
(For any models that you imported before you updated and recompiled the
NerveCenter MIB, the missing objects will not appear until the alarms they
transition are instantiated or until you re-import the model/objects.)

Importing Behavior Models or Nodes with ImportUtil

You can use the utility ImportUtil.exe to copy server configuration information into the registry of
a new NerveCenter Server and to import behavior models and nodes. Using this utility allows you
to reconfigure a setting on more than one NerveCenter Server at a time by changing one file and
importing it to all the relevant servers.

For more details, see Reconfiguring a NerveCenter Server from the Command Line on page 61.

TO IMPORT USING IMPORTUTIL.EXE

1. Locate the file imputil.ini.

 In a typical NerveCenter installation on Windows, this file can be found in the
NerveCenter installation\Sms directory.

 In a typical NerveCenter installation on UNIX, this file can be found in the directory
/opt/OSInc/userfiles.

The file imputil.ini is made of a number of sections that include a section header and keys.

2. Before making any changes, create a backup copy of the file imputil.ini.

CAUTION

You will not be able to restore the original imputil.ini after making
changes to the file unless you first make a backup copy.

3. Delete all but the [IMPORT_MODEL] or [IMPORT_NODE] section, as appropriate.

All sections in the file are optional. If you remove a section, including the section header,
ImportUtil does not change or delete any values in the registry for that key.

Any new values left in imputil.ini will overwrite old values. To avoid having placeholders
overwrite legitimate values, delete any unnecessary keys before running ImportUtil.

4. Enter the file name and path of the model or node list you want to import.

[IMPORT_MODEL]
File = model_path_and_filename

or
Designing and Managing Behavior Models 403Version 5.1

Importing and Exporting NerveCenter Nodes and Objects18
[IMPORT_NODE]
File = node_path_and_filename

Remember that you must also add the MIB definitions to the NerveCenter MIB file. Refer to
Managing Management Information Bases (MIBs) in Managing NerveCenter for
information about changing the NerveCenter MIB file.

5. Save the changed file.

6. While the NerveCenter Server is running, run the utility ImportUtil using the following
command:

importutil imputil.ini

NOTE

You must either be in the same directory as the imputil.ini file or include
the full pathname of the imputil.ini file.

NerveCenter notifies you upon successful completion of the reconfiguration.

If NerveCenter is running as a service, the account under which the service or daemon is running
must have the appropriate rights/group membership to import from or export to local machine or
network shares.
Designing and Managing Behavior Models Version 5.1404

A
Designing and Managing Behavior ModelsCommunications and Data
As a tool that comprehensively monitors and manages your network, NerveCenter uses a variety of
data transfers to gather, correlate, disseminate, and store information about network events. This
appendix outlines the general flow of data into, through, and out of NerveCenter in the course of its
operation.

NerveCenter’s primary sources of network information are SNMP traps and device responses to
NerveCenter polls. If configured appropriately, LogMatrix NerveCenter responds to trap and poll
data by forwarding it to your network management platform and to other NerveCenters. For
example, forwarded event data might ultimately land in a network management platform’s Event
Categories window or trigger an alarm transition in a central NerveCenter. Although this sequence
may happen quickly, the actual communication path from initial receipt of trap or poll data to the
final event message has many stages.

As Figure A-1 shows, a trace of the communication path initiated by a managed device’s SNMP
trap or poll response might look like this:

1. Traps are relayed directly to the NerveCenter Server if the platform and the server are
running on different machines. If they’re running on the same machine, traps are detected by
the operating system trap service or the management platform’s trap service and then
forwarded to the NerveCenter SNMP Trap process. The NerveCenter SNMP Trap process,
in turn, forwards the trap to LogMatrix NerveCenter.

2. LogMatrix NerveCenter trap masks filter incoming traps to see if they are of interest. If a
trap is of interest, an internal event, called a trigger, is generated and used by active alarms.
Polls evaluate the poll data returned by managed devices and also use triggers to pass data to
alarms.

3. LogMatrix NerveCenter alarms correlate the traps and polls with other related data. For
example, an alarm might detect that this is the third trap of the same type from the same
machine. The alarm then takes any automated actions that were associated with this trap
detection. For example, it could issue a trouble ticket or change the device configuration.
Designing and Managing Behavior Models 405Version 5.1

Communications and DataA
FIGURE A-1. Data Flow
4. If an alarm transition contains the Inform action, the alarm sends a message to the

LogMatrix NerveCenter platform adapter process, which always resides on the same host as
the network management platform, and/or to any listed NerveCenters.

5. The platform adapter determines whether the message requires changing a symbol’s color on
the map, initiating an event message, or both. Messages to other NerveCenters forward the
trap data.

6. If color changes are required, the platform adapter sends a message to the LogMatrix
NerveCenter ncapp process, which in turn forwards instructions for color changes to the
platform map with an API.

NerveCenter

SNMP trap over UDP

Trap relayed with MS API

SNMP trap over UDP

SNMP trap

Alarm

Mask

Triggers

Event and symbol color messages

Platform adapter
Map instructions

Platform event

ncapp

Pseudo SNMP trap data

Internal platform

Event Categories windowPlatform map

Set status instructions

Poll

SNMP MIB data
requests and responses

over TCP sockets

using TCP sockets

via platform API

via platform API

over UDP

Devices

Platform or
OS trap service

or OV API

communication

SNMP trap over

TCP sockets

Mask
at another

NerveCenter

 SNMP
Trap Service
Designing and Managing Behavior Models Version 5.1406

A

7. If an event is to be posted, the platform adapter uses an API to submit a data structure that
resembles an SNMP trap to the platform event facility, which decodes traps, associates text
messages with events, and posts them in the Event Categories window.

NerveCenter is a client/server application. The NerveCenter server acts as the hub for the data
transfers described in this appendix. As shown in the following illustration, event information
moves from managed device to NerveCenter server to management platform. But data also flows
between the server and other NerveCenter components in support of this flow.

FIGURE A-2. NerveCenter Components

 Node

SNMP
Agents

Events

Config
Behavior Model

SNMP messages

 Platforms

Server

CLI ClientAdmin Mibcomp

Other

Informs

.mod files nervectr.mib Mib FilesDatabase

ODBC Driver

Servers
NerveCenter

 Source

Import/Export

 Platform

Web

Client

Settings
Designing and Managing Behavior Models 407Version 5.1

Communications and DataA
The components shown in the preceding figure are defined in Table A-1:

TABLE A-1. NerveCenter Components

Component Definition

Client A user interface to the server. Provides facilities for the creation,
modification, maintenance, and monitoring of behavior models.

Web client A user interface to the server. Meant to be used only for
monitoring a network.

Administrator A user interface to the server. Provides facilities for NerveCenter
configuration.

Command line interface (CLI) Provides a subset of client commands for use from the command
line, programs, and scripts.

Platform/node source The network management platform that provides and monitors a
list of nodes to be monitored by the server.

Platforms/events The network management platforms that the server informs as an
alarm action.

Other NerveCenters Other NerveCenter servers that can accept Informs from the server,
allowing correlation across multiple domains.

SNMP agents Agents running on managed nodes that generate traps and respond
to NerveCenter polls.

ODBC Driver The NerveCenter server’s interface to its database.

Mibcomp Utility to compile and merge MIBs into the NerveCenter master
MIB.

Configuration Settings Repository for NerveCenter configuration parameter values—
NerveCenter.xml configuration file (UNIX) and the Registry
(Windows).

Behavior model .mod files ASCII files containing exported behavior models and their
components.
Designing and Managing Behavior Models Version 5.1408

A

Figure A-3 shows the utilities that install NerveCenter and assist in database management:

FIGURE A-3. Utilities for Installation and Database Management
The utilities shown in Figure A-3 are defined in Table A-2.

TABLE A-2. NerveCenter Utilities

Utility Purpose

Setup Installs the NerveCenter file hierarchy and initializes NerveCenter configuration
settings.

DBWizard GUI for InstallDB.

InstallDB Command line utility for database creation, initialization, and modification.

SerializeDB GUI-based utility for importing and exporting database information.

ODBC The NerveCenter server’s interface to its database.

Setup DBWizard

File System

InstallDB SerializeDB

ODBC Driver

Database

Config
Settings
Designing and Managing Behavior Models 409Version 5.1

Communications and DataA
Designing and Managing Behavior Models Version 5.1410

B
Designing and Managing Behavior ModelsDebugging a Behavior Model
This appendix provides information for resolving problems relating to NerveCenter behavior
models. Actions you can take to debug behavior models include:

 Verifying that the behavior model is enabled

 Checking properties and property groups

 Matching triggers and alarm transitions

 Auditing behavior models

For information on these topics, see the sections shown in the table below.

Section Description

Enabling a Behavior Model's
Components on page 412

Briefly discusses enabling behavior model components.

Checking Properties and
Property Groups on page 412

Explains how to perform the necessary checks on behavior model
components.

Matching Triggers and Alarm
Transitions on page 414

Examines the identities of triggers and transitions, specifies the
matching rules, and provides examples of objects that match and
objects that don't match.

Auditing Behavior Models on
page 421

Provides step-by-step instructions for how to perform a NerveCenter
audit.

Behavior Model Log on page
422

Describes the AuditTrail.log, which records changes made to
NerveCenter objects.
Designing and Managing Behavior Models 411Version 5.1

Debugging a Behavior ModelB
Enabling a Behavior Model's Components

If a behavior model is not working, the first thing to check is whether all of the model's components
have been enabled. For a model to be functional, all polls, masks, and alarms must be enabled.

To determine whether a given object is enabled, open the Poll List, Mask List, or Alarm Definition
List window, and note the Enabled status of the object in which you're interested. For information
of how to enable an object, see the section Enabling Objects on page 364.

Checking Properties and Property Groups

If all of the components of a behavior model are enabled and the behavior model still does not
work, you should make sure that your polls' properties, your alarms' properties, and your nodes'
property groups are set up correctly. The upcoming sections explain how to perform these checks.

Checking a Poll's Property

Part of NerveCenter's smart polling feature is that NerveCenter does not send a poll to a node
unless the poll's property is in the node's property group.

TO MAKE SURE THAT YOUR POLL PASSES THIS TEST

1. Open the Poll List window, and note your poll's property.

If your poll's property is set to NO_PROP, you can stop the test here because a poll whose
property is NO_PROP always passes this test.

2. Open the Node List window, locate a node you are trying to poll, and note this node's
property group.

3. Open the Property Group List window, select the property group you noted in step 2, and see
whether the poll's property appears in the property group's list of properties.

If your poll's property is not in the node's property group, you must change your poll's
property, change the node's property group, or add a property to the current property group.
Designing and Managing Behavior Models Version 5.1412

Checking Properties and Property Groups B
Checking a Poll's Poll Condition

If your poll's poll condition refers to a MIB base object, NerveCenter does not send the poll to a
node unless the base object referred to in the poll condition is in the node's property group.

TO MAKE SURE THAT YOUR POLL PASSES THIS TEST

1. Open the Poll List window, and note your poll's base object.

If your poll's base object is set to NO_OBJECT, you can stop the test here because a poll
whose base object is NO_OBJECT always passes this test.

2. Open the Node List window, locate a node you are trying to poll, and note this node's
property group.

3. Open the Property Group List window, select the property group you noted in step 2, and see
whether the poll's base object appears in the property group's list of properties.

If your poll's base object is not in the node's property group, you must change the node's
property group or add a property to the current property group.

Checking an Alarm's Property

Let's assume that NerveCenter is polling a node, that NerveCenter is firing a trigger as a result of
the poll, and that you have an enabled alarm whose one transition out of the Ground state has the
same name as this trigger. Even in this case, NerveCenter does not create an alarm instance unless
the alarm's property is in the node's property group.

TO MAKE SURE THAT YOUR ALARM PASSES THIS TEST

1. Open the Alarm Definition List window, and note your alarm's property.

If your alarm's property is set to NO_PROP, you can stop the test here because an alarm
whose property is NO_PROP always passes this test.

2. Open the Node List window, note the property group of a node you are trying to poll.

3. Open the Property Group List window, select the property group you noted in step 2, and see
whether the alarm's property appears in the property group's list of properties.

If your alarm's property is not in the node's property group, you must change your alarm's
property, change the node's property group, or add a property to the current property group.
Designing and Managing Behavior Models 413Version 5.1

Debugging a Behavior ModelB
Matching Triggers and Alarm Transitions

When a trigger is fired, NerveCenter must decide whether that trigger should cause a state
transition in an active alarm instance or cause a new alarm instance to be created. What conditions
must a trigger and transition meet before one of these actions takes place?

 A transition whose name matches the name of the trigger must be pending.

In an active alarm, a transition is pending if its origin state is the alarm instance's current
state. A transition is also considered pending if its origin state is Ground. When the second
type of transition occurs, a new alarm instance is instantiated.

 The trigger's identity must match the transition's identity.

Triggers have four-part identities. These identities include a name, a subobject, a node, and
sometimes a property. Transitions' identities have the same four parts, plus a fifth part,
scope. NerveCenter uses matching rules to compare a trigger's identity to the identity of each
pending alarm transition. Each pair of names, subobjects, nodes, and properties must pass a
comparison test before a transition takes place.

This section describes the identities of triggers and transitions, specifies the matching rules, and
provides examples of objects that match and objects that don't match. See the subsections listed
below:

 Identities of Triggers and Transitions on page 415

 Rules for Matching on page 416

 Examples of Matching Triggers and Transitions on page 418
Designing and Managing Behavior Models Version 5.1414

Matching Triggers and Alarm Transitions B
Identities of Triggers and Transitions

The components of a trigger's identity may be supplied by you, the designer, or by NerveCenter,
depending on how the trigger is generated. On the other hand, a transition's identity is inherited
from an active alarm instance or, if the transition's origin state is Ground, from an alarm definition.
The remainder of this section discusses how the components of a trigger or transition's identity are
given values.

 Name—Any string.

 Trigger—You give a trigger its name when you define the poll or mask that will fire the
trigger, when you make a call to the FireTrigger() function, or when you use the Fire
Trigger alarm action. NerveCenter assigns reserved names to built-in triggers.

 Transition—You establish a transition's name when you define the transition, in the
course of drawing an alarm's state diagram.

 Subobject—Usually the MIB base object and instance (connected with a period) associated
with the condition that prompted the trigger.

 Trigger —The subobject of a trigger fired by a poll is taken from the OID used in the
SNMP GetRequest that caused the trigger to be fired. Similarly, the subobject of a
trigger fired by a trap mask is taken from the OID in the first variable binding in the trap
that caused the trigger to be fired. Built-in triggers are assigned a subobject of $ANY.

For triggers fired as a result of a call to the Fire Trigger () function or by a Fire Trigger
alarm action, you specify the subobject when you call the function or define the alarm
action.

 Transition — In a subobject-scope alarm instance, a transition inherits its subobject
from the alarm instance. For example, if an alarm instance tracks ifEntry.2 on a given
node, all its transitions do also. If the transition would be an alarm instance's first, it has
no subobject. Transitions in node- and enterprise-scope alarms do not have subobjects
either.

 Node — The name of a managed node.

 The node attribute of a trigger fired by a poll or a mask is assigned the name of the node
on which the condition of interest was detected. For triggers fired as a result of a call to
the Fire Trigger () function or by a Fire Trigger alarm action, you specify the node when
you call the function or define the alarm action.

 A transition inherits its node from its alarm instance. For example, if an alarm instance
tracks node router1, all of its transitions do also. If the transition would be an alarm
instance's first, the transition does not have a node. In addition, transitions in enterprise
scope alarms do not have nodes.
Designing and Managing Behavior Models 415Version 5.1

Debugging a Behavior ModelB
 Property — The name of a property or empty.

 Trigger — You specify the property of a trigger fired by a Fire Trigger alarm action
when you define the action. Triggers from other sources do not have properties.

 Transition — A transition inherits its property from the associated alarm definition.

 Scope — Subobject, Node, Instance, or Enterprise

 Trigger — A trigger does not have a scope.

 Transition — A transition inherits its scope from the associated alarm definition.

Rules for Matching

A trigger causes an alarm transition if the identities of the trigger and the transition match—that is,
if their names, subobjects, nodes, and properties all pass comparison tests. The four comparison
tests corresponding to the four parts of a trigger's identity are discussed in the upcoming
subsections. The trigger must pass all four tests before it can prompt a transition.

Name Rule

A trigger's name must match the transition's name exactly.

Subobject Rule

A trigger's subobject matches a transition's subobject when any of the following statements is true:

 The transition's scope is Enterprise.

 The transition's scope is Node.

 Both the trigger's and the transition's subobjects are zero instance (baseObject.0) or are
empty.

 The trigger's subobject matches the transition's subobject exactly.

 The transition’s scope is instance and the instances match.

 The trigger's subobject is a wildcard ($ANY), and the transition's origin state is not Ground.

 The transition has subobject scope, the base objects are the same in the subobject for the
trigger and transition, the instance in the trigger's subobject is a wildcard ($ON), and the
transition's origin state is not Ground.

 The transition has instance scope, the instance in the trigger’s subobject is a wildcard ($ON),
and the transition is not from ground state.
Designing and Managing Behavior Models Version 5.1416

Matching Triggers and Alarm Transitions B
 The instances in the trigger's subobject and transition's subobject match, and one of the base
objects is an extension of the other.

Here's an example of one base object extending another. MIB-II defines ifEntry, a row of
data in a table of information about an interface. You access a particular instance of ifEntry
using the index ifIndex. Cisco extends this interface table by defining a local interface table,
which contains many additional attributes for each interface. The rows in this table are
accessed using the same index used to access the rows in the MIB-II interface table.

If the transition's origin state is Ground -- that is, a new alarm instance is being created -- the
following statement must also be true:

 The trigger's subobject is not $ANY or $NULL and does not contain $ON.

The trigger can have an empty subobject.

Node Rule

A trigger's node matches a transition's node when any of the following statements is true:

 The transition's scope is Enterprise.

 The trigger's node matches the transition's node exactly.

 The trigger's node is $ANY, and the transition's origin state is not Ground.

If the transition would create a new alarm instance and therefore has no associated node, the follow
statement must also be true:

 The trigger's node is not $ANY.

Property Rule

A trigger and transition pass the property test when all of the following conditions are met:

 For transitions of subobject or node scope, the transition's property is contained in the
property group of the trigger's node, or the transition's property is NO_PROP.

 For transitions of subobject or node scope, the trigger's property (if it has one) is contained in
the property group assigned to the trigger's node.

 For transitions of enterprise scope, the trigger's property (if it has one) must match the
transition's property.
Designing and Managing Behavior Models 417Version 5.1

Debugging a Behavior ModelB
Examples of Matching Triggers and Transitions

This section presents a number of examples of triggers and transitions that do and do not match.

Example 1

A trigger named highLoad with the subobject system.0 and the node hp124 would prompt the
following transitions:

 Name: highLoad
Scope: Subobject
Subobject: ip.0
Node: hp124
Property: hpws, which is contained in hp124's property group

 Name: highLoad
Scope: Subobject
Subobject: Unassigned (transition from Ground)
Node: Unassigned (transition from Ground)
Property: NO_PROP

 Name: highLoad
Scope: Node
Subobject: Irrelevant
Node: hp124
Property: hpws, which is contained in hp124's property group

The highLoad trigger would not prompt the following transition:

 Name: highLoad
Scope: Subobject
Subobject: ifEntry.2
Node: hp124
Property: hpws, which is contained in hp124's property group

The trigger and transition fail the subobject rule.
Designing and Managing Behavior Models Version 5.1418

Matching Triggers and Alarm Transitions B
Example 2

A trigger named lowSpace with the subobject $ANY, the node hp124, and the property includeMe
(which is contained in hp124's property group) would prompt the following transitions:

 Name: lowSpace
Scope: Subobject
Subobject: ifEntry.2
Node: hp124
Property: includeMeToo, which is contained in hp124's property group

 Name: lowSpace
Scope: Node
Subobject: Irrelevant
Node: hp124
Property: NO_PROP

 Name: lowSpace
Scope: Subobject
Subobject: system.0
Node: hp124
Property: NO_PROP

The lowSpace trigger would not prompt the following transitions:

 Name: lowSpace
Scope: Enterprise
Subobject: Irrelevant
Node: Irrelevant
Property: hpws, which is contained in hp124's property group

The trigger and transition fail the property rule.

 Name: lowSpace
Scope: Subobject
Subobject: ifEntry.2
Node: hp125
Property: includeMe

The trigger and transition fail the node rule.

 Name: lowSpace
Scope: Subobject
Subobject: Unassigned (transition from Ground)
Node: Unassigned (transition from Ground)
Property: NO_PROP

The trigger and transition fail the subobject rule.
Designing and Managing Behavior Models 419Version 5.1

Debugging a Behavior ModelB
Example 3

A trigger named lowSpace with the subobject $NULL, the node $ANY, and the property
NO_PROP would prompt the following transitions:

 Name: lowspace
Scope: Node
Subobject: Irrelevant
Node: hp125
Property: includeMe

 Name: lowspace
Scope: Enterprise
Subobject: Irrelevant
Node: Irrelevant
Property: dontIncludeMe

The lowSpace trigger would not prompt the following transitions:

 Name: lowspace
Scope: Subobject
Subobject: ifEntry.2
Node: hp125
Property: includeMe

The trigger and transition fail the subobject rule.

 Name: lowspace
Scope: Subobject
Subobject: Any string at all, including the empty string
Node: Any node at all
Property: NO_PROP

The trigger and transition fail the subobject rule.
Designing and Managing Behavior Models Version 5.1420

Auditing Behavior Models B
Auditing Behavior Models

NerveCenter includes an auditing feature that looks for:

 Alarm transitions for which there are no corresponding triggers

 Triggers that are fired by a poll or a mask and are not used in alarms

 Alarms with states that are unreachable

You should audit your database periodically to ensure that you don't have extraneous objects in
your database and that alarms you're currently using don't have unreachable states or unusable
transitions.

TO PERFORM AN AUDIT

1. Choose Audit from the client's Admin menu.

The Audit window appears.

2. Check one or more of the checkboxes above the text area.

 Checking the Alarm Triggers checkbox indicates that you want to see information
about alarm transitions for which there are no corresponding triggers.

 Checking the Mask /Poll Triggers checkbox indicates that you want to see information
about polls and masks that fire triggers that are not used by any currently defined alarm.

 Checking the Alarm States checkbox indicates that you want to see information about
alarms that contain states that are unreachable.
Designing and Managing Behavior Models 421Version 5.1

Debugging a Behavior ModelB
3. Select the Run Audit button.

The results of the audit are written to the text area in the Audit window and to the file
audit.txt in the Log (Windows) or userfiles/logs (UNIX) directory.

The other buttons in the Audit window have the following functions:

 Clear clears the contents of the text area in the Audit window.

 Clear Audit File clears the contents of the file audit.txt.

 View Audit File displays the contents of the file audit.txt in the text area of the Audit
window.

Behavior Model Log

NerveCenter logs most behavior model changes to /opt/OSInc/userfiles/logs/AuditTrail.log
(UNIX) or C:\Program Files\OpenService\NerveCenter\Log\AuditTrail.log (Windows). Table B-1
describes the events recorded in AuditTrail.log. You can use this to help trace how and when a
behavior model stops functioning.

TABLE B-1. Events Recorded in AuditTrail.log

NerveCenter Object Events Recorded

Alarm Add alarm

 Update alarm

 Delete alarm

 Alarm On/Off

Poll Add poll

 Update poll

 Delete poll

 Poll On/Off

Mask Add mask

 Update mask

 Delete mask

 Mask On/Off
Designing and Managing Behavior Models Version 5.1422

Behavior Model Log B
The following is a sample AuditTrail.log.

01/21/2004 17:08:54 Wed - User bxie added Property: newprop1
01/21/2004 17:08:54 Wed - User bxie added Property: newprop
01/21/2004 17:08:54 Wed - User bxie added PropertyGroup: newGroup
01/21/2004 17:09:17 Wed - User bxie added Property: newprop2
01/21/2004 17:09:17 Wed - User bxie added PropertyGroup: newGroup1
01/21/2004 17:09:29 Wed - User bxie updated PropertyGroup: newGroup
01/21/2004 17:11:04 Wed - User root updated PropertyGroup: newGroup
01/21/2004 17:12:14 Wed - User bxie added poll with name of newPoll
01/21/2004 17:12:24 Wed - User bxie updated poll with name of newPoll
01/21/2004 17:12:35 Wed - User bxie turned Off poll with name of newPoll
01/21/2004 17:12:46 Wed - User bxie deleted poll with name of newPoll
01/21/2004 17:13:43 Wed - User root added mask with name of newMask
01/21/2004 17:13:57 Wed - User root updated mask with name of newMask
01/21/2004 17:14:10 Wed - User bxie turned Off mask with name of newMask
01/21/2004 17:14:25 Wed - User bxie deleted mask with name of newMask
01/21/2004 17:15:07 Wed - User root added alarm with name of NewAlarm
01/21/2004 17:15:41 Wed - User root updated alarm with name of NewAlarm
01/21/2004 17:55:57 Wed - User bxie has turned Off the alarm with name of
NewAlarm
01/21/2004 17:56:03 Wed - User bxie has turned On the alarm with name of
NewAlarm
01/21/2004 17:56:03 Wed - User bxie has turned On the alarm with name of
newAlarm
01/21/2004 17:56:03 Wed - User bxie has turned On the alarm with name of
newAlarm2
01/21/2004 17:56:03 Wed - User bxie has turned On the alarm with name of
newAlarm3
01/21/2004 17:56:08 Wed - User bxie deleted alarm with name of NewAlarm
01/21/2004 17:56:08 Wed - User bxie deleted alarm with name of newAlarm
01/21/2004 17:56:09 Wed - User bxie deleted alarm with name of newAlarm2

Perl Subroutine Add Perl Subroutine

 Update Perl Subroutine

 Delete Perl Subroutine

Property Group Add/Delete Property Group

TABLE B-1. Events Recorded in AuditTrail.log (Continued)

NerveCenter Object Events Recorded
Designing and Managing Behavior Models 423Version 5.1

Debugging a Behavior ModelB
01/21/2004 17:56:10 Wed - User bxie deleted alarm with name of newAlarm3
01/21/2004 17:56:33 Wed - User bxie added perl subroutine with name of
nEwPerl
01/21/2004 17:56:58 Wed - User bxie updated perl subroutine with name of
newPerl
01/21/2004 17:57:12 Wed - User bxie updated perl subroutine with name of
newPerl
01/21/2004 17:57:24 Wed - User bxie deleted perl subroutine with name of
newPerl
01/21/2004 17:57:46 Wed - User bxie added opcmask with name of newOpcMask
01/21/2004 17:57:51 Wed - User bxie updated opcmask with name of newOpcMask
01/21/2004 17:57:58 Wed - User bxie turned Off opcmask with name of
newOpcMask
01/21/2004 17:58:20 Wed - User bxie deleted opcmask with name of newOpcMask
01/21/2004 17:58:39 Wed - User bxie removed Property: newprop2
01/21/2004 17:58:39 Wed - User bxie removed Property: newprop1
01/21/2004 17:58:39 Wed - User bxie removed Property: newprop
01/21/2004 17:58:39 Wed - User bxie removed PropertyGroup: newGroup1
01/21/2004 17:58:39 Wed - User bxie removed PropertyGroup: newGroup
Designing and Managing Behavior Models Version 5.1424

C
Designing and Managing Behavior ModelsDownstream Alarm Suppression
The NerveCenter downstream alarm suppression behavior model monitors nodes in a complex
network. Using topology information—either from HP OpenView or from a file that you provide—
the model uses the relationships between nodes to determine the status of those nodes accurately.
You can also use the model to log data to the database for outage and availability reports.

This appendix describes how the model works, how to test the model, and the technical details of
the model. The latest downstream alarm suppression model, nodestatus_dwnstrm.mod, is included
with the current release of LogMatrix NerveCenter. You can also get them from the LogMatrix
NerveCenter site at http://www.logmatrix.com.

This appendix includes the following sections:

 Understanding How the Model Works on page 426

 Testing the Model on page 432

 Understanding the Technical Details on page 441
Designing and Managing Behavior Models 425Version 5.1

http://www.logmatrix.com

Downstream Alarm SuppressionC
Understanding How the Model Works

The first downstream alarm suppression model (which included DSCollectRoutes, DSIcmpStatus,
and DSSnmpStatus), used information about local routers to determine the status of an unreachable
node. If a route existed for the node, the node was assumed to be down; otherwise, it was marked as
unreachable. In either case, the node was suppressed. For simple networks that consisted of nodes
behind routers, this model was adequate. However, for more complex networks with multiple
routers, switches, and hubs, and for certain routing protocols, the new model provides a more
accurate determination of a node’s status.

What is a complex network, as opposed to a simple network? A simple network might include
single parent-child relationships. Nodes that are dependent on other nodes for a route to the
NerveCenter server are child nodes. Nodes on which other nodes are dependent are parent nodes.

FIGURE C-1. A Simple Network

NOTENOTENOTENOTE

The NerveCenter Server is not a parent node, nor does it have a parent. Logically,
then, no node on the same segment as the NerveCenter Server has a parent.

A more complex network might include nodes with multiple parents and nodes that are themselves
parents to other nodes.

NerveCenter Server

(Not a parent)

Router

(Parent of Node)

Node on another
segment
Designing and Managing Behavior Models Version 5.1426

Understanding How the Model Works C
FIGURE C-2. A More Complex Network
The new model uses the status of devices between NerveCenter and managed nodes in the network
to make real-time determinations about whether nodes are up, down, or unreachable. NerveCenter
can then take appropriate actions based on the statuses of those nodes. For example, suppose
NerveCenter is monitoring 1000 nodes, and 300 nodes behind a router stop responding to polls.
NerveCenter can use the status of the router and any intermediate devices to determine whether the
nodes are down or unreachable. If the nodes are actually down, NerveCenter forwards the
appropriate alarms to the network management platform; however, if they are unreachable,
NerveCenter just forwards one critical alarm for the router and uses built-in LogMatrix
NerveCenter Smart Polling technology to stop suppressible polls for those nodes until they are
available again.

NerveCenter can get information about the nodes in the following ways:

 The OpenView Platform Adaptor (OVPA) extracts the topology information from HP
OpenView and stores the relationship information for each node in the NerveCenter
database.

 OVPA extracts the topology information from HP OpenView and creates a text file that
contains the relationship information. NerveCenter loads that information by using a Perl
subroutine that you define.

 You create a text file that defines the relationships of the nodes on your network. Then, you
create an alarm that uses a Perl subroutine with some built-in functions to load that
information into the database.

NOTENOTENOTENOTE

Don’t include nodes that have many routes (nodes that have hundreds of parents,
for example). The overhead necessary to maintain parent information about these
nodes is unnecessary because the likelihood that every single route to the nodes is
going to be down is very small.

NerveCenter
Server
(Not a parent)

Router1
(Parent of
Switch)

Router2
(Parent of Switch)

Router0
(Parent of
Router1 and
Router2)

Switch
(Parent of
Hub)

Hub
(Parent of
NodeA and
NodeB)

NodeA

NodeB
Designing and Managing Behavior Models 427Version 5.1

Downstream Alarm SuppressionC
Once NerveCenter has that relationship information, the DwnStrmSnmpStatus and
DwnStrmIcmpStatus alarms monitor nodes and maintain their statuses in the NerveCenter
database.

NOTENOTENOTENOTE

The accuracy of NerveCenter decisions depends on the accuracy of the topology
information it receives. Note that if you export node information that includes
parent information, from one server to another on a different segment, the parent
data might not be accurate because the topology perspective will be different.

FIGURE C-3. NerveCenter Maintains Parent-Child Relationship and Status Information
The following exceptions apply to HP OpenView:

 Any interface of a device in HP OpenView that has a segment ID of 0 is not used as a parent
because it cannot be determined whether that interface shares a segment with any other
device.

 NerveCenter does not list any parents or children for nodes that are only displayed on
isolated subnetworks because HP OpenView is not able to determine how that node is
connected to the network.

 Because HP OpenView does not provide enough information to determine whether a switch
is a parent, switches are treated as though they were ordinary nodes. In other words, a switch

Topology
information

Status
information

NerveCenter
Server

HP OpenView and
OVPA or pc.dat file

Managed
nodes
Designing and Managing Behavior Models Version 5.1428

Understanding How the Model Works C
can have parents, but no child nodes can list a switch as their parent. As a result, nodes that
are only connected to a network by a switch appear to have no parents.

Nodes can have the following statuses: up, testing, down, and unreachable. Any node that responds
has a status of up. The first time a node does not respond, its status is set to testing. While a node is
in testing, its status is not updated again until NerveCenter determines that the node is up, down, or
unreachable.

NerveCenter decides whether the node is down or unreachable based on whether the node has
parents, whether the parents’ statuses are more current than the node’s last status update, and what
those statuses are.

NOTENOTENOTENOTE

The current downstream alarm suppression model evaluates parent status at the
node level, not the subobject or interface level.

The model uses the following logic:

 The node is set to unreachable if the following condition is true: all parents have more
current statuses and no parents are up or in testing.

 The node is set to down if one of the following conditions is true:

 At least one parent has a more current status than the node and is up

 The node has no parents

 The status of the node does not change as long as one of the following is true:

 No parents have a more current status than the node

 One or more parents have a more current status than the node but are not up

The key is to only update a node’s status when NerveCenter can make a definitive decision about
the status based on real-time data, which can only happen when the parents’ status is more current
than the node’s status.

If the node does go to down or unreachable, NerveCenter continues to monitor the node and its
parents to determine if the node is available again, if the parents’ statuses have affected the status of
the node, or if there has been no change.

For example, the Figure C-4 shows a node that has one parent. At T0, the node does not respond to
an SNMP poll, so the alarm transitions from ground to error and the node’s status is updated to
testing. If the node does not respond to a second poll at T1, the alarm transitions from error to
testing but the node’s status is not updated. On a circular transition that loops back to the testing
state, a Perl subroutine checks—and continues to check—the parent’s status. At T2, the parent’s
status has been updated. Since the parent’s status is more current than the node’s status, the alarm
Designing and Managing Behavior Models 429Version 5.1

Downstream Alarm SuppressionC
transitions to unreachable and the node’s status is set to unreachable. At T3, the parent’s status has
not changed, so the node’s status is not updated.

FIGURE C-4. Updating a Node’s Status Depends on When the Parent’s Status Was Last Updated
As long as the parent’s status remains down and is more current than the node’s status every time
the Perl subroutine checks it, the node’s status is refreshed.

If you are running the NerveCenter Server on Windows and you are running
DwnStrmIcmpStatus_LogToDB and DownStrmSnmpStatus_LogToDB, you can run reports on the
availability of managed nodes. Three reports included with this version of NerveCenter include a
summary of availability (availsum.rpt), the status of each node by property group (availstat.rpt),
and a list of all transitions for each node (availtrans.rpt). Figure C-5 is an example of the summary
of availability report.

Time T0

T1

T2

T3Parent

Child

Down Down

Testing Testing Unreachable Unreachable
Designing and Managing Behavior Models Version 5.1430

Understanding How the Model Works C
FIGURE C-5. Summary of Node Availability
For more details about the new downstream alarm suppression model, see Understanding the
Technical Details on page 441.
Designing and Managing Behavior Models 431Version 5.1

Downstream Alarm SuppressionC
Testing the Model

The alarm suppression model is based on this concept: by monitoring whether nodes are dependent
on other nodes (parent-child relationships) and by keeping each node’s status updated proactively,
the model can make accurate assessments as to what the statuses of dependent, or child, nodes are.

The following sections describe how to test the models:

 Importing the New Model on page 432

 Identifying Parent-Child Relationships on page 434

 Making the Relationship Information Available to NerveCenter on page 437

 Testing the Alarm Suppression Model on page 438

 Running Node Availability Reports on page 439

Importing the New Model

The alarm suppression model is not included in the default database that is installed with
NerveCenter. You must import the model before you can use it. The model includes all of the
objects you need, including the alarms, polls, masks, Perl subroutines, and so on.

CAUTION

Older versions of the imported objects will be overwritten (for example, IcmpPoll).

TO IMPORT THE NEW MODEL

1. Start the Client and connect to the NerveCenter Server.

2. From the Server menu, select Import Objects and Nodes.

3. Select Browse.

4. Double-click the node_status directory.

5. Select nodestatus_dwnstrm.mod and then Open.

6. Select OK.
Designing and Managing Behavior Models Version 5.1432

Testing the Model C
A message is displayed when the file has been imported. The following alarms are listed in the
alarm list:

 DwnStrmIcmpStatus

 DwnStrmIcmpStatus_LogToDB

 DwnStrmSnmpStatus

 DwnStrmSnmpStatus_LogToDB

See Importing and Exporting NerveCenter Nodes and Objects on page 387 for complete details on
importing models.
Designing and Managing Behavior Models 433Version 5.1

Downstream Alarm SuppressionC
Identifying Parent-Child Relationships

In order to use NerveCenter’s Downstream Alarm Suppression behavior model, it is necessary to
establish the parent-child relationship between nodes. You can let OVPA extract relationship
information from HP OpenView and either store it in the NerveCenter database or in a text file. You
can also create the text file manually.

NOTENOTENOTENOTE

By default, OVPA does not get information about a node’s parents from your
network management platform. You must configure OVPA to collect that
information by doing the following steps.

TO IDENTIFY PARENT-CHILD RELATIONSHIPS USING OVPA

1. Make sure HP OpenView is running. Also make sure the NerveCenter Server is running.

2. Make sure that your network management platform is set up as your node source in the
NerveCenter Administrator.

3. If OVPA is running, stop it by typing ovstop ovpa at the command line.

4. Start OVPA in parenting mode from the command line by typing one of the following
commands:

 ovpa -pc

OVPA runs and computes parenting information, resychronizing the information
periodically. The how often OVPA resychronizes information is configurable through
the Node Source tab in the NerveCenter Administrator. The default resync parent rate is
600 seconds.

 ovpa -pc -writeParentsToFile hostname

hostname is the name of the machine on which the NerveCenter Server runs. OVPA
computes the parenting information, writes it to a file named hostname_PC.dat, and
then stops.
Designing and Managing Behavior Models Version 5.1434

Testing the Model C
TO CHANGE THE RESYNC PARENT RATE

1. Open NerveCenter Administrator and connect to the appropriate NerveCenter Server.

For further instructions, see Connecting to a NerveCenter Server in Managing NerveCenter.

2. Select the Node Source tab.

NerveCenter displays the Node Source tab.

3. In the Resync Parent Rate field, type the number of seconds you want between each resync
attempt.

If left blank, the default resync parent rate is 600.

4. Select Save.
Designing and Managing Behavior Models 435Version 5.1

Downstream Alarm SuppressionC
See Integrating with HP OpenView Network Node Manager in Integrating NerveCenter with a
Network Management Platform for complete details about starting and stopping OVPA and the
NerveCenter Server, as well as instructions for setting up a node source.

TO IDENTIFY PARENT-CHILD RELATIONSHIPS MANUALLY

1. Open a new text file.

2. Include a line for each node that has parents. Use the following syntax:

child parent

where child is the name of the node and parent is the name of each node on which the child
is dependent. If you have more than one parent, separate parents by typing a space between
each one.

NOTE

If NerveCenter uses a full domain name for the node, use the full name in
this file when referring to that node.

For example, if nodeA is dependent on nodeB.domain.com and nodeC, and
nodeB.domain.com is dependent on nodeD, then the text file would look like this:

nodeA nodeB.domain.com nodeC
nodeB.domain.com nodeD

3. Save and close the file.

The name and location of the file do not matter, as long as you remember the location to use
in the next procedure.
Designing and Managing Behavior Models Version 5.1436

Testing the Model C
Making the Relationship Information Available to NerveCenter

If you created a text file with the relationship information—either manually or by using OVPA—
you must load that information into NerveCenter.

TO LOAD RELATIONSHIP INFORMATION INTO NERVECENTER

1. In the NerveCenter Client, create an alarm that you can transition on demand. On the
transition, call a Perl subroutine that includes the following function:

NC::LoadParentsFromFile(FileName);

where FileName is the name of the file you created.

2. Transition the alarm. After the alarm transitions, you can turn the alarm off.

CAUTION

If you modify the file, you must repeat this procedure.

To make sure the contents of the file were read correctly, you can create another alarm with a Perl
subroutine that includes the following function:

NC::DumpParentsToFile(FileName);

The information will be written to the file on the local machine.

To remove relationship information, you can create an alarm with a Perl subroutine that includes
the following function:

NC::RemoveAllParents();
Designing and Managing Behavior Models 437Version 5.1

Downstream Alarm SuppressionC
Testing the Alarm Suppression Model

You can test the model by turning the DwnStrmSnmpStatus alarm (see DwnStrmSnmpStatus Alarm
on page 443) and DwnStrmIcmpStatus alarm (see DwnStrmIcmpStatus Alarm on page 451) on, and
then simulating a node being unreachable.

TO TEST THE ALARM SUPPRESSION MODEL

1. Make sure the Client is connected to the NerveCenter Server.

2. From the Admin menu, select Alarm Definition List.

The Alarm Definition List dialog is displayed.

3. In the listbox, right-click on DwnStrmSnmpStatus and select On.

4. In the listbox, right-click on DwnStrmIcmpStatus and select On.

The DwnStrmSnmpStatus and DwnStrmIcmpStatus alarms monitor the status of managed nodes.

NOTENOTENOTENOTE

To use the model to log data against which you can run availability reports, use
DwnStrmSnmpStatus_LogToDB and DwnStrmIcmpStatus_LogToDB instead of
the versions that don’t log data (DwnStrmSnmpStatus and DwnStrmIcmpStatus).

To simulate a node being unreachable, you can change the IP address of an existing node or that of
a new node to an invalid address for your network. (For example, you might use 10.10.10.10.) If
you have a test network available, you can also make nodes unreachable by unplugging devices—a
router, for example.

NerveCenter detects errors since the node no longer responds to polls. As a result, NerveCenter
reevaluates and updates the node status. If the alarm is in an AgentDown, DeviceDown, or
Unreachable state, NerveCenter suppresses suppressible alarms for that node until it is available
again.

To make sure the statuses of the nodes are correct, you can create an alarm with a Perl subroutine
that includes the following function:

NC::DumpNodeStatusToFile(FileName);

The information will be written to the file in the NerveCenter installation directory on the local
machine.
Designing and Managing Behavior Models Version 5.1438

Testing the Model C
Running Node Availability Reports

If you turned on the alarms that log transition data, you can run node availability reports against
that data.

NOTENOTENOTENOTE

Currently, these reports are available for NerveCenter Servers running on Windows
only. Also, you must have imported the model and turned the correct alarms on:
DwnStrmIcmpStatus_LogToDB and DwnStrmSnmpStatus_LogToDB.

If you are running NerveCenter on UNIX, you can export your data to Windows and run the reports
there using Crystal Reports, or use another third-party reporting utility on UNIX.

TO RUN THE NODE AVAILABILITY REPORTS

2. Select New.

The Add Report dialog box is displayed.

FIGURE C-6. Add Report Dialog Box

1. From the Admin menu in the NerveCenter Client, select Report List.

The Report List dialog box is displayed.
Designing and Managing Behavior Models 439Version 5.1

Downstream Alarm SuppressionC
3. In the Report Select List, select one of the following reports:

 availsum.rpt—Lists each node and percent availability by property group. This report
offers availability information at a glance.

 availstat.rpt—Lists each node and the amount of time it spent in each state, as well as
the overall outage and availability. This report includes both actual times and
percentages of time.

 availtrans.rpt—Lists each node and its state transitions. If you have a large number of
nodes, this report can be quite long.

4. In the Report Name field, type a name for your report (optional).

5. In the Report Author field, type your name (optional).

6. In the Description field, type any information that will help you or others understand the
report or why it was generated (optional).

7. Select the Override Server Name in Report checkbox.

8. Select OK.

The report is added to the report list.

9. Select the report, and then select Run.

The report is generated and displayed. Figure C-7 is an example of the availstat.rpt report.

FIGURE C-7. availstat.rpt Report
See Generating Reports in Monitoring Your Network for more details about running and viewing
reports.
Designing and Managing Behavior Models Version 5.1440

Understanding the Technical Details C
Understanding the Technical Details

The two particular areas of interest in the model are the alarms used to monitor device status and
the Perl subroutines used to store and evaluate relationship and status information. See the
following sections for details about those types of objects:

 Alarms on page 443

 Perl Subroutines on page 456

The following objects are imported when you import the MOD file.

CAUTION

Older versions of the imported objects will be overwritten (for example,
SnmpPoll).

 Alarms

 DwnStrmIcmpStatus (off)

 DwnStrmIcmpStatus_LogToDB (off)

 DwnStrmSnmpStatus (off)

 DwnStrmSnmpStatus_LogToDB (off)

 Properties

 icmpStatus

 nl-ping

 system

 Polls

 IS_IcmpPoll (on)

 IS_IcmpFastPoll (on)

 SnmpFastPoll (on)

 SnmpPoll (on)

 SS_IcmpPoll (on)

 SS_IcmpFastPoll (on)
Designing and Managing Behavior Models 441Version 5.1

Downstream Alarm SuppressionC
 Masks

 ColdStart (on)

 WarmStart (on)

 Triggers

 agentUp

 agentUpFast

 warmStart

 coldStart

 Down

 ICMP_ERROR

 IS_Icmp_Error

 ISF_Icmp_Error

 ISnodeUpFast

 ISnodeUp

 SNMP_TIMEOUT

 SS_Icmp_Error

 SS_PortUnreachTesting

 SSF_Icmp_Error

 SSnodeUpFast

 SSnodeUp

 UnReachable

 Severities

 Critical

 Inform

 Minor

 Normal
Designing and Managing Behavior Models Version 5.1442

Understanding the Technical Details C
 Perl subroutines

 SetNodeStatusDown

 SetNodeStatusTesting

 SetNodeStatusUnReachable

 SetNodeStatusUp

 SS_IcmpError

 TestParentSetNode

 TestParentStatus

Alarms

The downstream alarm suppression behavior model monitors node status using both SNMP and
ICMP. This section includes descriptions of the following alarms:

 DwnStrmSnmpStatus Alarm on page 443

 DwnStrmIcmpStatus Alarm on page 451

NOTENOTENOTENOTE

You must import the downstream behavior models before they become available in
NerveCenter Client. From the Server menu in Client, choose Import Objects and
Nodes, and then browse to select the node status models.

DwnStrmSnmpStatus Alarm

This alarm accurately monitors the status of nodes and their SNMP agents by taking into
consideration the status of the nodes’ parents. This alarm is the same as the
DwnStrmSnmpStatus_LogToDB version, except that the DwnStrmSnmpStatus_LogToDB version
also logs data on most transitions.
Designing and Managing Behavior Models 443Version 5.1

Downstream Alarm SuppressionC
FIGURE C-8. DwnStrmSnmpStatus/DwnStrmSnmpStatus_LogToDB Alarm State Diagram
Table C-1 lists the severity of each state:

TABLE C-1. Severities of Each State in DwnStrmSnmpStatus

State Severity Color

Ground Normal Green

Error Normal Green

Testing Normal Green

AgentDown Minor Yellow

DeviceDown Critical Red

Unreachable Inform Purple
Designing and Managing Behavior Models Version 5.1444

Understanding the Technical Details C
When this alarm is turned on, the following polls and masks cause state transitions:

 ColdStart (trap mask)

 SnmpFastPoll (SNMP get request)

 SnmpPoll (SNMP get request)

 SS_IcmpFastPoll (ICMP echo request, or ping)

 SS_IcmpPoll (ICMP echo request, or ping)

 WarmStart (trap mask)

This alarm uses the following Perl subroutines:

 SS_IcmpError Perl Subroutine on page 456

 SetNodeStatus Perl Subroutines on page 457

 TestParentStatus Perl Subroutine on page 458

 TestParentSetNode Perl Subroutine on page 461

NOTENOTENOTENOTE

Before turning this alarm on, NerveCenter must have loaded the relationship data.
SeeIdentifying Parent-Child Relationships on page 434 and Making the
Relationship Information Available to NerveCenter on page 437.

The following sections describe the states in the DwnStrmSnmpStatus alarm and the transitions and
actions that can happen from those states:

 Ground State on page 446

 Error State on page 446

 Testing State on page 447

 AgentDown State on page 449

 Unreachable State on page 449

 DeviceDown State on page 450
Designing and Managing Behavior Models 445Version 5.1

Downstream Alarm SuppressionC
Ground State

In Ground state, the node is reachable and the SNMP agent is up.

As long as the node and agent respond to the SnmpPoll and SnmpFastPoll requests, the agentUp
circular transition is triggered. The agentUp transition calls the SetNodeStatusUp Perl subroutine
(see SetNodeStatus Perl Subroutines on page 457) to refresh the update time.

If the node does not respond to the polls, the following triggers can transition the alarm from
Ground to Error:

 ICMP_ERROR

 SNMP_TIMEOUT

Transitions to the Error state call the SetNodeStatusTesting Perl subroutine (see SetNodeStatus Perl
Subroutines on page 457) to update the status to Testing.

ICMP_ERROR also calls the SS_IcmpError Perl subroutine (see SS_IcmpError Perl Subroutine on
page 456). If the SS_IcmpError Perl subroutine determines that the port is unreachable, it fires
SS_PortUnreach. The SS_PortUnreach trigger does the following:

 Transitions the alarm to an AgentDown state

 Uses the Set Attribute action to suppress the node so the node won't be polled by
suppressible polls while the agent is down

 Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page
457) to update the status so that NerveCenter can evaluate the states of the children of this
node, if there are any, accurately

Error State

The alarm suppression behavior model uses the Error state to confirm that there is actually a
problem (as opposed to a dropped packet, for example). From the Error state, a node can transition
back to Ground, to Testing, or to AgentDown.

If the node and agent respond to the SnmpFastPoll request, the agentUpFast transition is triggered.
The agentUpFast transition does the following:

 Returns the alarm to Ground state

 Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page
457) to update the status so that NerveCenter can evaluate the states of the children of this
node, if there are any, accurately
Designing and Managing Behavior Models Version 5.1446

Understanding the Technical Details C
If the node still does not respond to the poll, the following triggers transition the alarm from Error
to Testing:

 ICMP_ERROR, which calls the SS_IcmpError Perl subroutine (see SS_IcmpError Perl
Subroutine on page 456)

 SNMP_TIMEOUT

If the SS_IcmpError Perl subroutine determines that the port is unreachable, it fires
SS_PortUnreach. The SS_PortUnreach trigger does the following:

 Transitions the alarm to an AgentDown state

 Uses the Set Attribute action to suppress the node so the node won't be polled by
suppressible polls while the agent is down

 Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page
457) to update the status so that NerveCenter can evaluate the states of the children of this
node, if there are any, accurately

Testing State

While an alarm is in the Testing state, NerveCenter identifies whether the node is:

 Down

 Unreachable

 Up, but its agent is down

If SS_PortUnreach is triggered by the SS_IcmpError Perl subroutine while the node transitioned
from Error to Testing or if SS_nodeUpFast is triggered by SS_IcmpFastPoll, the trigger:

 Transitions the alarm to an AgentDown state

 Uses the Set Attribute action to suppress the node so the node won't be polled by
suppressible polls while the agent is down

 Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page
457) to update the status so that NerveCenter can evaluate the states of the children of this
node, if there are any, accurately
Designing and Managing Behavior Models 447Version 5.1

Downstream Alarm SuppressionC
If SSF_IcmpError is triggered by SS_IcmpFastPoll, the trigger:

 Transitions the alarm to an Unreachable state

 Uses the Set Attribute action to suppress the node so the node won't be polled by
suppressible polls while the node is unreachable

 Calls the SetNodeStatusUnreachable Perl subroutine (see SetNodeStatus Perl Subroutines on
page 457) to update the status so that NerveCenter can evaluate the states of the children of
this node, if there are any, accurately

If SS_nodeUpFast results in a circular ICMP_TIMEOUT transition, the TestParentStatus Perl
subroutine (see TestParentStatus Perl Subroutine on page 458) looks up the status of the parents. If
TestParentStatus can determine the node’s state based on the parents’ status, TestParentStatus fires
the appropriate trigger: UnReachable or Down.

 The UnReachable trigger:

 Transitions the alarm to an Unreachable state

 Uses the Set Attribute action to suppress the node so the node won't be polled by
suppressible polls while the node is unreachable

 Calls the SetNodeStatusUnreachable Perl subroutine (see SetNodeStatus Perl
Subroutines on page 457) to update the status so that NerveCenter can evaluate the
states of the children of this node, if there are any, accurately

 The Down trigger:

 Transitions the alarm to a DeviceDown state

 Uses the Set Attribute action to suppress the node so the node won't be polled by
suppressible polls while the node is unreachable

 Calls the SetNodeStatusDown Perl subroutine (see SetNodeStatus Perl Subroutines on
page 457) to update the status so that NerveCenter can evaluate the states of the children
of this node, if there are any, accurately

 Sends an Inform action to notify a network management platform or another
NerveCenter of the status of this node
Designing and Managing Behavior Models Version 5.1448

Understanding the Technical Details C
AgentDown State

While an alarm is in the AgentDown state, NerveCenter continues to monitor the node for changes.
As long as the node responds to the SS_IcmpPoll requests, the SSnodeUp transition is triggered.
The SSnodeUp transition calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl
Subroutines on page 457) to refresh the update time.

If the node does not respond to the polls, the following triggers transition the node from
AgentDown to Testing:

 ICMP_TIMEOUT

 SS_IcmpError

Each transition calls the SetNodeStatusTesting Perl subroutine (see SetNodeStatus Perl Subroutines
on page 457) to update the status to Testing.

If NerveCenter receives a warmStart trap or a coldStart trap, or agentUp is triggered in response to
an SnmpPoll response, the trigger:

 Transitions the alarm to a Ground state

 Uses the Set Attribute action to turn poll suppression off so NerveCenter can resume all
normal polling

 Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page
457) to update the time of the last status change so that NerveCenter can evaluate the states
of the children of this node, if there are any, accurately

Unreachable State

While an alarm is in the Unreachable state, NerveCenter continues to monitor the node for any
changes. If NerveCenter receives a coldStart trap or SSnodeUp is triggered by a response to
SS_IcmpPoll, the trigger:

 Transitions the alarm to a Ground state

 Uses the Set Attribute action to turn poll suppression off so NerveCenter can resume all
normal polling

 Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page
457) to update the status so that NerveCenter can evaluate the states of the children of this
node, if there are any, accurately

If the poll does not get a response and an ICMP_TIMEOUT transition is triggered, NerveCenter
calls the TestParentSetNode Perl subroutine (see TestParentSetNode Perl Subroutine on page 461),
which looks up the parent status. If TestParentSetNode can determine the node’s state based on the
parents’ status, TestParentSetNode fires the Down trigger or refreshes the node’s update time.
Designing and Managing Behavior Models 449Version 5.1

Downstream Alarm SuppressionC
The Down trigger:

 Transitions the alarm to a DeviceDown state

 Calls the SetNodeStatusDown Perl subroutine (see SetNodeStatus Perl Subroutines on page
457) to update the status so that NerveCenter can evaluate the states of the children of this
node, if there are any, accurately

 Sends an Inform action to notify a network management platform or another NerveCenter of
the status of this node

DeviceDown State

While an alarm is in the DeviceDown state, NerveCenter continues to monitor the node for any
changes.

If NerveCenter receives a coldStart trap or the SSnodeUpFast transition is triggered by an
SS_IcmpFastPoll, the trigger:

 Transitions the alarm to a Ground state

 Uses the Set Attribute action to turn poll suppression off so NerveCenter can resume all
normal polling

 Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page
457) to update the time of the last status change so that NerveCenter can evaluate the states
of the children of this node, if there are any, accurately

If SSF_IcmpError is triggered by SS_IcmpFastPoll, the trigger:

 Transitions the alarm to an Unreachable state

 Uses the Set Attribute action to suppress the node so the node won't be polled by
suppressible polls while the node is unreachable

 Calls the SetNodeStatusUnreachable Perl subroutine (see SetNodeStatus Perl Subroutines on
page 457) to update the status so that NerveCenter can evaluate the states of the children of
this node, if there are any, accurately

If the poll does not get a response and a circular ICMP_TIMEOUT transition is triggered,
NerveCenter calls the TestParentSetNode Perl subroutine (see TestParentSetNode Perl Subroutine
on page 461), which looks up the status of the parents. If TestParentSetNode can determine the
node’s state based on the parents’ status, TestParentStatus fires the Unreachable trigger or refreshes
the node’s update time.
Designing and Managing Behavior Models Version 5.1450

Understanding the Technical Details C
The Unreachable trigger:

 Transitions the alarm to an Unreachable state

 Calls the SetNodeStatusUnReachable Perl subroutine (see SetNodeStatus Perl Subroutines
on page 457) to update the status so that NerveCenter can evaluate the states of the children
of this node, if there are any, accurately

DwnStrmIcmpStatus Alarm

This alarm accurately monitors the status of nodes by taking into consideration the status of the
nodes’ parents. This alarm is the same as the DwnStrmIcmpStatus_LogToDB version, except that the
DwnStrmIcmpStatus_LogToDB version also logs data on most transitions.

FIGURE C-9. DwnStrmIcmpStatus/DwnStrmIcmpStatus_LogToDB Alarm State Diagram
Table C-2 lists the severity of each state:

TABLE C-2. Severities of each state in DwnStrmSnmpStatus

State Severity Color

Ground Normal Green

Error Normal Green

Testing Normal Green

DeviceDown Critical Red

Unreachable Inform Purple
Designing and Managing Behavior Models 451Version 5.1

Downstream Alarm SuppressionC
When this alarm is turned on, the following polls cause state transitions:

 IS_IcmpFastPoll (ICMP echo request, or ping)

 IS_IcmpPoll (ICMP echo request, or ping)

This alarm uses the following Perl subroutines:

 SetNodeStatus Perl Subroutines on page 457

 TestParentStatus Perl Subroutine on page 458

 TestParentSetNode Perl Subroutine on page 461

NOTENOTENOTENOTE

Before turning this alarm on, NerveCenter must have loaded the relationship data.
SeeIdentifying Parent-Child Relationships on page 434 and Making the
Relationship Information Available to NerveCenter on page 437.

The following sections describe the states in the DwnStrmIcmpStatus alarm and the transitions and
actions that can happen from those states:

 Ground State on page 452

 Error State on page 453

 Testing State on page 453

 Unreachable State on page 454

 DeviceDown State on page 455

Ground State

In Ground state, the node is reachable.

As long as the node responds to the IS_IcmpPoll requests, the ISnodeUp transition is triggered. The
ISnodeUp transition calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl
Subroutines on page 457) to refresh the update time.

If the node does not respond to the polls, the following triggers can transition the alarm from
Ground to Error:

 ICMP_TIMEOUT

 IS_IcmpError

Transitions to the Error state call the SetNodeStatusTesting Perl subroutine (see SetNodeStatus Perl
Subroutines on page 457) to update the status to Testing.
Designing and Managing Behavior Models Version 5.1452

Understanding the Technical Details C
Error State

The alarm suppression behavior model uses the Error state to confirm that there is actually a
problem (as opposed to a dropped packet, for example). From the Error state, an alarm can
transition back to Ground or to Testing.

If the node responds to the IS_IcmpFastPoll request, the ISnodeUpFast transition is triggered. The
trigger:

 Returns the alarm to Ground state

 Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page
457) to update the status so that NerveCenter can evaluate the states of the children of this
node, if there are any, accurately

If the node still does not respond to the poll, the following triggers transition the alarm from Error
to Testing:

 ICMP_TIMEOUT

 ISF_IcmpError

Testing State

While an alarm is in the Testing state, NerveCenter identifies whether the node is down or
unreachable. If ISnodeUpFast is triggered in response to an IS_IcmpFastPoll poll while the node is
in the Testing state, the trigger:

 Transitions the alarm to Ground

 Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page
457) to update the status so that NerveCenter can evaluate the states of the children of this
node, if there are any, accurately

If ISF_IcmpError is triggered in response to an IS_IcmpFastPoll poll while the node is in the
Testing state, the trigger:

 Transitions the alarm to Unreachable

 Calls the SetNodeStatusUnreachable Perl subroutine (see SetNodeStatus Perl Subroutines on
page 457) to update the status so that NerveCenter can evaluate the states of the children of
this node, if there are any, accurately

If ISnodeUpFast results in a circular ICMP_TIMEOUT transition, NerveCenter calls the
TestParentStatus Perl subroutine (see TestParentStatus Perl Subroutine on page 458) looks up the
status of the parents. If TestParentStatus can determine the node’s state based on the parents’ status,
TestParentStatus fires the appropriate trigger: UnReachable or Down.
Designing and Managing Behavior Models 453Version 5.1

Downstream Alarm SuppressionC
 The UnReachable trigger:

 Transitions the alarm to an Unreachable state

 Uses the Set Attribute action to suppress the node so the node won't be polled by
suppressible polls while the node is unreachable

 Calls the SetNodeStatusUnreachable Perl subroutine (see SetNodeStatus Perl
Subroutines on page 457) to update the status so that NerveCenter can evaluate the
states of the children of this node, if there are any, accurately

 The Down trigger:

 Transitions the alarm to a DeviceDown state

 Uses the Set Attribute action to suppress the node so the node won't be polled by
suppressible polls while the node is unreachable

 Calls the SetNodeStatusDown Perl subroutine (see SetNodeStatus Perl Subroutines on
page 457) to update the status so that NerveCenter can evaluate the states of the children
of this node, if there are any, accurately

 Sends an Inform action to notify a network management platform or another
NerveCenter of the status of this node

Unreachable State

While an alarm is in the Unreachable state, NerveCenter continues to monitor the node for any
changes. If ISnodeUp is triggered by a response to IS_IcmpPoll, the trigger:

 Transitions the alarm to a Ground state

 Uses the Set Attribute action to turn poll suppression off so NerveCenter can resume all
normal polling

 Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page
457) to update the status so that NerveCenter can evaluate the states of the children of this
node, if there are any, accurately

If the poll does not get a response and a circular ICMP_TIMEOUT transition is triggered,
NerveCenter calls the TestParentSetNode Perl subroutine (see TestParentSetNode Perl Subroutine
on page 461), which looks up the status of the parents. If TestParentSetNode can determine the
node’s state based on the parents’ status, TestParentSetNode either fires the Down trigger or
refreshes the node’s update time.
Designing and Managing Behavior Models Version 5.1454

Understanding the Technical Details C
The Down trigger:

 Transitions the alarm to a DeviceDown state

 Calls the SetNodeStatusDown Perl subroutine (see SetNodeStatus Perl Subroutines on page
457) to update the status so that NerveCenter can evaluate the states of the children of this
node, if there are any, accurately

 Sends an Inform action to notify a network management platform or another NerveCenter of
the status of this node

DeviceDown State

While an alarm is in the DeviceDown state, NerveCenter continues to monitor the node for any
changes. If the ISnodeUpFast transition is triggered by an IS_IcmpFastPoll, the trigger:

 Transitions the alarm to a Ground state

 Uses the Set Attribute action to turn poll suppression off so NerveCenter can resume all
normal polling

 Calls the SetNodeStatusUp Perl subroutine (see SetNodeStatus Perl Subroutines on page
457) to update the time of the last status change so that NerveCenter can evaluate the states
of the children of this node, if there are any, accurately

If ISF_IcmpError is triggered in response to an IS_IcmpFastPoll poll while the node is in the
Testing state, the trigger:

 Transitions the alarm to Unreachable

 Calls the SetNodeStatusUnreachable Perl subroutine (see SetNodeStatus Perl Subroutines on
page 457) to update the status so that NerveCenter can evaluate the states of the children of
this node, if there are any, accurately

If the poll does not get a response and a circular ICMP_TIMEOUT transition is triggered, the
TestParentSetNode Perl subroutine (see TestParentSetNode Perl Subroutine on page 461), which
looks up the status of the parents. If TestParentSetNode can determine the node’s state based on the
parents’ status, TestParentSetNode fires the Unreachable trigger or refreshes the node’s update
time.

The Unreachable trigger:

 Transitions the alarm to an Unreachable state

 Calls the SetNodeStatusUnReachable Perl subroutine (see TestParentStatus Perl Subroutine
on page 458) to update the status so that NerveCenter can evaluate the states of the children
of this node, if there are any, accurately
Designing and Managing Behavior Models 455Version 5.1

Downstream Alarm SuppressionC
Perl Subroutines

The new downstream alarm suppression behavior model uses several Perl subroutines to store
parent-child relationships and maintain node statuses. This section includes descriptions of the
following Perl subroutines:

 SS_IcmpError Perl Subroutine on page 456

 SetNodeStatus Perl Subroutines on page 457

 TestParentStatus Perl Subroutine on page 458

 TestParentSetNode Perl Subroutine on page 461

SS_IcmpError Perl Subroutine

The ICMP_ERROR transition calls this Perl subroutine to evaluate the error and determine whether
or not it indicates that the node is unreachable. If the ICMP error is Port Unreachable, the node is
up and reachable. It is assumed that other ICMP errors indicate an unreachable node. This
assumption may be incorrect depending on the behavior of your network. To include other ICMP
errors that indicate that the node is unreachable, modify this Perl subroutine.

my $Type = VbValue(0);
my $Code = VbValue(1);
if($Type == 3 && $Code == 3)
{
 FireTrigger(“SS_PortUnreach”);
}
else
{
 # Modify this else to eliminate other types of
 # ICMP errors that are not indicative of an
 # unreachable node. The assumption is that if
 # SS_IcmpError is fired, we are being told, by
 # the network, that the node is unreachable.
 FireTrigger(“SS_IcmpError”);
}

Designing and Managing Behavior Models Version 5.1456

Understanding the Technical Details C
SetNodeStatus Perl Subroutines

For the DwnStrmSnmpStatus and DwnStrmIcmpStatus alarms, all state transitions—except
transitions from Error to Testing—call one of the following Perl subroutines:

 SetNodeStatusTesting

 SetNodeStatusDown

 SetNodeStatusUnreachable

 SetNodeStatusUp

These Perl subroutines update the node status so the node’s children can accurately update their
statuses based on the node’s status.

SetNodeStatusTesting

my $Return;
$Return = NC::SetNodeStatus($NodeName,”Testing”);
#If $Return = 0, operation failed

SetNodeStatusDown

my $Return;
$Return = NC::SetNodeStatus($NodeName,”Down”);
#If $Return = 0, operation failed

SetNodeStatusUnreachable

my $Return;
$Return = NC::SetNodeStatus($NodeName,”Unreachable”);
#If $Return = 0, operation failed

SetNodeStatusUp

my $Return;
$Return = NC::SetNodeStatus($NodeName,”Up”);
#If $Return = 0, operation failed
Designing and Managing Behavior Models 457Version 5.1

Downstream Alarm SuppressionC
TestParentStatus Perl Subroutine

For the DwnStrmSnmpStatus and DwnStrmIcmpStatus alarms, if a node is in a Testing state, the
ERROR trigger is fired every time the node is polled and doesn’t respond. Each resulting ERROR
transition calls the TestParentStatus Perl subroutine.

The TestParentStatus Perl subroutine tests the parent node status and determines the status of the
node by doing the following:

 If the node has parents, TestParentStatus evaluates each parent’s last update time. Based on
the following rules, TestParentStatus sets a flag (TriggerFlag) that determines what trigger, if
any, should be fired.

 If no parents have an update time more recent than the node’s update time, then
TriggerFlag is set to Testing.

 If at least one parent has a more recent update time but is not up, the flag is set to
Testing.

 If at least one parent has a more recent update time and is up, the flag is set to Down,
regardless of the status or time of last update of any other parent.

 If all parents have more recent update times and no parent is up or in testing, the flag is
set to Unreachable.

 If the node has no parents, TriggerFlag is set to Down.

If TriggerFlag is set to Testing, TestParentStatus does nothing because TestParentStatus must have
more information to make an accurate decision. If the alarm should be in another state,
TestParentStatus fires the appropriate trigger to transition the node into that state.

The code for this subroutine follows:

The purpose of this subroutine is to test the parent
node status and fire the appropriate trigger to take the
alarm to either down or unreachable. You must make sure
that all parents are being monitored with the status
alarms.
use NC;
my $NodeUpdateTime; # Last time node status was updated
my $LastNodeStatus; # Last node status
my @Parents = (); # Array of parents
my $Parent; # Parent Node
my $ParentUpdateTime; # Last time parent node status was updated
my $ParentStatus; # Last parent status
my $TriggerFlag = “NotSet”;
Designing and Managing Behavior Models Version 5.1458

Understanding the Technical Details C
my $ParentNotUpdated = 0; # Remember if we have any parents not updated

#Define all triggers that can be fired
DefineTrigger('UnReachable');
DefineTrigger('Down');
DefineTrigger('Testing');

Get the last node status and update time for this node
($LastNodeStatus,$NodeUpdateTime) = NC::GetNodeStatus($NodeName);

Get the array of parents for this node
@Parents = NC::GetParents($NodeName);
if(defined($Parents[0]))
{
 # Test each parent, if ANY are ok, we assume the node
 # is reachable. Parents update time must be past the
 # last time the node was updated or we can't assume the
 # status is accurate.
 foreach $Parent (@Parents)
 {
 ($ParentStatus,$ParentUpdateTime) = NC::GetNodeStatus($Parent);
 if($ParentUpdateTime >= $NodeUpdateTime)
 {
 # Using TriggerFlag to store name of trigger to be fired. If any
 # parent is found to be up, then the flag will be set to down. If
 # all parents are down or unreachable, then the flag will be set
 # to unreachable. If no parents are down and at least one parent
 # is testing, set flag to testing. Otherwise, it will remain not
 # set and we will update the node's current status and time. Testing
 # handles the case where one parent is testing and another is
 # unreachable. We need to make sure we do not mark the node as
 # unreachable until the parent node in testing goes to some final
 # state because that state could be agent down which is treated
 # as up.
 if(($ParentStatus eq “Down” || $ParentStatus eq “UnReachable”) &&
$TriggerFlag eq “NotSet”)
 {
 $TriggerFlag = “UnReachable”;
 }
 elsif($ParentStatus eq “Up”)
 {
Designing and Managing Behavior Models 459Version 5.1

Downstream Alarm SuppressionC
 $TriggerFlag = “Down”;
 }
 elsif($ParentStatus eq “Testing” && $TriggerFlag ne “Down”)
 {
 $TriggerFlag = “Testing”;
 }
 }
 else
 {
 # Remember that we have at least one parent that hasn't been updated.
 $ParentNotUpdated = 1;
 }
 }
}
else
{
 # If no parents, assume node is down.
 $TriggerFlag = “Down”;
}

If I have at least one parent not updated and I do not have
any Up parents, Set TriggerFlag to testing.
if($ParentNotUpdated && $TriggerFlag ne “Down”)
{
 $TriggerFlag = “Testing”;
}

if($TriggerFlag ne “Testing”)
{
 # Fire trigger if node's status should change.
 if($TriggerFlag ne $LastNodeStatus)
 {
 # Fire trigger
 FireTrigger($TriggerFlag);
 }
}

Designing and Managing Behavior Models Version 5.1460

Understanding the Technical Details C
TestParentSetNode Perl Subroutine

For the DwnStrmSnmpStatus and DwnStrmIcmpStatus alarms, if an alarm is in a DeviceDown or
Unreachable state, the ERROR trigger is fired every time the node is polled and doesn’t respond.
Each resulting ERROR transition calls the TestParentSetNode Perl subroutine.

The TestParentSetNode Perl subroutine tests the parent node status and determines the status of the
node by doing the following:

 If the node has parents, TestParentSetNode evaluates each parent’s last update time. Based
on the following rules, TestParentSetNode sets a flag (TriggerFlag) that determines what
trigger, if any, should be fired.

 If no parents have an update time more recent than the node’s update time, then
TriggerFlag is set to Testing.

 If at least one parent has a more recent update time but is not up, the flag is set to
Testing.

 If at least one parent has a more recent update time and is up, the flag is set to Down,
regardless of the status or time of last update of any other parent.

 If all parents have more recent update times and no parent is up or in testing, the flag is
set to Unreachable.

 If the node has no parents, TriggerFlag is set to Down.

If TriggerFlag is set to Testing, TestParentSetNode does nothing because TestParentSetNode must
have more information to make an accurate decision. If the alarm should be in another state,
TestParentSetNode fires the appropriate trigger to transition the alarm into that state. If the alarm is
already in the correct state, TestParentSetNode just refreshes the node update time so the node’s
children can accurately update their statuses based on the node’s status.

The code for this subroutine follows:

The purpose of this subroutine is to test the parent
node status and, if the node is not in a terminal state
but should be, fire a trigger to make it so. If the node
is already in the correct state, just refresh the node
update time. You must make sure that all parents are
being monitored with the status alarms.
use NC;
my $NodeUpdateTime; # Last time node status was updated
my $LastNodeStatus; # Last node status
my @Parents = (); # Array of parents
my $Parent; # Parent Node
Designing and Managing Behavior Models 461Version 5.1

Downstream Alarm SuppressionC
my $ParentUpdateTime; # Last time parent node status was updated
my $ParentStatus; # Last parent status
my $TriggerFlag = “NotSet”;
my $ParentNotUpdated = 0; # Remember if we have any parents not updated
#Define all triggers that can be fired
DefineTrigger('UnReachable');
DefineTrigger('Down');
DefineTrigger('Testing');
Get the last node status and update time for this node
($LastNodeStatus,$NodeUpdateTime) = NC::GetNodeStatus($NodeName);
Get the array of parents for this node
@Parents = NC::GetParents($NodeName);
if(defined($Parents[0]))
{
 # Test each parent, if any are ok, we assume the node
 # is reachable. Parents update time must be past the
 # last time the node was updated or we can't assume the
 # status is accurate.
 foreach $Parent (@Parents)
 {
 ($ParentStatus,$ParentUpdateTime) = NC::GetNodeStatus($Parent);
 if($ParentUpdateTime >= $NodeUpdateTime)
 {
 # Using TriggerFlag to store name of trigger to be fired. If any
 # parent is found to be up, then the flag will be set to down. If
 # all parents are down or unreachable, then the flag will be set
 # to unreachable. If no parents are down and at least one parent
 # is testing, set flag to testing. Otherwise, it will remain not
 # set and we will update the node's current status and time. Testing
 # handles the case where one parent is testing and another is
 # unreachable. We need to make sure we do not mark the node as
 # unreachable until the parent node in testing goes to some final
 # state because that state could be agent down which is treated
 # as up.
 if(($ParentStatus eq “Down” || $ParentStatus eq “UnReachable”) &&
$TriggerFlag eq “NotSet”)
 {
 $TriggerFlag = “UnReachable”;
 }
 elsif($ParentStatus eq “Up”)
 {
Designing and Managing Behavior Models Version 5.1462

Understanding the Technical Details C
 $TriggerFlag = “Down”;
 }
 elsif($ParentStatus eq “Testing” && $TriggerFlag ne “Down”)
 {
 $TriggerFlag = “Testing”;
 }
 }
 else
 {
 # Remember that we have at least one parent that hasn't been updated.
 $ParentNotUpdated = 1;
 }
 }
}
else
{
 # Node does not have parents so assume down
 $TriggerFlag = “Down”;
}

If I have at least one parent not updated and I do not have
any up parents, Set TriggerFlag to testing.
if($ParentNotUpdated && $TriggerFlag ne “Down”)
{
 $TriggerFlag = “Testing”;
}
if($TriggerFlag ne “Testing”)
{
 # Fire trigger if node's status should change. Otherwise
 # refresh the time for the node's current state.
 if($TriggerFlag ne $LastNodeStatus)
 {
 # Fire trigger
 FireTrigger($TriggerFlag);
 }
 else
 {
 # Refresh node status
 NC::SetNodeStatus($NodeName,$LastNodeStatus);
 }
}

Designing and Managing Behavior Models 463Version 5.1

Downstream Alarm SuppressionC
Designing and Managing Behavior Models Version 5.1464

D
Designing and Managing Behavior ModelsError Messages
This appendix explains the error and information messages that you might encounter while using
NerveCenter. Possible causes and solutions for the errors are included.

This appendix includes the following sections:

Section Description

User Interface Messages on
page 466

Explains where error messages appear as well as the different types of
error messages.

Error Messages on page 468 Lists the error messages and possible solutions.
Designing and Managing Behavior Models 465Version 5.1

Error MessagesD
User Interface Messages

All NerveCenter error messages are written to the Event Log. To view messages in the Event Log:

 Windows: Run the Event Viewer and display the Application log. Each error message is
listed as a line in the log.

 UNIX: Read the file /var/adm/messages with a text editor or a command such as more.

Each error description is formatted in the following way:

Category error_message_number: message: [code_number]

Each message is assigned a category, which has a corresponding number. The line listed in the log
uses a number to indicate a category, as follows:

TABLE D-1. Error Message Categories

Number Category

1 NC Server Manager

2 NC Alarm Manager

3 NC Trap Manager

4 NC Poll Manager

5 NC Action Manager

6 NC Protocol Manager

7 NC PA Resync Manager

8 NC Service

9 NC Inform NerveCenter Manager

10 NC OpC Manager

11 NC LogToFile Manager

12 NC FlatFile Manager

13 NC Alarm Filter Manager

14 NC Deserialize Manager

15 NC LogtoDB Manager

16 NC DB Manager

17 NC Inform OV
Designing and Managing Behavior Models Version 5.1466

User Interface Messages D
The error message number indicates the error type. The error numbers are organized as follows:

The error messages are explained in the following sections:

 Action Manager Error Messages on page 469

 Alarm Filter Manager Error Messages on page 473

 Deserialize Manager Error Messages on page 473

 Flatfile Error Messages on page 473

 Inform NerveCenter Error Messages on page 474

 Inform OV Error Messages on page 474

 LogToDatabase Manager Error Messages on page 476

 LogToFile Manager Error Messages on page 477

 Poll Manager Error Messages on page 477

 Protocol Manager Error Messages on page 477

 PA Resync Manager Error Messages on page 478

 Server Manager Error Messages on page 480

 Trap Manager Error Messages on page 484

 NerveCenter installation Error Messages (UNIX) on page 485

 OpenView Configuration Error Messages (UNIX) on page 487

TABLE D-2. Error Message Numbers

Number Range Type of Error

0-999 Users should call customer support.

1000-1999 User can resolve the problem.

2000-2999 User is warned of an event.

3000-3999 User is given an informational message.
Designing and Managing Behavior Models 467Version 5.1

Error MessagesD
Error Messages

The following tables list particular error messages that may occur when operating NerveCenter. For
an explanation of what types of error messages exist and where error messages appear, see the
section User Interface Messages on page 466.

The messages include:

 Action Manager Error Messages on page 469

 Alarm Filter Manager Error Messages on page 473

 Deserialize Manager Error Messages on page 473

 Flatfile Error Messages on page 473

 Inform NerveCenter Error Messages on page 474

 Inform OV Error Messages on page 474

 LogToDatabase Manager Error Messages on page 476

 LogToFile Manager Error Messages on page 477

 Poll Manager Error Messages on page 477

 Protocol Manager Error Messages on page 477

 PA Resync Manager Error Messages on page 478

 Server Manager Error Messages on page 480

 Trap Manager Error Messages on page 484

 NerveCenter installation Error Messages (UNIX) on page 485

 OpenView Configuration Error Messages (UNIX) on page 487
Designing and Managing Behavior Models Version 5.1468

Error Messages D
Action Manager Error Messages

Following is a list of Action Manager error messages.

TABLE D-3. Action Manager Error Messages

Error Resolution

1 Action Manager Initialization failed with send trap socket N/A

3 Send trap action: CreateTrapRequest failed N/A

4 Send trap action: Send trap failed N/A

500 Socket Error: value N/A

501 <system call> failed while launching Application handler :
<error message>

N/A

1001 Action Manager connect to database failed Check NerveCenter database. Check ODBC
connection string.

1002 InitializePlatformSocket failed for value Use the Administrator to check the configuration
settings for NetNodeNotify.

1004 Can't open database Check NerveCenter database. Check ODBC
connection string.

1005 No connection string for Log to Database action Check ODBC connection string.

1006 Reconfiguration: InitializePlatformSocket failed for value Check Notify page in NC Admin.

1010 Log to Event View error: RegisterEventSource for value
failed with error code value

Check system configuration.

1011 Log to Event View error: ReportEvent failed with error code
value

Check system configuration.

1012 Socket Creation Failed in InitSmtpSocket With Error =
value

Check socket resource on the computer.

1013 Protocol Bind Failed in InitSmtpSocket With Error = value Check TCP/IP configuration.

1014 Connect to SMTP Host Failed in InitSmtpSocket With
Error=value

Use the Administrator to check the configuration
settings for SMTP host name.

1015 Ioctlsocket Failed (Setting Non-Blocking Mode) in
InitSmtpSocket With Error=value

Check TCP/IP configuration.

1016 Send Packet Failed in SendSmtpPacket With Error= value Check SMTP server.
Designing and Managing Behavior Models 469Version 5.1

Error MessagesD
1017 Receive Packet Failed in RecvSmtpPacket for %1 With
Error= value

Check SMTP server.

1018 Received Unexpected Response= value in RecvSmtpPacket Check SMTP server.

1019 Log to Database error: Database connection not open Check NerveCenter database. Check SQL Server.

1020 Log to Database error: can not open log table Check NC_Log table in NerveCenter database.

1021 Log to Database exception: value Check NerveCenter database. Check SQL Server.
Check NC_Log table in NerveCenter database.

1022 Logging to a File error: No filename presented to Log To
File action.

Make sure there is a file name associated with
LogToFile action for alarm transitions.

1023 Logging to a File error: Unable to Write LogFile: value
Error Code = value.

Check security on file system. Make sure the file
is writable.

1024 Logging to a File error: Unable to Create LogFile: value
Error Code = value.

Check security on file system. Make sure the file
is writable.

1025 Logging to a File error: Unable to Seek EOF for LogFile:
value Error Code = value

Check security on file system. Make sure the file
is writable.

1026 Logging to a File error: Unable to Truncate LogFile. Delete the file or repair the file format.

1027 Could Not Logoff from MAPI value, Error=value Check MAPI service in the system.

1028 Could Not Load MAPI32.DLL. Search mapi32.dll in the system and ensure sure it
is in the system path.

1029 Could Not Get MAPILogon Address. Check mapi32.dll in the system and ensure it is a
good version.

1030 Could Not Get MAPILogoff Address. Check mapi32.dll in the system and ensure it is a
good version.

1031 Could Not Get MAPISendMail Address. Check mapi32.dll in the system and ensure it is a
good version.

1032 Could Not Logon to MAPI value, Error=value. Check MAPI configuration and ensure to have
created the profile.

1033 Could Not SendMail to MAPI value, Error=value. Check MAPI configuration and ensure to have
created the profile.

1034 Paging action error: Dial failed. Check modem configuration.

TABLE D-3. Action Manager Error Messages (Continued)

Error Resolution
Designing and Managing Behavior Models Version 5.1470

Error Messages D
1035 Running an NT Command error: No Command Presented to
Run Command.

Make sure there is a command associated with all
Windows Command actions specified for alarm
transitions.

1036 Running an NT Command error: Command value
Completed with ReturnCode value

Check command line.

1037 Command action value failed : Application handler value
was killed

NCServer will bring it up for the next Command
action

1038 Command action <action> failed : value If error says “Too many open files” close some
open files. If error says “fork failure” close some
applications.

1039 Unable to launch Application handler: value If error says “Too many open files” close some
open files. If error says “fork failure” close some
applications.

1040 Perl subroutine value failed: message

1500 The connection to value was closed

1505 value. The address is already in use Make sure you are not running two instances of
the same application on the same machine.

1506 value. The connection was aborted due to timeout or other
failure

Make sure the physical network connections are
present.

1507 value. The attempt to connect was refused Make sure the server is running on the remote
host.

1508 value. The connection was reset by the remote side Make sure the remote peer is up and running.

1509 value. A destination address is required A destination address or host name is required.

1510 value. The remote host cannot be reached Make sure the routers are working properly.

1511 value. Too many open files Close any open files.

1512 value. The network subsystem is down Reboot the machine.

1513 value. The network dropped the connection Make sure the peer is running and the network
connections are working.

1514 value. No buffer space is available This might be because you are running several
applications, or an application is not releasing
resources.

TABLE D-3. Action Manager Error Messages (Continued)

Error Resolution
Designing and Managing Behavior Models 471Version 5.1

Error MessagesD
1515 value. The network cannot be reached from this host at this
time

Make sure the routers are functioning properly.

1516 value. Attempt to connect timed out without establishing a
connection

Make sure the machine is running and on the
network.

1517 value. The host cannot be found Make sure you can ping the host. Check your
hosts file or DNS server.

1518 value. The network subsystem is unavailable Make sure the network services are started on
machine.

1519 value. Invalid host name specified for destination The host name cannot be resolved to an IP
address. Enter the name to the hosts file or DNS
server.

1520 value. The specified address in not available Make sure the host name is not zero—try pinging
the host.

2001 Command line too long: value Check the Windows Command Action.
Command line exceeds maximum allowed length
of 2048 characters.

2002 Send trap action failed for alarm alarm name due to the
following reason: string

Check the source or destination host name. Check
the enterprise. If this action was not caused by a
trap, it will fail if the enterprise is $P. Check to
see that the varbinds are legal for the currently
loaded MIB.

2003 Tapi initialize failed, paging will not work Check the comm port/modem configuration and
check the tapi32.dll version.

2004 Empty host for SMTP mail If SMTP actions are used, use the Administrator
to enter the SMTP mail host name.

2005 Empty profile for MAPI, MS Mail will not work If MS mail actions are used, use the
Administrator to enter the SMTP mail host name.

2006 Fire Trigger Action error: Invalid node name: value A node name was specified directly in an action
and that node doesn't exist in the system.

2007 Fire Trigger Action error: Invalid property name: value A property was specified directly in an action and
that property doesn't exist in the system.

2008 Fire Trigger Action error: Invalid subobject: value A subobject was specified directly in an action
and that subobject doesn't exist in the system.

TABLE D-3. Action Manager Error Messages (Continued)

Error Resolution
Designing and Managing Behavior Models Version 5.1472

Error Messages D
Alarm Filter Manager Error Messages

Following is a list of Alarm Filter Manager error messages.

Deserialize Manager Error Messages

Following is a list of Alarm Filter Manager error messages.

Flatfile Error Messages

Following is a list of Flatfile Manager error messages.

2010 Error Sending SMTP Mail. Value messages may have been
lost.

TABLE D-3. Action Manager Error Messages (Continued)

Error Resolution

TABLE D-4. Alarm Filter Manager Error Messages

Error Resolution

1 Lookup failed on line number value in File value.

3001 Alarm Filter Manager Initialization successfully finished

TABLE D-5. Deserialize Manager Error Messages

Error Resolution

1 Lookup failed on line number value in File value.

3001 Deserialize Thread Manager Initialization successfully finished

TABLE D-6. Flatfile Manager Error Messages

Error Resolution

1 Lookup failed on line number value in File value.

3001 Flat File Initialization successfully finished
Designing and Managing Behavior Models 473Version 5.1

Error MessagesD
Inform NerveCenter Error Messages

Following is a list of Inform NerveCenter Manager error messages.

Inform OV Error Messages

Following is a list of Inform OV Manager error messages.

TABLE D-7. Inform NerveCenter Manager Error Messages

Error Resolution

1 Lookup failed on line number value in File value.

3001 InformNC Manager Initialization successfully finished

TABLE D-8. Inform OV Manager Error Messages

Error Resolution

2 ReceiveHandShakeResponse FALSE byte not
correct.

N/A

500 Socket Error: value. N/A

501 <system call> failed while launching Application
handler : <error message>.

N/A

1002 InitializePlatformSocket failed for value. Use the Administrator to check the NetNodeNotify
configuration.

1003 No platform host for InformOV. Use the Administrator to check the NetNodeNotify
configuration.

1006 Reconfiguration: InitializePlatformSocket failed for
value.

Check Notify page in the Administrator.

1007 CInformOVEventSocket::Init() failed with invalid
operation: value.

Use the Administrator to check the NetNodeNotify
configuration.

1039 Unable to launch Application handler: value. If error says “Too many open files” close some open files.
If error says “fork failure” close some applications.

1040 Perl subroutine value failed: message.

1500 The connection to value was closed.

1505 value. The address is already in use. Make sure you are not running two instances of the same
application on the same machine.
Designing and Managing Behavior Models Version 5.1474

Error Messages D
1506 value. The connection was aborted due to timeout
or other failure.

Make sure the physical network connections are present.

1507 value. The attempt to connect was refused. Make sure the server is running on the remote host.

1508 value. The connection was reset by the remote side. Make sure the remote peer is up and running.

1509 value. A destination address is required. A destination address or host name is required.

1510 value. The remote host cannot be reached. Make sure the routers are working properly.

1511 value. Too many open files. Close any open files.

1512 value. The network subsystem is down. Reboot the machine.

1513 value. The network dropped the connection. Make sure the peer is running and the network connections
are working.

1514 value. No buffer space is available. This might be because you are running several
applications, or an application is not releasing resources.

1515 value. The network cannot be reached from this
host at this time.

Make sure the routers are functioning properly.

1516 value. Attempt to connect timed out without
establishing a connection.

Make sure the machine is running and on the network.

1517 value. The host cannot be found. Make sure you can ping the host. Check your hosts file or
DNS server.

1518 value. The network subsystem is unavailable. Make sure the network services are started on machine.

1519 value. Invalid host name specified for destination. The host name cannot be resolved to an IP address. Enter
the name to the hosts file or DNS server.

1520 value. The specified address in not available. Make sure the host name is not zero—try pinging the host.

2001 Command line too long: value. Check the Windows Command Action. Command line
exceeds maximum allowed length of 2048 characters.

2006 Fire Trigger Action error: Invalid node name:
value.

A node name was specified directly in an action and that
node doesn't exist in the system.

2007 Fire Trigger Action error: Invalid property name:
value.

A property was specified directly in an action and that
property doesn't exist in the system.

2008 Fire Trigger Action error: Invalid subobject: value. A subobject was specified directly in an action and that
subobject doesn't exist in the system.

TABLE D-8. Inform OV Manager Error Messages (Continued)

Error Resolution
Designing and Managing Behavior Models 475Version 5.1

Error MessagesD
LogToDatabase Manager Error Messages

Following is a list of Log to Database Manager error messages.

2009 Inform OV send Packet Failed for platform socket
value.

3001 Inform OV Manager Initialization successfully
finished.

3002 CInformOVEventSocket::OnClose with code
value.

TABLE D-8. Inform OV Manager Error Messages (Continued)

Error Resolution

TABLE D-9. Log to Database Manager Error Messages

Error Resolution

1002 Initialization failed. Check WriteBuiltInTriggers.

1100 Unknown database exception. Check NerveCenter database. Log segment might be
full.

1101 Failed to connect to database. Check NerveCenter database. Check ODBC connection
string.

1102 Failed to connect to database. Check NerveCenter database. Check ODBC connection
string.

1103 Version table validation failed. NC_Version table
doesn't exist in database.

1104 Write to database failed. Log segment might be full or the database might have
gone down.

1203 Can't enable discovery model. Check the alarm table and the state of alarms (off or on).

3001 Database Thread Initialization successfully finished.

3002 The database state has changed. Either it has gone
down or come up.
Designing and Managing Behavior Models Version 5.1476

Error Messages D
LogToFile Manager Error Messages

Following is a list of Log to File Manager error messages.

Poll Manager Error Messages

Following is a list of Poll Manager error messages.

Protocol Manager Error Messages

Following is a list of Protocol Manager error messages.

TABLE D-10. Log to File Manager Error Messages

Error Resolution

1 Lookup failed on line number value in File value.

3001 LogToFile Manager Initialization successfully finished

TABLE D-11. Poll Manager Error Messages

Error

3001 Poll Manager Initialization successfully finished

3002 CPollManagerWnd:OnPollOnOff, PreCompild of PollEvent with Poll Id %ld failed

TABLE D-12. Protocol Manager Error Messages

Error Resolution

1 Building copy of node list failed. N/A

2 Building copy of poll property list failed. N/A

3 I.nitialization of protocol methods failed N/A

4 Initialization of ping socket failed. N/A

5 Creation of SNMP socket failed, socket error code: %d N/A

6 Error in ping socket: %s N/A

7 Error in ping socket: create socket failed. N/A

8 Error in ping socket: async select failed. N/A
Designing and Managing Behavior Models 477Version 5.1

Error MessagesD
PA Resync Manager Error Messages

Following is a list of PA Resync Manager error messages.

1000 Looking for the %s key in the configuration settings. Use the Administrator to enter the SNMP values in
the configuration settings.

1001 Ncuser user ID is not found. Add ncuser user ID to your system.

3000 Initialization successfully finished. N/A

3001 Invalid value in configuration settings for SNMP retry
interval, using default of 10 seconds.

Use the Administrator to enter an SNMP retry
interval.

3002 Invalid value in configuration settings for number of
SNMP retries, using default of 3 retries.

Use the Administrator to enter a number of SNMP
retries.

3003 Invalid value in configuration settings for default SNMP
port, using default of 161.

Use the Administrator to enter the default SNMP
port number.

TABLE D-12. Protocol Manager Error Messages (Continued)

Error Resolution

TABLE D-13. PA Resync Manager Error Messages

Error Resolution

1 Error getting local host name for encoding resync
request, socket error code: %d

N/A

2 Encoding resync request failed N/A

3 Sending resync request failed with zero bytes sent N/A

4 Sending resync request failed: %s N/A

5 Memory allocation error, trying to notify of
connection status

N/A

6 Memory allocation error, creating node list N/A

7 Memory allocation error, creating a resync node N/A

8 Parent status not sent during resync

10 Parents not computed during resync with map host.
Check OVPA. OVPA database must have nc host
node.

500 Socket Error: (%d)
Designing and Managing Behavior Models Version 5.1478

Error Messages D
1000 Error looking for the %s key in the NerveCenter
configuration settings

Use the Administrator to enter configuration settings.

1001 Attempt to connect to %s on port %d failed: %s Make sure the platform host is up and running and that the
name exists in the hosts file.

1002 Resync connection attempt failed: %d Make sure the platform host is up and the platform adapter
is running.

1500 The connection to % was closed

1501 Send failed with zero bytes sent

1505 %s. The address is already in use Make sure you are not running two instances of the same
application on the same machine.

1506 %s. The connection was aborted due to timeout or
other failure

Make sure the physical network connections are present.

1507 %s. The attempt to connect was refused Make sure the server is running on the remote host.

1508 %s. The connection was reset by the remote side Make sure the remote peer is up and running.

1509 %s. A destination address is required A destination address or host name is required.

1510 %s. The remote host cannot be reached Make sure the routers are working properly.

1511 %s. Too many open files Close any open files.

1512 %s. The network subsystem is down Reboot the machine.

1513 %s. The network dropped the connection Make sure the peer is running and the network
connections are working.

1514 %s. No buffer space is available This might be because you are running several
applications, or an application is not releasing resources.

1515 %s. The network cannot be reached from this host
at this time

Make sure the routers are functioning properly.

1516 %s. Attempt to connect timed out without
establishing a connection

Make sure the machine is running and on the network.

1517 %s. The host cannot be found Make sure you can ping the host, check you hosts file or
DNS server.

1518 The network subsystem is unavailable Make sure the network services are started on machine.

1519 %s. Invalid host name specified for destination The host name cannot be resolved to an IP address. Enter
the name to the hosts file or DNS server.

TABLE D-13. PA Resync Manager Error Messages (Continued)

Error Resolution
Designing and Managing Behavior Models 479Version 5.1

Error MessagesD
Server Manager Error Messages

Following is a list of Server Manager error messages.

1520 The specified address in not available Make sure the host name is not zero. Try pinging the host.

3000 initialization successfully finished N/A

3001 Node resync from map host was not requested
because either host name or port number is missing

If you are trying to disable a connection to the platform
adapter, then this message is OK. If you want to be
connected to the platform adapter, then use the
Administrator to check the map host settings.

3500 Connection to %s was successful N/A

TABLE D-13. PA Resync Manager Error Messages (Continued)

Error Resolution

TABLE D-14. Server Manager Error Messages

Error Resolution

1 OLE initialization failed. Make sure that the OLE
libraries are the correct version.

N/A

2 Perl create failed. N/A

3 Initialization of value manager thread failed. N/A

4 Failed to restore MibDirectory in configuration settings. N/A

5 Failed to open configuration settings while trying to
restore mib information.

N/A

6 Discrepancy in data. File: SERVER_CS.CPP, Line:
value.

N/A

10 Conflict in data. File: SERVER_CS.CPP, Line: value. N/A

11 Internal Error. File: SERVER_CS.CPP, Line: value. N/A

20 Cannot read configuration settings value: Bind. N/A

21 Cannot connect to Tcpip configuration settings
information.

N/A

22 Cannot read configuration settings value: IPAddress. N/A

23 Couldn't find value in map. N/A
Designing and Managing Behavior Models Version 5.1480

Error Messages D
24 Error while reading database. Poll/Mask:value uses a
simple trigger that doesn't exist in database.

N/A

25 Please report error number value to technical support. N/A

26 User validation failed: Unable to communicate with
ncsecurity process :value.

~

1001 Windows sockets initialization failed. Install TCP/IP.

1002 Initialization failed, cannot find ncperl.pl. Check NCPerl.pl location.

1003 Failed to open MIB: value. Check MIB location.

1004 Failed to parse MIB. Invalid MIB. Check configuration to see if the
correct MIB is specified.

1010 Failed to validate poll: value. The poll will be turned off. Check the poll condition using the Client
Application.

1100 value (database error). Try to resolve using the message. If not, call support.

1101 Failed to connect to database. ODBC Connection String
in configuration settings is invalid or can't find database
server.

Use InstallDB to re-create the ODBC connection
string.

1102 Failed to connect to database. ODBC Connection String
in configuration settings is empty.

Use InstallDB to re-create the ODBC connection
string.

1103 Version table validation failed. NC_Version table doesn't
exist in database.

Upgrade the NerveCenter database.

1200 Failed to open configuration settings while trying to
restore mib information.

Use the NerveCenter Administrator to check the
configuration settings. Invalid key is likely.

1201 Updated License key is invalid. An invalid license key was entered. Check the key.

1202 Cannot connect to configuration settings. Use the NerveCenter Administrator to check the
configuration settings. Invalid key is likely.

1203 Cannot open key value. Use the NerveCenter Administrator to check the
configuration settings.

1204 Cannot add value value. Use the NerveCenter Administrator to check the
configuration settings. Invalid key is likely.

1205 Cannot read configuration settings value in MapSubNets
key.

Use the NerveCenter Administrator to check the
configuration settings. Invalid key is likely.

TABLE D-14. Server Manager Error Messages (Continued)

Error Resolution
Designing and Managing Behavior Models 481Version 5.1

Error MessagesD
1206 Invalid configuration settings Entry for the value Method
in the Platform key.

Only Manual and Auto are allowed. Check for case.

1207 Cannot read configuration settings value: value Use the NerveCenter Administrator to check the
configuration settings. Invalid key is likely.

1208 Cannot write configuration settings Value: value Use the NerveCenter Administrator to check the
configuration settings. Invalid key is likely.

1210 Cannot find License key in configuration settings. Use the NerveCenter Administrator to check the
configuration settings. Invalid key is likely.

1300 value (Import behavior/database error). Try to resolve using the message. If not, call support.

1313 Server alarm instance maximum exceeded. Please restart
Server.

Restart server.

2001 The account NCServer.exe is running under does not
have the advanced user right “Act as part of the operating
system.”

Use User Manager to give advanced user right to the
group or user that NCServer is running under. You
will have to stop and restart NCServer.exe

2002 The user or a group the user belongs to does not have the
advanced user right “Logon as a batch job.”

Use User Manager to give advanced user right to the
group or user.

2003 The user ID value does not exist. Type in a user ID that exists. Check User Manager.

2004 The password is incorrect for user ID value. Type in a legal password for the user ID you entered

2005 License violation. Exceeded number of allowed nodes.
The number of managed nodes exceeds the limits of the
license.

Either unmanage some nodes or contact your
authorized sales representative for an upgrade.

2006 One of the following messages:

 Invalid Product ID in license key.

 No nodes specified in license.

 No users specified in license.

 Illegal start date specified.

Check with customer support to see that hte license
was generated correctly.

Invalid License Key. NerveCenter could not decode the license. Check for
typographical errors in the key or call support to get
the key validated and/or replaced.

License will expire in less than 14 days. Your NerveCenter evaluation license will expire
within 14 days. Contact sales or support to extend the
license.

TABLE D-14. Server Manager Error Messages (Continued)

Error Resolution
Designing and Managing Behavior Models Version 5.1482

Error Messages D
License has expired. Your NerveCenter evaluation license has expired.
Contact sales or support to get the license extended.

2007 The ncadmins, ncusers not defined on the server machine
and the user does not have root permissions.

Log in as root to connect to the Server. If you cannot
log in as root, do one of the following:

 If your system uses NIS, define the groups
ncadmins and ncusers on the NIS server
machine, in the /etc/group file, and rebuild the
NIS database.

 If you system does not use NIS, define the two
groups in the /etc/group file of the machine
where the Server is running.

2008 User does not have either administrator or user
permissions.

Log in as root to connect to the Server. If you cannot
log in as root, do one of the following:

 If your system uses NIS, include your user ID in
either the ncadmins or ncusers group on the NIS
server machine, in the /etc/group file, and rebuild
the NIS database.

 If your system does not use NIS, include your
user ID in either the ncadmins or ncusers group
on the machine where the Server is running.

3001 Request to delete the node value failed because the node
doesn't exist.

N/A

3002 Failed to find socket in server's map. Line: value.

3003 Exiting due to a SIGTERM signal.

3004 Primary thread initialization successful.

TABLE D-14. Server Manager Error Messages (Continued)

Error Resolution
Designing and Managing Behavior Models 483Version 5.1

Error MessagesD
Trap Manager Error Messages

Following is a list of Trap Manager error messages.

TABLE D-15. Trap Manager Error Messages

Error Resolution

1 Error in TrapManagerWnd::Initialize - failed to create GetHostByAddr
thread.

2 Error in TrapManagerWnd::LaunchTrapper - failed to create trapper
process.

3 Error in TrapManagerWnd::CreateCheckTrapperThread - failed to create
new thread.

5 Error in TrapManagerWnd::InitializeMSTrapService - failed to get proc
address.

6 Error in TrapManagerWnd::InitializeMSTrapService - error from
SnmpMgrTrapListen (last error).

7 Error in TrapManagerWnd::InitializeMSTrapService - failed to create trap
listen thread.

8 Error in TrapManagerWnd::Initialize - Failed to create trap stream socket.

9 Error in TrapManagerWnd::Initialize - Failed to listen on trap stream socket.

10 Error in TrapManagerWnd::OnTraceTraps - Failed to create trace file for
traps.

1001 CTrapManagerWnd::OnTrapExist - gethostbyname from trap data with
snmptrap failed for value.

1002 Error in trap service or trap service down. Check Windows SNMP service.

1003 CTrapManagerWnd::OnInvalidSignature - Error in receiving data on NC
socket.

Check for consistent version
numbers of trapper and
NerveCenter executables.

1004 Expected MSTRAP or OVTRAP in NerveCenter configuration settings. Reinstall and choose the
appropriate platform integration.

2001 MS Trap service threw exception in GetTrap. Make sure you aren't making
SNMP get requests to port 162.

2002 Error processing trap data. Make sure you aren't making
SNMP get requests to port 162.

3001 Trap Manager Initialization successfully finished.
Designing and Managing Behavior Models Version 5.1484

Error Messages D
NerveCenter installation Error Messages (UNIX)

Following is a list of NerveCenter installation error messages.

3002 Check Trapper—Trapper process died. restarting Trapper.

TABLE D-15. Trap Manager Error Messages (Continued)

Error Resolution

TABLE D-16. NerveCenter Installation Error Messages (UNIX)

Error Resolution

Space under dirname is INSUFFICIENT to
install LogMatrix NerveCenter

Free up space in the file system by removing files, or choose another place
for installation.

The directory dirname must reside on a local
disk

The directory you specified for NerveCenter installation is on a disk that
is not on the local file system. Pick a new directory or re-mount the disk.

Write permission is required by root for
dirname directory

The directory you specified for NerveCenter installation does not have
write permission for root. Choose another directory or change the
permissions.

Please create the desired destination
directory for NerveCenter and re-run the
installation script

The directory you specified for NerveCenter installation does not exist.
Choose another directory or create the original.

Invalid mount point The installation script could not find the CD-ROM drive and prompted
you for its location. The path you specified was not valid. Verify that the
drive exists, is mounted, and is configured correctly.

ProcessName is running on the system.
Please exit from (or kill) processName
process.

The installation script found that the nervectr or ovw process was running.
Exit from or kill the process and re-run the installation script.

These processes must be stopped before
NerveCenter can be installed. Please kill
these processes and re-run the installation
script.

The installation script found processes that need to be killed before
installation, you were prompted to stop them, and you said no. You must
manually exit from or kill the processes and re-run the installation script.

hostname is not a valid host name The host that you provided to the script is not a valid host. Check the name
of the host (capitalization, spelling, and so on) and try again.

I don’t know how to install on this
architecture

Installation is supported for Solaris. The script issues this message if
attempting to install on an architecture that is not in this set.

Can’t cd to installation_path/userfiles Make sure the directory exists and has appropriate permissions.
Designing and Managing Behavior Models 485Version 5.1

Error MessagesD
Can’t open hostname.conf The script couldn’t create the file or couldn’t open an existing
configuration file. Check installation_path/userfiles to make sure that root
has permission to write in this directory, that hostname.conf has read
permission set, if it exists, and that localhost.conf exists and has read
permission set.

Can’t create hostname.ncdb
Can’t create hostname.node

The script was attempting to create the indicated file by copying data from
another file. Check installation_path/userfiles to make sure that root has
permission to write in this directory, and that localhost.ext exists and has
read permission set.

Can’t open /etc/rc
Couldn’t re-create /etc/rc
Couldn’t modify /etc/rc

The script couldn’t modify /etc/rc to call the NerveCenter rc script. Edit
the file and add a line that executes installation_path/bin/rc.openservice.
There’s no need to rerun the installation script after this correction.

Can’t append to /etc/rc.local The script couldn’t modify /etc/rc.local to call the NerveCenter rc script.
Edit the file and add a line that executes
installation_path/bin/rc.openservice. There’s no need to rerun the
installation script after this correction.

Can’t create /etc/rc2.d/K94ncservice on
Solaris

The script couldn’t create the NerveCenter rc script
/etc/rc2.d/K94ncservice on Solaris.

Copy installation_path/bin/rc.openservice to /etc/rc2.d//K94ncservice.

There’s no need to rerun the installation script after this correction.

An error occurred in trying to contact the
Server “hostname”. As a result, the
information that you have specified cannot
be used to complete this NIS update.
Unable to modify filename. It doesn’t exist!
Unable to modify filename. File size is 0!

The script was attempting to update system services and failed. Correct
the specific error (perhaps the host name or file name was entered
incorrectly) and rerun the script. If the error isn’t easily corrected, you can
edit /etc/services yourself. Make sure that the following lines are included
in the file:

SNMP 161/udp
SNMP-trap 162/udp

If you’re running NIS, be sure to make these changes on the NIS server,
change to the NIS directory, and run make services.

TABLE D-16. NerveCenter Installation Error Messages (UNIX) (Continued)

Error Resolution
Designing and Managing Behavior Models Version 5.1486

Error Messages D
OpenView Configuration Error Messages (UNIX)

Following is a list of OpenView configuration error messages.

TABLE D-17. OpenView Configuration Error Messages (UNIX)

Error Resolution

OpenView configuration was not
entirely successful. You need to double-
check the steps that failed above.

This message is displayed if any part of the OpenView configuration failed.
Scroll through the script output, looking for messages that include FAILED.
Immediately following such a line will be the error messages that resulted
from the part of the script that failed.

Installing registration...FAILED The script was attempting to copy a file into NNM_dir/registration/C, where
NNM_dir is the location of your OpenView installation. Make sure that this
directory exists and that root has write permission for it.

Couldn’t create NNM_dir/help/C/ncapp The script was attempting to create the directory NNM_dir/help/C/ncapp,
where NNM_dir is the location of your OpenView installation. Make sure that
help/C exists and that root has write permission for it.

Installing Help...FAILED The script was attempting to copy files into Network Node
Manager_dir/help/C/ncapp. Make sure the directory exists and that root has
write permission for it. If you got the previous error message, you will also
receive this one.

Installing Fields...FAILED The script was attempting to copy a file into NNM_dir/fields/C. Make sure
the directory exists and that root has write permission for it.

Installing Symbols...FAILED The script was attempting to copy a file into NNM_dir/symbols/C. Make sure
the directory exists and that root has write permission for it.

Installing Bitmaps...FAILED The script was attempting to copy files into NNM_dir/bitmaps/C. Make sure
the directory exists and that root has write permission for it.

Notifying <<OpenView...>> FAILED The script was attempting to execute ovw. Make sure that root has appropriate
permissions for ovw and that you have run ovstartup on this computer.

Installing Events...FAILED The script was attempting to execute xnmevents. Make sure that root has
appropriate permissions for xnmevents and that xnmtrap is not running on
this computer.
Designing and Managing Behavior Models 487Version 5.1

Error MessagesD
Designing and Managing Behavior Models Version 5.1488

I
Index
A
Action Manager error messages 469
Action Router

alarm action 285
creating a rule 344

Action Router alarm action 22, 285
Action Router Rule Definition

window 343, 345
Action Router Rule List window 311,

342
Action Router rules

conditions, creating 344
Counter() 325
deleting 370
functions 347
In() 191
listing, existing 342
rule actions, defining 350
variables, NerveCenter 327

Action Router tool 22, 285
adding nodes

IP Lookup 111
Administrator, NerveCenter 28
alarm action 261

associating with a transition 261
alarm actions 19, 26, 40, 283

Action Router 22, 285
Alarm Counter 287
Beep 291
Clear Trigger 292
Command 294, 326
Delete Node 296
EventLog 296
Fire Trigger 300
FireTrigger 21, 300
Inform NerveCenter 305
Inform Netcool/OMNIbus 308
Inform OpenView 305
Inform Platform 308
Inform variable bindings 245

Log to File 312
logging-Event Log 296
logging-Log to DB 311
logging-Log to File 312
mailing-MS Mail 314
mailing-SMTP mail 336
Microsoft Mail 314
Notes 315
Paging 317
Perl Subroutine 318, 320, 326
Send Trap 330, 332
Set Attribute 169, 334
SMTP Mail 336
SNMP Set 337, 338
viewing logs 298

Alarm Counter action 287
Alarm Counter Action dialog 289
Alarm Counter alarm action 287
alarm definition

associating actions 261
defining a state 257, 261
severity 381

Alarm Definition List window 103,
106, 249, 272, 389, 391

Alarm Definition window 107, 249,
251, 273

Alarm Filter error messages 473
alarm scope 53, 254
Alarm Summary window

creating 251
defining 257, 261
entering notes 267
exporting behavior models 389,

393
filtering 81, 83
severity 381
viewing logs 298

alarms 25, 38
correlation expressions 274
defining 251

deleting 370
documenting 267
enabling 272
examples 40, 61
filtering rules 94
IF-IfFramePVC 359
IF-IfStatus 356
IfLoad state diagram 62
interface-type 358
IPSweep, enabling 106
listing 249
monitoring loads 40
notes 267
performing actions conditionally

341
property groups, changing 371
scope, changing 373
state diagrams 40, 61
TcpRetransMon 61
using 247

assigning
property groups to nodes 151, 160,

162, 163, 169, 171
AssignPropertyGroup() function 151,

163, 187
associating

actions with transitions 263
attributes

nodes 43
nodes, changing 376
polls 47
severites used by NerveCenter 379
severities 378
trap masks 49
triggers 48
variable bindings 219

authentication 118, 120
authentication password 118, 120
Authentication Protocol for SNMP v3

Nodes 120
Designing and Managing Behavior Models 489Version 5.1

IndexI
auto-classification 116, 122, 128, 129

B
base objects 218
Beep Action dialog 291
Beep alarm action 291
behavior model

exporting 389, 393
importing 401, 403
IPSweep 102, 103

behavior models 13, 25, 58
creating 58
creating multi-alarm 353
definition 38
design 37, 38
diagram 58
Discovery 102
example 62
exporting 393
exporting to files 391
exporting to other servers 389
files 391, 393, 401
importing 401
IPSweep 100, 106
multi-alarm 301, 354
predefined 26, 38

boolean expression, creating alarm
from 274

Boolean functions 274
built-in triggers 232, 237

CANNOT_SEND 235, 237
ERROR 232, 233, 234, 235, 237
example 240
firing sequence 235
how NerveCenter fires 232
ICMP errors 233, 235, 236
ICMP_ERROR 233, 234, 235, 237
ICMP_TIMEOUT 233, 235, 237
ICMP_UNKNOWN_ERROR 237
INFORM_CONNECTION_DOW

N 235
INFORM_CONNECTION_UP

235
INFORMS_LOST 235
list 237
list of 237
matching errors 235

NET_UNREACHABLE 233, 234,
237

NODE_UNREACHABLE 233,
234, 237

order fired 235
PORT_UNREACHABLE 233,

234, 238
RESPONSE 235, 238
SNMP_AUTHORIZATIONERR

238
SNMP_BADVALUE 238
SNMP_DECRYPTION_ERROR

238
SNMP_ENDOFTABLE 238
SNMP_ERROR 232, 235
SNMP_GENERR 238
SNMP_NOSUCHNAME 238
SNMP_NOT_IN_TIME_WINDO

W 238
SNMP_READONLY 239
SNMP_TIMEOUT 232, 233, 235,

239
SNMP_TOOBIG 239
SNMP_UNAVAILABLE_CONTE

XT 239
SNMP_UNKNOWN_CONTEXT

239
SNMP_UNKNOWN_ENGINEID

239
SNMP_UNKNOWN_USERNAM

E 239
SNMP_UNSUPPORTED_SEC_L

EVEL 239
SNMP_WRONG_DIGEST 239
UNKNOWN_ERROR 239

C
CANNOT_SEND built-in trigger

235, 237
CaseContainsString() 194
CaseContainsWord() 194
categorizing nodes 172
changing

alarm property 371
alarm scope 373
node attributes 376
node property group 372
object property 370

object property group 370
poll property 371
properties 371
property groups 372
state icons size 259
transition icon sizes 265

classification 122
classifying SNMP version for all

nodes 125
classifying SNMP version for one

or more nodes 124
confirming the SNMP version for a

node 125
how NerveCenter classifies nodes

129
when NerveCenter classifies

nodes 128
classification of SNMP version 116,

122
all nodes manually 125
confirming the version of a node

125
one or more nodes manually 124

Clear Trigger Action dialog 293
Clear Trigger alarm action 292
CLI 30
Client

configuring IPSweep 103
Client, NerveCenter 29
Code (ICMP field) 233, 234
colors, creating custom 384
Command Action dialog 105, 294
Command alarm action 294

variables 326
variables, NerveCenter 327

command line interface 30
conditional alarm actions 285, 341
conditions

Action Router rules 344
finding sequences 17
finding set of network 16
network, detecting 14, 39
persistent network 15
responding to network 19

conditions, tracking network 39
configuring SNMP v3 nodes 116,

118, 120, 125
ContainsString() 194
ContainsWord() 194
Designing and Managing Behavior Models Version 5.1490

Index I
context 118, 120
copying

objects 365, 367
property groups 366

corrective actions 21
correlating conditions 14
correlation expression list window

275, 279
correlation expression notes window

282
Correlation expression overview 274
correlation expressions

about 274
copying 279
creating 275
creating alarm from 280
notes 282

Counter() function 325
create alarm using correlation

expression window 280
creating

Action Router rule conditions 344
behavior models 58
colors, custom 384
multi-alarm behavior models 353
poll conditions 180, 182
properties 150
property groups, based on existing

152
property groups, based on MIBs

153
property groups, manually 155
severities 382
trap masks 242
trigger functions 216

D
data sets

nodes 42
polls 46
severities 378
trap masks 49
triggers 48

data sources, other 231
Database Wizard

populating the node data table 103
database, NerveCenter 24
default severities 381

DefineTrigger() function 187
DefineTrigger() function 187
defining

Action Router rule conditions 345
alarms 251
node sets 13
nodes 99, 115, 131
nodes, manually 108
Perl subroutines 320
polls 178
properties 147
property groups 147
rule actions 350
states 256, 257
transitions 261, 262
trap masks 211

Delete Node alarm action 296
deleting

Action Router rules 370
alarms 370
nodes 370
objects 368
OID to property group mappings

369
OpC masks 370
Perl subroutines 370
polls 370
property groups 369
severities 369
states 260
transitions 267
trap masks 370

delta() 185
Deserialize Manager error messages

473
Destination Address (ICMP field)

233, 235, 236
detecting condition persistence 15
detecting conditions 14, 39
digest keys 118, 120, 135
discovering nodes 99, 100, 102, 115,

131
customize IPSweep 103

Discovery behavior model 102
discovery of SNMP v3 agents

configuring NerveCenter 103
documentation

conventions 6
feedback 8

documenting
alarms 267
Perl subroutines 321
polls 199, 201

downstream alarm suppression 325
DumpParentsToFile() 326

E
edit correlation expression window

275, 279
elapsed (poll condition function) 185
enabling

alarms 272
IPSweep alarm 106
objects 364
polls 203
trap masks 229

ERROR built-in trigger 232, 233,
234, 235, 237

error messages 232, 237
Action Manager 469
Alarm Filter 473
Deserialize Manager 473
Flatfile Managerr 473
ICMP 233, 235, 236
Inform OV Manager 474
Inform Product Manager 474
LogToDatabase 476
LogToFile Manager 477
OpenView configuration 487
PA Resync Manager 478
Poll Manager 477
Protocol Manager 477
Server Manager 480
SNMP 232, 235, 236
Trap Manager 484
UNIX installations 485
user interface 466

error status for SNMP v3 operations
141

Event Log Action dialog 296
Event Log alarm action 296
EventLog alarm action 296
Expanded Color window 384
Expanded Rule Condition page 349
Export Model/Object dialog 390, 392
Export Objects and Nodes dialog

395, 398
Designing and Managing Behavior Models 491Version 5.1

IndexI
exporting 389
behavior models 389, 393
behavior models, to files 391
behavior models, to other servers

389
individual NerveCenter objects

394, 397, 399
node relationships to files 326
nodes 387
nodes to a file 397
nodes to other servers 394
objects 387, 399
objects to a file 397
objects to other servers 394
relationships node 326

F
fields

log entry 298
mail message 298

filter 78, 81, 83
filtering alarms

IP range 81, 83
finding set of network conditions 16
Fire Trigger Action dialog 105, 302
Fire Trigger alarm action 300
FireTrigger alarm action 21
FireTrigger() function 189
FireTrigger() function 189
Flatfile Manager error messages 473
functions 323

Action Router rules 347
AssignPropertyGroup 187
AssignPropertyGroup() 151, 163
CaseContainsString() 194
CaseContainsWord() 194
ContainsString() 194
ContainsWord() 194
Counter() 325
DefineTrigger 187
DefineTrigger() 187
DumpParentsToFile() 326
Fire Trigger 189
FireTrigger() 189
In 191
In() 191
LoadParentsFromFile() 325
node relationship functions 325

Perl subroutines 323
poll conditions 184
poll conditions, for 185
RemoveAllParents() 326
string matching 193
string-matching 193
triggers 217
used in Perl subroutines 323
used in poll conditions 184
used in trap mask trigger functions

217
variable bindings 218

G
getbulk 123
GetRequest 232, 235, 236

I
ICMP error messages 233, 235, 236
ICMP fields 233, 234, 235, 236
ICMP requests 233, 236
ICMP_ERROR built-in trigger 233,

234, 235, 237
ICMP_TIMEOUT built-in trigger

233, 235, 237
ICMP_UNKNOWN_ERROR built-in

trigger 237
IF-IfColdWarmStart alarm 360
IF-IfFramePVC alarm 359
IF-IfNmDemand alarm 361
IF-IfStatus alarm 356
IF-SelectType Perl subroutine 357
IfUpDownStatusByType behavior

model 354
Import Behavior Model dialog 402
importing 401

behavior model files 401
behavior models 401
node files 401
node relationships from files 325
nodes 387
object files 401
objects 387
relationships node 325
using ImportUtil 403

ImportUtil.exe 403
In() function 191
in() function 191

Inform 305, 310, 381
Inform Action dialog 306, 308
Inform alarm action 305, 308

trap variable bindings 245
variable bindings 245

Inform OV Manager error messages
474

Inform Platform alarm action 308
Inform Product Manager error

messages 474
INFORM_CONNECTION_DOWN

built-in trigger 235
INFORM_CONNECTION_UP built-

in trigger 235
INFORMS_LOST built-in trigger

235
instances 218
integration with network management

platforms 34, 35
integration with nmps for node

information 35
interface-type alarms 358
IP fields 235
IP filter 78

examples 83
subnet filter rules 81

IP Lookup 111
IPSweep 102, 103
IPSweep alarm

definition 104
enabling 106
modifying 103
state diagram 104

IPSweep behavior model 100
ipsweep.exe 78
IPv6 support 113

K
keys 118, 120
keys, SNMP v3 135

L
levels of severities 380
listing

Action Router rules, existing 342
alarms 249
polls 176
properties 148, 149
Designing and Managing Behavior Models Version 5.1492

Index I
property groups 148
trap masks 206, 208

LoadParentsFromFile() 325
loads alarm, monitoring interface 40
log entries

fields 298
Log to Database action dialog 311
Log to Database alarm action 311

variables, NerveCenter 327
Log to File Action dialog 312
Log to File alarm action 312

variables, NerveCenter 327
log, SNMP v3 operations 136, 137,

138, 140
logging 20
logging alarm data 298

Event Log 296
Log to DB 311
Log to File 312

LogToDatabase Manager error
messages 476

LogToFile Manager error messages
477

looking for high traffic on four
interfaces 54

M
mail alarm actions

Microsoft Mail 314
sending-MS Mail 314
sending-SMTP mail 336
SMTP mail 336

mail messages
fields 298

main NerveCenter components 23
managing NerveCenter objects 363
mapping OIDs to property groups

171
Mask Definition window 211
mask definition window 230, 242
Mask List window 208, 211, 229,

242
menus 194
Merge or Overwrite Property Group

window 154
MIB base objects 337
MIB objects 173
MIB to property group window 153

Microsoft Mail Action dialog 314
Microsoft Mail alarm action 314
mod files 391, 393, 397, 398, 401
modifying

IPSweep alarm 103
monitoring

interface loads alarm 40
nodes, a set of 41
viewing alarm logs 298
viewing alarm notes 267

multi-alarm behavior models 301,
353, 354

multi-homed nodes 236
multiple NerveCenter servers 241

N
NC AlarmCounters 191
NCContext 118, 120
NCUser 118, 120
NerveCenter

Action Router tool 22
Administrator 28
Client 29
data sources, other 231
database 24
functions for poll conditions 185
log entry fields 298
mail message fields 298
node management 13
objects 42
Server 23
servers, multiple 33, 241
severities 377

NerveCenter built-in triggers 232,
237
ICMP errors 233, 235, 236

NerveCenter installation error
messages (UNIX) 485

NerveCenter user security for SNMP
v3 118, 120

NerveCenter variables 326
NerveCenter Web Client 30
NET_UNREACHABLE built-in

trigger 233, 234, 237
network conditions

detecting 14
finding set of 16
persistent 15

responding to 19
network conditions, detecting 39
network conditions, tracking 39
network management platform

filtering by IP subnet 78, 81, 83
sending Informs 381

network management platforms
integration with 35
map colors 380

network management strategy 31
New Severity window 382
node classification 116, 122, 128,

129
all nodes manually 125
confirming the SNMP version of a

node 125
one or more nodes manually 124

Node Definition window 109, 111,
160, 161

Node List window 108, 111, 116,
118, 120, 124, 125, 161, 162, 374,
376

node relationship functions 325, 326
node source - server status

filtering by subnet 78, 81, 83
populating the database 78, 81, 83,

103
Node Source tab

resync parent rate 435
Node status behavior models

adding to the database 101, 102,
108

assigning property groups 160,
171, 187

SNMP classification 122, 124,
125, 128, 129

SNMP settings 116, 118, 120
SNMP Test Version poll 125

NODE_UNREACHABLE built-in
trigger 233, 234, 237

nodes 38, 42
assigning to property groups 151,

160, 162, 163, 169, 171
attributes 43
changing attributes 376
data set 42
defining sets 13
defining, manually 108
deleting 370
Designing and Managing Behavior Models 493Version 5.1

IndexI
discovering 99, 100, 115, 131
exporting relationships to files 326
exporting to a file 397
exporting to other servers 394
importing 401
importing relationships from files

325
managing 13
monitoring a set of 41
multi-homed 236
property groups, changing 372
relationship with poll 60
relationship with properties 59
relationship with property groups

59
relationships, exporting 326
relationships, importing 325
relationships, removing from

database 326
source 100
suppressing 374

not_present (poll condition function)
185

notes 199, 224, 267, 315
alarms 267
Perl subroutines 321
polls 199, 201

Notes alarm action 315
notification 20

O
objects

copying 365, 367
deleting 368
enabling 364
exporting to a file 397
exporting to other servers 394
files 397, 398, 401
importing 401
NerveCenter 42
properties, changing 370
property groups, changing 370
types you can export 399

objects, database 24
OID to Property Group dialog 171
OID to property group mappings 171

deleting 369
online knowledgebase 9

OpC masks
deleting 370

OpenView configuration error
messages 487

operations log 136, 137, 138, 140
overview of NerveCenter SNMP v3

support 116, 118, 120, 125
OVPA

resync parent rate 435

P
PA Resync Manager error messages

478
Paging Action dialog 317
Paging alarm action 317
parent child relationships, nodes 325
password 118, 120
Perl

built-in triggers, use with 233
Counter() 325
defining subroutines 320
deleting subroutines 370
documenting 321
example 329
functions 323
In() 191
notes 321
pop-up menu 194
string-matching functions 193
subroutines 167
variables, NerveCenter 326, 327

Perl functions
AssignPropertyGroup 187
DefineTrigger 187
Fire Trigger 189
In 191
string matching 193

Perl subroutine
creating 320
defining 320
executing as an alarm action 318
functions 323
variables 326

Perl Subroutine Action dialog 166,
168, 319

Perl Subroutine alarm action 318
Perl Subroutine Definition window

321

Perl Subroutine List window 320
Perl subroutines

built-in triggers 233
IF-SelectType 357

ping requests 233, 236
pings 233, 235, 236
platform names, associated with

severities 380
poll condition 180

examples 196
functions used 184

poll condition functions 185
delta() 185
elapsed 185
not_present 185
present 186

Poll Condition page 164, 182
poll conditions 163

creating 180, 182
DefineTrigger() 187
examples 196, 197, 198
FireTrigger() 189
functions 184, 185
In() 191
variables, NerveCenter 327

poll definition 178
copying 367
creating 178
defining 178, 180, 184, 196
deleting 370
entering notes 199
overriding node suppression 375
poll condition 180, 184, 196
SNMP Test Version poll 125
suppressing or unsuppressing 375

Poll Definition window 176, 178,
199, 203

Poll List window 176, 178, 199, 203,
364, 375

Poll Manager error messages 477
Poll Notes and Associations dialog

200
Poll pop-up menu 364
polling

getbulk 123
polls 38, 46

attributes 47
built-in triggers 232
conditions, creating 182
Designing and Managing Behavior Models Version 5.1494

Index I
data set 46
defining 178
deleting 370
documenting 199, 201
enabling 203
listing 176
notes 199, 201
pending list 232
ping requests 233, 236
property groups, changing 371
relationship with nodes 60
SNMP requests 232, 235, 236
suppressible, making 374, 375
using 175

pop-up menu for Perl 194
PORT_UNREACHABLE built-in

trigger 233, 234, 238
predefined behavior models 26, 38
predefined NerveCenter severities

381
present (poll condition function) 186
privacy 118, 120
privacy password 118, 120
properties 13, 38, 45

changing 371
creating 150
defining 147
filtering 156
listing 149
relationship with nodes 59

Property dialog 371
property filter

about 156
creating 158
deleting 159
editing 159

property group
assigning to nodes 160, 171, 187
creating 151, 152, 153

Property Group dialog 163, 372
Property Group List window 152,

153, 155, 158, 159, 366
property groups 38, 45

assigning to nodes 151, 160, 162,
163, 169, 171

changing 370, 372
copying 366
creating manually 155
creating,based on existing 152

creating,based on MIBs 153
defining 147
deleting 369
listing 148

property groups and properties 45
property groups relationship with

nodes 59
Protocol Manager error messages

477

R
RemoveAllParents() 326
responding to network conditions 19
RESPONSE built-in trigger 235, 238
resync parent rate 435
routing alarm actions 285
Rule Action page 350
rule actions, defining 350
rules for alarm filters 94

S
scope 53, 254

changing 373
Scope dialog 373
scripts See Perl
security 118, 120
security for SNMP v3 118, 120, 134
Security Level for SNMP v3 Nodes

118
Send Trap Action dialog 330
Send Trap alarm action 330, 332
Sequence Number (IP field) 235
Server Manager error messages 480
Server Selection dialog 390, 396
server status

exporting behavior models to 389
servers

alarm filtering rules 94
multiple 241

servers, multiple 33
Set Attribute Action dialog 170, 335
Set Attribute alarm action 169, 334
severities 25, 378, 381

attributes 378, 380
attributes used by NerveCenter

379
creating 382
data set 378

default 381
deleting 369
levels 380
map colors in NMPs 380
platform names 380

Severity List window 382
smart polling 14
SMTP mail action dialog 336
SMTP Mail alarm action 336
SMTP mail alarm action 336
SNMP

getbulk 123
SNMP error messages 232, 235, 236
SNMP errors 232, 235, 236
SNMP requests 232, 235, 236
SNMP Set Action window 337
SNMP Set alarm action 337

variable bindings 338
SNMP settings 132

node classification 128, 129
SNMP v3

built-in triggers 238, 239
Changing Authentication Protocol

120
Changing Security Level 118
classification 122, 124, 125, 128,

129
node settings 116, 118, 120
security 118, 120
test poll 125

SNMP v3 support 132
digest keys and passwords 135
error status 141
node classification 116, 122, 128,

129
operations log 136, 137, 138, 140
security 134
test poll 144

SNMP_AUTHORIZATIONERR
built-in trigger 238

SNMP_BADVALUE built-in trigger
238

SNMP_DECRYPTION_ERROR
built-in trigger 238

SNMP_ENDOFTABLE built-in
trigger 238

SNMP_ERROR built-in trigger 232,
235

SNMP_GENERR built-in trigger 238
Designing and Managing Behavior Models 495Version 5.1

IndexI
SNMP_NOSUCHNAME built-in
trigger 238

SNMP_NOT_IN_TIME_WINDOW
built-in trigger 238

SNMP_READONLY built-in trigger
239

SNMP_TIMEOUT built-in trigger
232, 233, 235, 239

SNMP_TOOBIG built-in trigger 239
SNMP_UNAVAILABLE_CONTEXT

built-in trigger 239
SNMP_UNKNOWN_CONTEXT

built-in trigger 239
SNMP_UNKNOWN_ENGINEID

built-in trigger 239
SNMP_UNKNOWN_USERNAME

built-in trigger 239
SNMP_UNSUPPORTED_SEC_LEV

EL built-in trigger 239
SNMP_WRONG_DIGEST built-in

trigger 239
Source Address (ICMP field) 233
standalone operation 32
State Definition dialog 257
state diagrams

icon sizes 265
IF-IfColdWarmStart 360
IF-IfFramePVC alarm 359
IF-IfNmDemand 361
IfLoad 62
interface-type alarms 358
IPSweep 104
monitoring loads 40
states, defining 256, 257
TcpRetransMon 61

state transitions See transitions
State/Transition Size dialog 259, 265,

266
states

defining 256, 257
deleting 260
icons, changing sizes 259

status, error for SNMP v3 operations
141

StopLookup 112
string matching functions 193
string-matching functions 193, 194
subnet filter 78, 81, 83
subobject scope alarms 54

subobjects 218
subroutines See Perl
suppressing nodes 374
suppressing polling 374, 375

T
TcpRetransMon alarm 61
technical support 8

contacting 9
educational services 8
professional services 8

test poll 125
TestVersion poll 125
tips for using property groups and

properties 172
tools

Action Router tool 22
tracking conditions 39
transition 261

defining in an alarm 261
Transition Definition dialog 104,

165, 167, 169, 262, 263
transition line color 266
transitions 25

actions 251
actions, associating 263
causing 21
defining 261, 262
deleting 267
icon sizes, changing 265

Trap Manager error messages 484
trap mask trigger function 211

defining 211
entering notes 224
examples 221
Send Trap alarm action 330, 332
trigger function 211
variables used 221

trap mask trigger functions
In() 191

trap masks 38, 49
attributes 49
creating 242
data set 49
deleting 370
enabling 229
listing 206, 208
using 205

trap masks, defining 211
traps

Inform variable bindings 245
trigger function 211

built-in triggers 232, 235, 236, 237
clearing 292
delaying 287, 300
firing 287
firing from an alarm 300
functions used for trap masks 217
variables used for trap masks 221

Trigger Function page 244
trigger functions 217

creating 216
examples 221, 222, 223, 246
variables 221
variables, NerveCenter 327

triggers 26, 39
attributes 48
built-in 232, 237, 240
built-in, list of 237
data set 48
sources 250

triggers fired by high-traffic poll 254
Type (ICMP field) 233, 234

U
understanding NerveCenter 11
UNKNOWN_ERROR built-in

trigger 239
user interface messages 466
user name 118, 120
using a network management

platform’s discovery mechanism
101

using Action Router’s object lists
348

V
v3TestPoll 144
variable bindings 48

attributes 219
functions 218
Inform alarm action traps 245
Inform traps 245
NerveCenter Inform traps 245
values 219

variables 326
Designing and Managing Behavior Models Version 5.1496

Index I
NerveCenter 326, 327
Perl subroutine alarm actions 326
trap masks 221
trigger functions 221

version of SNMP on a node 116
Designing and Managing Behavior Models 497Version 5.1

IndexI
Designing and Managing Behavior Models Version 5.1498

	Designing and Managing Behavior Models
	Contents
	Introduction
	Overview of this Book
	NerveCenter Documentation
	Using the Online Help
	Printing the Documentation
	The NerveCenter Documentation Library
	UNIX Systems
	Document Conventions
	Documentation Feedback

	LogMatrix Technical Support
	Professional Services
	Educational Services
	Contacting the Customer Support Center
	For Telephone Support
	For E-mail Support
	For Electronic Support
	For Online KnowledgeBase Access
	For User Community Access

	Understanding NerveCenter
	What is NerveCenter?
	How NerveCenter Manages Nodes
	Defining a Set of Nodes
	Detecting Conditions
	Correlating Conditions
	Detecting the Persistence of a Condition
	Finding a Set of Conditions
	Looking for a Sequence of Conditions

	Responding to Conditions
	Notification
	Logging
	Causing State Transitions
	Corrective Actions
	Action Router

	Main NerveCenter Components
	The NerveCenter Server
	The NerveCenter Database
	Objects in the Database
	Behavior Models
	Predefined Behavior Models

	The NerveCenter User Interface
	The NerveCenter Administrator
	The NerveCenter Client
	The NerveCenter Web Client
	The Command Line Interface

	Role in Network Management Strategy
	Standalone Operation
	Using Multiple NerveCenter Servers
	Integration with Network Management Platforms
	Integration with NMPs for Node Information

	Behavior Models and Their Components
	Behavior Models
	Detecting Conditions
	Tracking Conditions
	Monitoring a Set of Nodes

	NerveCenter Objects
	Nodes
	Property Groups and Properties
	Polls
	Trap Masks
	Alarms
	Alarm Scope

	NerveCenter and Perl
	Constructing Behavior Models
	How the Pieces Fit Together
	An Example of a Behavior Model

	Getting Started with the NerveCenter Client
	Starting the Client
	Connecting to a Server
	Connecting to a Server Manually
	Connecting to a Server Automatically
	Sharing MIB Information from Multiple Servers
	Selecting the Active Server
	Deleting a Server from the Server List
	Changing the Server Port on the Client

	Setting Up Alarm-Instance Filters
	Filtering Alarms by IP Range
	IP Subnet Filter Exclusion Rules
	IP Subnet Filter Examples

	Filtering Alarms by Severity
	Filtering Alarms by Property Groups
	Associating a Filter with a Server
	Rules for Associating Filters with Alarms
	Multiple Filters are ORed Together
	Multiple Conditions in a Single Filter are ANDed Together

	Specifying Heartbeat Messaging
	Modifying the Heartbeat Message Interval
	Deactivating Heartbeat Messaging

	Disconnecting from a Server

	Discovering and Defining Nodes
	Discovering Nodes
	Using a Network Management Platform Discovery Mechanism
	Using IPSweep Behavior Model
	Modifying the IPSweep Alarm
	Enabling the IPSweep Alarm

	Defining Nodes Manually
	IPv6 and NerveCenter

	Configuring SNMP Settings for Nodes
	Manually Changing the SNMP Version Used to Manage a Node
	Changing the Security Level of an SNMPv3 Node
	Changing the Authentication Protocol for an SNMPv3 Node
	Classifying the SNMP Version Configured on Nodes
	Classifying the SNMP Version for One or More Nodes Manually
	Classifying the SNMP Version for All Nodes Manually
	Confirming the SNMP Version for a Node
	Testing SNMPv1 and v2c agents
	Testing SNMPv3 agents

	When NerveCenter Classifies Node SNMP Versions
	How NerveCenter Classifies a Node SNMP Versions

	NerveCenter Support for SNMPv3
	Overview of NerveCenter SNMPv3 Support
	NerveCenter Support for SNMPv3 Security
	NerveCenter Support for SNMPv3 Digest Keys and Passwords

	SNMPv3 Operations Log
	Signing a Log for SNMPv3 Errors Associated with Your Client
	Signing a Log for SNMPv3 Errors Associated with a Remote Client or Administrator
	Viewing the SNMPv3 Operations Log

	SNMP Error Status
	Using the SNMP Test Version Poll
	Testing SNMPv1 and v2c Agents
	Testing SNMPv3 Agents
	How To Use the Test Version Poll

	Defining Property Groups and Properties
	Listing Property Groups and Properties
	Listing Property Groups
	Listing Properties

	Creating a Property
	Creating a New Property Group
	Based on an Existing Property Group
	Based on the Contents of MIBs
	Adding Properties Manually

	The nl-ping Property
	Filtering Properties
	Assigning a Property Group to a Node
	Using the Node Definition Window
	Using the Node List Window
	Using the AssignPropertyGroup() Function
	In a Poll Condition
	In a Trigger Function
	In a Perl Subroutine

	Using the Set Attribute Alarm Action
	Using OID to Property Group Mappings

	Tips for Using Property Groups and Properties
	Categorizing Nodes
	Move from the General to the Specific
	MIB Objects

	Using Polls
	Listing Polls
	Defining a Poll
	Writing a Poll Condition
	The Basic Procedure for Creating a Poll Condition
	Functions for Use in Poll Conditions
	NerveCenter Functions for Poll Conditions
	AddNode() Function
	AssignPropertyGroup() Function
	DefineTrigger() Function
	FireTrigger() Function
	in() Function
	NC::AlarmCounters
	String-Matching Functions

	Using the Pop-Up Menu for Perl
	Examples of Poll Conditions
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Documenting a Poll
	How to Create Notes for a Poll
	What to Include in Notes for a Poll

	Enabling a Poll

	Using Trap Masks
	About Trap Masks
	How NerveCenter Decodes SNMPv2c/v3 Traps
	How NerveCenter Decodes ICMP Events
	Listing Trap Masks
	Defining a Trap Mask
	Writing a Trigger Function
	Functions for Use in Trigger Functions
	Variable-Binding Functions
	AddNode() Function

	Variables for Use in Trigger Functions
	Examples of Trigger Functions
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Documenting a Trap Mask
	How to Create Notes for a Trap Mask
	What to Include in Notes for a Trap Mask

	Enabling a Trap Mask

	Using Other Data Sources
	Built-In Triggers
	SNMP Requests
	ICMP Requests
	ICMP Responses
	Multiple Errors Examples

	Built-in Trigger Firing Sequence
	Matching Errors with Pending SNMP and Ping Requests
	Multi-homed Nodes
	Built-In Triggers
	An Example Using Built-In Triggers

	Another NerveCenter
	Creating a Trap Mask
	Variable Bindings for NerveCenter Informs
	An Example Trigger Function

	Using Alarms
	Listing Alarms
	Defining an Alarm
	Alarm Scope
	Defining States
	Defining a State
	Changing the Size of the State Icons
	Deleting a State

	Defining Transitions
	Defining a Transition
	Associating an Action with a Transition
	Changing the Size of Transition Icons
	Changing the Color of Transition Lines
	Deleting a Transition

	Documenting an Alarm
	How to Create Notes for an Alarm
	What to Include in Notes for an Alarm

	Enabling an Alarm
	Correlation Expressions

	Alarm Actions
	Action Router
	Alarm Counter
	Beep
	Clear Trigger
	Command
	Delete Node
	EventLog
	Fire Trigger
	Inform
	Inform Platform
	Inform Specific Numbers
	Log to Database
	Log to File
	Microsoft Mail
	Notes
	Paging
	Perl Subroutine
	Defining a Perl Subroutine
	Functions for Use in Perl Subroutines
	AddNode() Function
	Counter() Function
	Node Relationship Functions

	NerveCenter Variables
	Perl Subroutine Example

	Send Trap
	Set Attribute
	SMTP Mail
	SNMP Set

	Performing Actions Conditionally (Action Router)
	Listing Existing Action Router Rules
	Creating an Action Router Rule
	Defining a Rule Condition
	Functions for Use in Action Router Rule Conditions
	Using Action Router Object Lists

	Defining a Rule Action

	Creating Multi-Alarm Behavior Models
	IfUpDownStatusByType
	IF-IfStatus Alarm
	IF-SelectType Perl Subroutine
	Interface-type Alarms
	IF-IfFramePVC
	IfColdWarmStart Alarm
	IfNmDemand Alarm

	Managing NerveCenter Objects
	Enabling Objects
	Copying Objects
	Copying a Property Group
	Copying Other Objects

	Deleting Objects
	Using a Delete Button
	Using a Pop-Up Menu

	Changing an Object Property or Property Group
	Changing Poll or Alarm Properties
	Changing a Node Property Group

	Changing an Alarm Scope
	Suppressing Polling
	Suppressing a Node
	Making a Poll Suppressible

	Changing Other Node Attributes

	NerveCenter Severities
	Definition of a Severity
	Severity Attributes Used by NerveCenter
	Severity Attributes and Network Management Platforms
	Level
	Platform Name

	Default Severities
	Creating a New Severity
	Creating Custom Colors

	Importing and Exporting NerveCenter Nodes and Objects
	Exporting Behavior Models to Other Servers
	Exporting Behavior Models to a File
	More About Exporting Behavior Models
	Exporting NerveCenter Objects and Nodes to Other Servers
	Exporting NerveCenter Objects and Nodes to a File
	More about Exporting Objects
	Importing Node, Object, and Behavior Model Files
	Importing Behavior Models or Nodes with ImportUtil

	Communications and Data
	Debugging a Behavior Model
	Enabling a Behavior Model's Components
	Checking Properties and Property Groups
	Checking a Poll's Property
	Checking a Poll's Poll Condition
	Checking an Alarm's Property

	Matching Triggers and Alarm Transitions
	Identities of Triggers and Transitions
	Rules for Matching
	Name Rule
	Subobject Rule
	Node Rule
	Property Rule

	Examples of Matching Triggers and Transitions
	Example 1
	Example 2
	Example 3

	Auditing Behavior Models
	Behavior Model Log

	Downstream Alarm Suppression
	Understanding How the Model Works
	Testing the Model
	Importing the New Model
	Identifying Parent-Child Relationships
	Making the Relationship Information Available to NerveCenter
	Testing the Alarm Suppression Model
	Running Node Availability Reports

	Understanding the Technical Details
	Alarms
	DwnStrmSnmpStatus Alarm
	DwnStrmIcmpStatus Alarm

	Perl Subroutines
	SS_IcmpError Perl Subroutine
	SetNodeStatus Perl Subroutines
	TestParentStatus Perl Subroutine
	TestParentSetNode Perl Subroutine

	Error Messages
	User Interface Messages
	Error Messages
	Action Manager Error Messages
	Alarm Filter Manager Error Messages
	Deserialize Manager Error Messages
	Flatfile Error Messages
	Inform NerveCenter Error Messages
	Inform OV Error Messages
	LogToDatabase Manager Error Messages
	LogToFile Manager Error Messages
	Poll Manager Error Messages
	Protocol Manager Error Messages
	PA Resync Manager Error Messages
	Server Manager Error Messages
	Trap Manager Error Messages
	NerveCenter installation Error Messages (UNIX)
	OpenView Configuration Error Messages (UNIX)

	Index

